Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,070)

Search Parameters:
Keywords = Tie1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7209 KiB  
Article
Evolutionary Analysis of the Land Plant-Specific TCP Interactor Containing EAR Motif Protein (TIE) Family of Transcriptional Corepressors
by Agustín Arce, Camila Schild, Delfina Maslein and Leandro Lucero
Plants 2025, 14(15), 2423; https://doi.org/10.3390/plants14152423 - 5 Aug 2025
Abstract
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin [...] Read more.
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin of the TIE family to the early evolution of the embryophyte, while an earlier diversification in algae cannot be ruled out. Strikingly, we found that the number of TIE members is highly constrained compared to the expansion of TCPs in angiosperms. We used co-expression data to identify potential TIE-TCP regulatory targets across Arabidopsis thaliana and rice. Notably, the expression pattern between these species is remarkably similar. TCP Class I and Class II genes formed two distinct clusters, and TIE genes cluster within the TCP Class I group. This study provides a comprehensive evolutionary analysis of the TIE family, shedding light on its conserved role in the regulation of gene transcription in flowering plant development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

22 pages, 8767 KiB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 - 31 Jul 2025
Viewed by 81
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

14 pages, 731 KiB  
Article
Readhesion of Tongue-Tie Following Neonatal Frenotomy: Incidence and Impact of Postoperative Exercises in a Prospective Observational Study
by Beatriz Valle-Del Barrio, Silvia Maya-Enero, Jordi Prat-Ortells, María Ángeles López-Vílchez and Júlia Candel-Pau
Children 2025, 12(8), 971; https://doi.org/10.3390/children12080971 - 24 Jul 2025
Viewed by 291
Abstract
Background/Objectives: Frenotomy is the procedure of choice for treating ankyloglossia. The literature reports that readhesion of the frenulum occurs in 2.6–13% of cases. There is no published evidence to support performing tongue exercises to prevent it. We aimed to determine the readhesion rate [...] Read more.
Background/Objectives: Frenotomy is the procedure of choice for treating ankyloglossia. The literature reports that readhesion of the frenulum occurs in 2.6–13% of cases. There is no published evidence to support performing tongue exercises to prevent it. We aimed to determine the readhesion rate of ankyloglossia, the benefits of tongue exercises to prevent it, and the characteristics of patients who experienced readhesion. Methods: This is a prospective, observational study of neonates who underwent a frenotomy between January and August 2024. Following the frenotomy, we recommended that all parents perform a series of exercises 6–8 times daily over 15 days. Patients were re-evaluated 10–15 days post-procedure for signs of ankyloglossia using the Hazelbaker tool and clinical variables such as nipple pain or cracks. Results: We enrolled 212 patients; thirty patients underwent a refrenotomy (14.1%). The raw risk of readhesion in our study was 0.335 (95%CI 0.275–0.401), and for symptomatic readhesion, 0.156 (95%CI 0.113–0.211). Adjusted by sex, the risk of readhesion for female patients was 0.236 (95%CI 0.155–0.344), and for males, 0.390 (95%CI 0.312–0.474). The appearance and function Hazelbaker scores were significantly lower before the frenotomy than post-procedure in all cases. In females, not following the exercise protocol multiplied the risk of readhesion by 1.61 (95%CI 1.03–2.56), whereas in males the risk was multiplied by 1.47 (95%CI 1.03–2.08). Symptomatic readhesion was significantly correlated with age at frenotomy and Hazelbaker score. Conclusions: Readhesion of tongue-tie was higher than previously published (33.5%); however, symptomatic readhesion was less frequent (15.6%). Proper adherence to post-frenotomy exercises significantly reduces the risk of readhesion, although it has less impact on symptomatic readhesion. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

27 pages, 3540 KiB  
Article
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements
by Hanjui Chang, Yue Sun, Fei Long and Jiaquan Li
Polymers 2025, 17(15), 2018; https://doi.org/10.3390/polym17152018 - 24 Jul 2025
Viewed by 259
Abstract
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded [...] Read more.
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded electronics (IMEs) technology to fabricate piezoelectric micro-ultrasonic transducers with micron-scale precision, addressing the critical issue of acoustic node displacement caused by thermal–mechanical coupling in injection molding—a problem that impairs wave transmission efficiency and operational stability. To optimize the IME process parameters, a hybrid multi-objective optimization framework integrating NSGA-II and MOPSO is developed, aiming to simultaneously minimize acoustic node displacement, volumetric shrinkage, and residual stress distribution. Key process variables—packing pressure (80–120 MPa), melt temperature (230–280 °C), and packing time (15–30 s)—are analyzed via finite element modeling (FEM) and validated through in situ tie bar elongation measurements. The results show a 27.3% reduction in node displacement amplitude and a 19.6% improvement in wave transmission uniformity compared to conventional methods. This methodology enhances acoustic tweezers’ operational stability and provides a generalizable framework for multi-physics optimization in MEMS manufacturing, laying a foundation for next-generation applications in single-cell manipulation, lab-on-a-chip systems, and nanomaterial assembly. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

27 pages, 5145 KiB  
Article
An Improved Deep Q-Learning Approach for Navigation of an Autonomous UAV Agent in 3D Obstacle-Cluttered Environment
by Ghulam Farid, Muhammad Bilal, Lanyong Zhang, Ayman Alharbi, Ishaq Ahmed and Muhammad Azhar
Drones 2025, 9(8), 518; https://doi.org/10.3390/drones9080518 - 23 Jul 2025
Viewed by 311
Abstract
The performance of the UAVs while executing various mission profiles greatly depends on the selection of planning algorithms. Reinforcement learning (RL) algorithms can effectively be utilized for robot path planning. Due to random action selection in case of action ties, the traditional Q-learning [...] Read more.
The performance of the UAVs while executing various mission profiles greatly depends on the selection of planning algorithms. Reinforcement learning (RL) algorithms can effectively be utilized for robot path planning. Due to random action selection in case of action ties, the traditional Q-learning algorithm and its other variants face the issues of slow convergence and suboptimal path planning in high-dimensional navigational environments. To solve these problems, we propose an improved deep Q-network (DQN), incorporating an efficient tie-breaking mechanism, prioritized experience replay (PER), and L2-regularization. The adopted tie-breaking mechanism improves the action selection and ultimately helps in generating an optimal trajectory for the UAV in a 3D cluttered environment. To improve the convergence speed of the traditional Q-algorithm, prioritized experience replay is used, which learns from experiences with high temporal difference (TD) error and avoids uniform sampling of stored transitions during training. This also allows the prioritization of high-reward experiences (e.g., reaching a goal), which helps the agent to rediscover these valuable states and improve learning. Moreover, L2-regularization is adopted that encourages smaller weights for more stable and smoother Q-values to reduce the erratic action selections and promote smoother UAV flight paths. Finally, the performance of the proposed method is presented and thoroughly compared against the traditional DQN, demonstrating its superior effectiveness. Full article
Show Figures

Figure 1

19 pages, 1371 KiB  
Article
The Structure and Driving Mechanisms of the Departmental Collaborative Network in Primary-Level Social Risk Prevention and Control: A Network Study of J City, China
by Lirong Zhang, Haixing Zhang and Qingzhi Jiang
Systems 2025, 13(8), 617; https://doi.org/10.3390/systems13080617 - 22 Jul 2025
Viewed by 306
Abstract
Primary-level social risk prevention and control is a complex, systemic endeavor that requires close cooperation among various local government departments. Within this context, addressing bureaucratic segmentation and strengthening interdepartmental collaboration are critical issues in primary-level social risk governance. This study uses social network [...] Read more.
Primary-level social risk prevention and control is a complex, systemic endeavor that requires close cooperation among various local government departments. Within this context, addressing bureaucratic segmentation and strengthening interdepartmental collaboration are critical issues in primary-level social risk governance. This study uses social network analysis and the exponential random graph model to examine the collaborative network structure and driving mechanisms among government departments engaged in risk prevention, with J City as a network study. The findings reveal that (1) while a collaborative governance framework exists, the network has low overall density, strong localized clustering, and a clear core-periphery structure, indicating the need for improved coordination and more refined collaborative mechanisms; (2) the formation of the risk prevention network is influenced by both endogenous structural factors and exogenous actor attributes. Endogenously, reciprocity and transitivity play significant roles in tie formation; exogenously, departments with similar resource mobilization capacities are more likely to collaborate, while those with strong communication, digital technology, and resource mobilization capabilities are more likely to initiate collaborations, and those with high communication capacity are more likely to accept collaborative offers. This study offers insights into the dynamics and formation mechanisms of departmental collaborative networks in primary-level social risk governance. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

16 pages, 1350 KiB  
Review
Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications
by Jinwook Kim, Jinwoo Kim and Juwon Kang
Actuators 2025, 14(7), 355; https://doi.org/10.3390/act14070355 - 19 Jul 2025
Viewed by 253
Abstract
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural [...] Read more.
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural constraints that tie resonance frequency to overall transducer length and mass. However, technical demands in biomedical, industrial, and underwater technologies have driven the development of broadband Langevin transducers capable of operating over wider frequency ranges. Lower frequencies are desirable for deep penetration and cavitation effects, while higher frequencies offer improved resolution and directivity. Recent design innovations have focused on modifications to the three key components of the transducer: the head mass, piezoelectric drive stack, and tail mass. Techniques such as integrating flexural or edge-resonance modes, adopting piezocomposite stacks, and tailoring structural geometry have shown promising improvements in bandwidth and transmitting efficiency. This review examines broadband Langevin transducer designs over the past three decades, offering detailed insights into design strategies for future development of high-power broadband ultrasonic transducers. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

46 pages, 6649 KiB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme?—Part II: In Context to Self-Made Hybrid Erich Arch Bars and Commercial Hybrid MMF Systems—Literature Review and Analysis of Design Features
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 33; https://doi.org/10.3390/cmtr18030033 - 15 Jul 2025
Viewed by 452
Abstract
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the [...] Read more.
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the available technical/clinical data. Hypothetically, the risk of tooth root damage by transalveolar screws is diminished by a targeting function of the screw holes/slots. Methods: We utilize a literature review and graphic displays to disclose parallels and dissimilarities in design and functionality with an in-depth look at the targeting properties. Results: Self-made hybrid arch bars have limitations to meet low-risk interradicular screw insertion sites. Technical/clinical information on CHMMFSs is unevenly distributed in favor of the SMARTLock System: positive outcome variables are increased speed of application/removal, the possibility to eliminate wiring and stick injuries and screw fixation with standoff of the embodiment along the attached gingiva. Inferred from the SMARTLock System, all four CHMMFs possess potential to effectively prevent tooth root injuries but are subject to their design features and targeting with the screw-receiving holes. The height profile and geometry shape of a CHMMFS may restrict three-dimensional spatial orientation and reach during placement. To bridge between interradicular spaces and tooth equators, where hooks or tie-up-cleats for intermaxillary cerclages should be ideally positioned under biomechanical aspects, can be problematic. The movability of their screw-receiving holes according to all six degrees of freedom differs. Conclusion: CHMMFSs allow simple immobilization of facial fractures involving dental occlusion. The performance in avoiding tooth root damage is a matter of design subtleties. Full article
Show Figures

Figure 1

28 pages, 12965 KiB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme? Part I: A Review on the Provenance, Evolution and Properties of the System
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 32; https://doi.org/10.3390/cmtr18030032 - 12 Jul 2025
Cited by 1 | Viewed by 804
Abstract
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its [...] Read more.
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its technical and functional features. Results: The Matrix WaveTM System (MWS) is characterized by a smoothed square-shaped Titanium rod profile with a flexible undulating geometry distinct from the flat plate framework in Erich arch bars. Single MWS segments are Omega-shaped and carry a tie-up cleat for interarch linkage to the opposite jaw. The ends at the throughs of each MWS segment are equipped with threaded screw holes to receive locking screws for attachment to underlying mandibular or maxillary bone. An MWS can be partitioned into segments of various length from single Omega-shaped elements over incremental chains of interconnected units up to a horseshoe-shaped bracing of the dental arches. The sinus wave design of each segment allows for stretch, compression and torque movements. So, the entire MWS device can conform to distinctive spatial anatomic relationships. Displaced fragments can be reduced by in-situ-bending of the screw-fixated MWS/Omega segments to obtain accurate realignment of the jaw fragments for the best possible occlusion. Conclusion: The Matrix WaveTM MMF System is an easy-to-apply modular MMF system that can be assembled according to individual demands. Its versatility allows to address most facial fracture scenarios in adults. The option of “omnidirectional” in-situ-bending provides a distinctive feature not found in alternate MMF solutions. Full article
Show Figures

Figure 1

41 pages, 20897 KiB  
Article
Voltage and Frequency Regulation in Interconnected Power Systems via a (1+PDD2)-(1+TI) Cascade Controller Optimized by Mirage Search Optimizer
by Kareem M. AboRas, Ali M. Elkassas, Ashraf Ibrahim Megahed and Hossam Kotb
Mathematics 2025, 13(14), 2251; https://doi.org/10.3390/math13142251 - 11 Jul 2025
Viewed by 387
Abstract
The combined application of Load Frequency Control (LFC) and Automatic Voltage Regulation (AVR), known as Automatic Generation Control (AGC), manages active and reactive power to ensure system stability. This study presents a novel hybrid controller with a (1+PDD2)-(1+TI) structure, optimized using [...] Read more.
The combined application of Load Frequency Control (LFC) and Automatic Voltage Regulation (AVR), known as Automatic Generation Control (AGC), manages active and reactive power to ensure system stability. This study presents a novel hybrid controller with a (1+PDD2)-(1+TI) structure, optimized using the Mirage Search Optimization (MSO) algorithm. Designed for dual-area power systems, the controller enhances both LFC and AVR by coordinating voltage and frequency loops. MSO was chosen after outperforming five algorithms (ChOA, DOA, PSO, GTO, and GBO), achieving the lowest fitness value (ITSE = 0.028). The controller was tested under various challenging conditions: sudden load disturbances, stochastic variations, nonlinearities like Generation Rate Constraints (GRC) and Governor Dead Band (GDB), time-varying reference voltages, and ±20% to ±40% parameter deviations. Across all scenarios, the (1+PDD2)-(1+TI) controller consistently outperformed MSO-tuned TID, FOPID, FOPI-PIDD2, (1+PD)-PID, and conventional PID controllers. It demonstrated superior performance in regulating frequency, tie-line power, and voltage, achieving approximately a 50% improvement in dynamic response. MATLAB/SIMULINK results confirm its effectiveness in enhancing overall system stability. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

18 pages, 8486 KiB  
Article
An Efficient Downwelling Light Sensor Data Correction Model for UAV Multi-Spectral Image DOM Generation
by Siyao Wu, Yanan Lu, Wei Fan, Shengmao Zhang, Zuli Wu and Fei Wang
Drones 2025, 9(7), 491; https://doi.org/10.3390/drones9070491 - 11 Jul 2025
Viewed by 220
Abstract
The downwelling light sensor (DLS) is the industry-standard solution for generating UAV-based digital orthophoto maps (DOMs). Current mainstream DLS correction methods primarily rely on angle compensation. However, due to the temporal mismatch between the DLS sampling intervals and the exposure times of multispectral [...] Read more.
The downwelling light sensor (DLS) is the industry-standard solution for generating UAV-based digital orthophoto maps (DOMs). Current mainstream DLS correction methods primarily rely on angle compensation. However, due to the temporal mismatch between the DLS sampling intervals and the exposure times of multispectral cameras, as well as external disturbances such as strong wind gusts and abrupt changes in flight attitude, DLS data often become unreliable, particularly at UAV turning points. Building upon traditional angle compensation methods, this study proposes an improved correction approach—FIM-DC (Fitting and Interpolation Model-based Data Correction)—specifically designed for data collection under clear-sky conditions and stable atmospheric illumination, with the goal of significantly enhancing the accuracy of reflectance retrieval. The method addresses three key issues: (1) field tests conducted in the Qingpu region show that FIM-DC markedly reduces the standard deviation of reflectance at tie points across multiple spectral bands and flight sessions, with the most substantial reduction from 15.07% to 0.58%; (2) it effectively mitigates inconsistencies in reflectance within image mosaics caused by anomalous DLS readings, thereby improving the uniformity of DOMs; and (3) FIM-DC accurately corrects the spectral curves of six land cover types in anomalous images, making them consistent with those from non-anomalous images. In summary, this study demonstrates that integrating FIM-DC into DLS data correction workflows for UAV-based multispectral imagery significantly enhances reflectance calculation accuracy and provides a robust solution for improving image quality under stable illumination conditions. Full article
Show Figures

Figure 1

60 pages, 2063 KiB  
Systematic Review
Advancements in Antenna and Rectifier Systems for RF Energy Harvesting: A Systematic Review and Meta-Analysis
by Luis Fernando Guerrero-Vásquez, Nathalia Alexandra Chacón-Reino, Segundo Darío Tenezaca-Angamarca, Paúl Andrés Chasi-Pesantez and Jorge Osmani Ordoñez-Ordoñez
Appl. Sci. 2025, 15(14), 7773; https://doi.org/10.3390/app15147773 - 10 Jul 2025
Viewed by 697
Abstract
This systematic review explores recent advancements in antenna and rectifier systems for radio frequency (RF) energy harvesting within the gigahertz frequency range, aiming to support the development of sustainable and efficient low-power electronic applications. Conducted under the PRISMA methodology, our review filtered 2465 [...] Read more.
This systematic review explores recent advancements in antenna and rectifier systems for radio frequency (RF) energy harvesting within the gigahertz frequency range, aiming to support the development of sustainable and efficient low-power electronic applications. Conducted under the PRISMA methodology, our review filtered 2465 initial records down to 80 relevant studies, addressing three research questions focused on antenna design, operating frequency bands, and rectifier configurations. Key variables such as antenna type, resonant frequency, gain, efficiency, bandwidth, and physical dimensions were examined. Antenna designs including fractal, spiral, bow-tie, slot, and rectangular structures were analyzed, with fractal antennas showing the highest efficiency, while array antennas exhibited lower performance despite their compact dimensions. Frequency band analysis indicated a predominance of 2.4 GHz and 5.8 GHz applications. Evaluation of substrate materials such as FR4, Rogers, RT Duroid, textiles, and unconventional composites highlighted their impact on performance optimization. Rectifier systems including Schottky, full-wave, half-wave, microwave, multi-step, and single-step designs were assessed, with Schottky rectifiers demonstrating the highest energy conversion efficiency. Additionally, correlation analyses using boxplots explored the relationships among antenna area, efficiency, operating frequency, and gain across design variables. The findings identify current trends and design considerations crucial for enhancing RF energy harvesting technologies. Full article
Show Figures

Figure 1

16 pages, 3070 KiB  
Article
Global Sensitivity Analysis of Tie-Line Power on Voltage Stability Margin in Renewable Energy-Integrated System
by Haifeng Zhang, Song Gao, Jiajun Zhang, Yunchang Dong, Han Gao and Deyou Yang
Electronics 2025, 14(14), 2757; https://doi.org/10.3390/electronics14142757 - 9 Jul 2025
Viewed by 213
Abstract
With the increasing load and renewable energy capacity in interconnected power grids, the system voltage stability faces significant challenges. Tie-line transmission power is a critical factor influencing the voltage stability margin. To address this, this paper proposes a fully data-driven global sensitivity calculation [...] Read more.
With the increasing load and renewable energy capacity in interconnected power grids, the system voltage stability faces significant challenges. Tie-line transmission power is a critical factor influencing the voltage stability margin. To address this, this paper proposes a fully data-driven global sensitivity calculation method for the tie-line power-voltage stability margin, aiming to quantify the impact of tie-line power on the voltage stability margin. The method first constructs an online estimation model of the voltage stability margin based on system measurement data under ambient excitation. To adapt to changes in system operating conditions, an online updating strategy for the parameters of the margin estimation model is further proposed, drawing on incremental learning principles. Subsequently, considering the source–load uncertainty of the system, a global sensitivity calculation method based on analysis of variance (ANOVA) is proposed, utilizing online acquired voltage stability margin and tie-line power data, to accurately quantify the impact of tie-lines on the voltage stability margin. The accuracy of the proposed method is verified through the Nordic test system and the China Electric Power Research Institute (CEPRI) standard test case; the results show that the error of the proposed method is less than 0.3%, and the computation time is within 1 s. Full article
Show Figures

Graphical abstract

16 pages, 4237 KiB  
Article
Solid-State Circuit Breaker Topology Design Methodology for Smart DC Distribution Grids with Millisecond-Level Self-Healing Capability
by Baoquan Wei, Haoxiang Xiao, Hong Liu, Dongyu Li, Fangming Deng, Benren Pan and Zewen Li
Energies 2025, 18(14), 3613; https://doi.org/10.3390/en18143613 - 9 Jul 2025
Viewed by 327
Abstract
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing [...] Read more.
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing an adaptive current-limiting branch topology, the proposed solution reduces the risk of system oscillations induced by current-limiting inductors during normal operation and minimizes steady-state losses in the breaker. Upon fault occurrence, the current-limiting inductor is automatically activated to effectively suppress the transient current rise rate. An energy dissipation circuit (EDC) featuring a resistor as the primary energy absorber and an auxiliary varistor (MOV) for voltage clamping, alongside a snubber circuit, provides an independent path for inductor energy release after faults. This design significantly alleviates the impact of MOV capacity constraints on the fault isolation process compared to traditional schemes where the MOV is the primary energy sink. The proposed topology employs a symmetrical bridge structure compatible with both pole-to-pole and pole-to-ground fault scenarios. Parameter optimization ensures the IGBT voltage withstand capability and energy dissipation efficiency. Simulation and experimental results demonstrate that this scheme achieves fault isolation within 0.1 ms, reduces the maximum fault current-to-rated current ratio to 5.8, and exhibits significantly shorter isolation times compared to conventional approaches. This provides an effective solution for segment switches and tie switches in millisecond-level self-healing systems for both low-voltage (LVDC, e.g., 750 V/1500 V DC) and medium-voltage (MVDC, e.g., 10–35 kV DC) smart DC distribution grids, particularly in applications demanding ultra-fast fault isolation such as data centers, electric vehicle (EV) fast-charging parks, and shipboard power systems. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

17 pages, 2881 KiB  
Article
Seismic Vulnerability Assessment and Sustainable Retrofit of Masonry Factories: A Case Study of Industrial Archeology in Naples
by Giovanna Longobardi and Antonio Formisano
Sustainability 2025, 17(13), 6227; https://doi.org/10.3390/su17136227 - 7 Jul 2025
Viewed by 274
Abstract
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential [...] Read more.
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential for adaptive reuse, transforming into vibrant cultural, commercial, or residential spaces through well-planned restoration and consolidation efforts. This paper explores a case study of such industrial architecture: a decommissioned factory near Naples. The complex consists of multiple structures with vertical supports made of yellow tuff stone and roofs framed by wooden trusses. To improve the building’s seismic resilience, a comprehensive analysis was conducted, encompassing its historical, geometric, and structural characteristics. Using advanced computer software, the factory was modelled with a macro-element approach, allowing for a detailed assessment of its seismic vulnerability. This approach facilitated both a global analysis of the building’s overall behaviour and the identification of potential local collapse mechanisms. Non-linear analyses revealed a critical lack of seismic safety, particularly in the Y direction, with significant out-of-plane collapse risk due to weak connections among walls. Based on these findings, a restoration and consolidation plan was developed to enhance the structural integrity of the building and to ensure its long-term safety and functionality. This plan incorporated metal tie rods, masonry strengthening through injections, and roof reconstruction. The proposed interventions not only address immediate seismic risks but also contribute to the broader goal of preserving this industrial architectural heritage. This study introduces a novel multidisciplinary methodology—integrating seismic analysis, traditional retrofit techniques, and sustainable reuse—specifically tailored to the rarely addressed typology of masonry industrial structures. By transforming the factory into a functional urban space, the project presents a replicable model for preserving industrial heritage within contemporary cityscapes. Full article
Show Figures

Figure 1

Back to TopTop