Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (686)

Search Parameters:
Keywords = Ti2AlB2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4201 KB  
Article
The Effect of Boron Oxide on the Biocompatibility, Cellular Response, and Antimicrobial Properties of Phosphosilicate Bioactive Glasses for Metallic Implants’ Coatings
by Joy-anne N. Oliver, Qichan Hu, Jincheng Du and Melanie Ecker
Appl. Sci. 2025, 15(24), 13120; https://doi.org/10.3390/app152413120 - 12 Dec 2025
Viewed by 117
Abstract
Bioactive glasses remain promising candidates for enhancing osseointegration on metallic implants. However, achieving a composition that combines controlled dissolution, cytocompatibility, and antimicrobial functionality remains an ongoing challenge. Building upon the prior structural and thermal characterization of boron-substituted 6P55 phosphosilicate glasses, this study investigates [...] Read more.
Bioactive glasses remain promising candidates for enhancing osseointegration on metallic implants. However, achieving a composition that combines controlled dissolution, cytocompatibility, and antimicrobial functionality remains an ongoing challenge. Building upon the prior structural and thermal characterization of boron-substituted 6P55 phosphosilicate glasses, this study investigates the biological consequences of incorporating 0, 5, 10, and 15 mol% B2O3 to determine their suitability as coatings for Ti6Al4V. Glass extracts were evaluated using L-929 fibroblast cultures (MTT assay and ImageJ-based cell counting), antimicrobial assays against Escherichia coli and Staphylococcus aureus using a semi-quantitative dilution-plating method, and SBF immersion studies to assess pH evolution, surface mineralization, and Ca/P ratio development. FTIR and SEM analyses revealed composition-dependent formation of phosphate-, carbonate-, and silicate-rich surface layers, with 5B exhibiting the most consistent early-stage hydroxyapatite-like signatures, supported by Ca/P ratios approaching the stoichiometric value. The pH measurements showed rapid alkalization for 5B and moderate buffering behavior at higher boron contents, consistent with boron-dependent modifications to network connectivity. Cytocompatibility studies demonstrated a dose- and time-dependent reduction in cell number at elevated B2O3 levels, whereas the 0B and 5B extracts maintained higher viability and preserved cell morphology. Antibacterial assays revealed strain-dependent and sub-lethal inhibitory effects, with E. coli exhibiting stronger sensitivity than S. aureus, likely due to differences in cell wall architecture and susceptibility to ionic osmotic microenvironment changes. When considered alongside previously published computational and physicochemical results, the biological data indicate that moderate boron incorporation (5 mol%) provides the most favorable balance between dissolution kinetics, apatite formation, cytocompatibility, and antimicrobial modulation. These findings identify the 5B composition as a strong candidate for further optimization toward bioactive glass coatings on Ti6Al4V implants. Full article
Show Figures

Figure 1

15 pages, 5893 KB  
Article
Influence of the Ti2AlC Sintering Additive on the Behaviour of ZrB2-SiC Ultra-High Temperature Ceramic in a Subsonic CO2 Plasma Flow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Anton S. Lysenkov, Ilya A. Nagornov, Kirill A. Barsukovsky, Tatiana L. Simonenko, Artem S. Mokrushin, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
J. Compos. Sci. 2025, 9(12), 691; https://doi.org/10.3390/jcs9120691 - 12 Dec 2025
Viewed by 232
Abstract
The investigation of the behavior of ZrB2-SiC-based ultra-high temperature ceramic (UHTC) materials under high-velocity CO2 plasma flow is of significant importance and relevance for evaluating their prospective use in the exploration of planets such as Venus or Mars. Accordingly, the [...] Read more.
The investigation of the behavior of ZrB2-SiC-based ultra-high temperature ceramic (UHTC) materials under high-velocity CO2 plasma flow is of significant importance and relevance for evaluating their prospective use in the exploration of planets such as Venus or Mars. Accordingly, the degradation process of a ZrB2-30 vol.% SiC ceramic composite, fabricated by hot-pressing at 1700 °C with a 15 vol.% Ti2AlC sintering aid, was examined using a high-frequency induction plasmatron. It was found that the modification of the ceramic’s elemental and phase composition during consolidation, resulting from the interaction between ZrB2 and Ti2AlC, leads to the formation of an approximately 400 µm-thick multi-layered oxidation zone following 15 min stepwise thermochemical exposure at surface temperatures reaching up to 1970 °C. This area consists of a lower layer depleted of silicon carbide and an upper layer containing large pores (up to 160–200 µm), where ZrO2 particles are distributed within a silicate melt. SEM analysis revealed that introduction of more refractory titanium and aluminum oxides into the melt upon oxidation, along with liquation within the melt, prevents the complete removal of this sealing melt from the sample surface. This effect remains even after 8 min exposure at an average temperature of ~1960–1970 °C. Full article
Show Figures

Figure 1

29 pages, 5077 KB  
Article
TiO2-Engineered Lead-Free Borate Glasses: A Dual-Functional Platform for Photonic and Radiation Shielding Technologies
by Gurinder Pal Singh, Joga Singh, Abayomi Yusuf and Kulwinder Kaur
Ceramics 2025, 8(4), 152; https://doi.org/10.3390/ceramics8040152 - 11 Dec 2025
Viewed by 252
Abstract
Environmentally friendly materials with superior structural, physical, optical, and shielding capabilities are of great technological importance and are continually being investigated. In this work, novel multicomponent borate glasses with the composition xTiO2-10BaO-5Al2O3-5WO3-20Bi2O3 [...] Read more.
Environmentally friendly materials with superior structural, physical, optical, and shielding capabilities are of great technological importance and are continually being investigated. In this work, novel multicomponent borate glasses with the composition xTiO2-10BaO-5Al2O3-5WO3-20Bi2O3-(60-x) B2O3, where 0 ≤ x ≤ 15 mol%, were produced via the melt-quenching technique. The increase in TiO2 content results in a decrease in molar volume and a corresponding increase in density, indicating the formation of a compact, rigid, and mechanically hard glass network. Elastic constant measurements further confirmed this behavior. FTIR analysis confirms the transformation of BO3 to BO4 units, signifying improved network polymerization and structural stability. The prepared glasses exhibit an optical absorption edge in the visible region, demonstrating their strong ultraviolet light blocking capability. Incorporation of TiO2 leads to an increase in refractive index, optical basicity, and polarizability, and a decrease in the optical band gap and metallization number; all of these suggest enhanced electron density and polarizability of the glass matrix. Radiation shielding properties were evaluated using Phy-X/PSD software. The outcomes illustrate that the Mass Attenuation Coefficient (MAC), Effective Atomic Number (Zeff), Linear Attenuation Coefficient (LAC) increase, while Mean Free Path (MFP) and Half Value Layer (HVL) decrease with increasing TiO2 at the expense of B2O3, confirming superior gamma-ray attenuation capability. Additionally, both TiO2-doped and undoped samples show higher fast neutron removal cross sections (FNRCS) compared to several commercial glasses and concrete materials. Overall, the incorporation of TiO2 significantly enhances the optical performance and radiation-shielding efficiency of the environmentally friendly glass system, making these potential candidates for advanced photonic devices and radiation-shielding applications. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

23 pages, 9623 KB  
Article
Process Optimization, Microstructure and Mechanical Properties of SiC + TiB2/AlSi10Mg Composites Fabricated by Laser-Directed Energy Deposition
by Xin Zhang, Siyu Zhang, Yijie Peng, Long Geng, Chennuo Kang, Zhe Feng, Wei Fan, Hua Tan and Xin Lin
J. Manuf. Mater. Process. 2025, 9(12), 404; https://doi.org/10.3390/jmmp9120404 - 8 Dec 2025
Viewed by 349
Abstract
In this study, TiB2/AlSi10Mg, 2 wt.% SiC + TiB2/AlSi10Mg, and 5 wt.% SiC + TiB2/AlSi10Mg composite powders were prepared via high-energy ball milling. For the first time, TiB2 and SiC hybrid particle-reinforced aluminum matrix composites (AMCs) [...] Read more.
In this study, TiB2/AlSi10Mg, 2 wt.% SiC + TiB2/AlSi10Mg, and 5 wt.% SiC + TiB2/AlSi10Mg composite powders were prepared via high-energy ball milling. For the first time, TiB2 and SiC hybrid particle-reinforced aluminum matrix composites (AMCs) were fabricated using the Laser-Directed Energy Deposition (LDED) technique. The effects of processing parameters on the microstructure evolution and mechanical properties were systematically investigated. Using areal energy density as the main variable, the experiments combined microstructural characterization and mechanical testing to elucidate the underlying strengthening and failure mechanisms. The results indicate that both 2 wt.% and 5 wt.% SiC + TiB2/AlSi10Mg composites exhibit excellent formability, achieving a relative density of 98.9%. However, the addition of 5 wt.% SiC leads to the formation of brittle Al4C3 and TiC phases within the matrix. Compared with the LDED-fabricated AlSi10Mg alloy, the tensile strength of the TiB2/AlSi10Mg composite increased by 21.4%. In contrast, the tensile strengths of the 2 wt.% and 5 wt.% SiC + TiB2/AlSi10Mg composites decreased by 3.7% and 2.6%, respectively, mainly due to SiC particle agglomeration and the consumption of TiB2 particles caused by TiC formation. Nevertheless, their elastic moduli were enhanced by 9% and 16.3%, respectively. Fracture analysis revealed that the composites predominantly exhibited ductile fracture characteristics. However, pores larger than 10 μm and SiC/TiB2 clusters acted as crack initiation sites, inducing stress concentration and promoting the propagation of secondary cracks. Full article
Show Figures

Figure 1

17 pages, 3493 KB  
Article
Enhancement of Cutting Performance of Ceramic Tools by Addition of Exogenous Precursor Restorers
by Zhaoqiang Chen, Pengcheng Song, Chuanfa Shen, Xianglong Meng, Hui Chen, Jingjie Zhang, Mingdong Yi, Guangchun Xiao and Chonghai Xu
Materials 2025, 18(24), 5498; https://doi.org/10.3390/ma18245498 - 7 Dec 2025
Viewed by 214
Abstract
To address brittle cracks in ceramic tools, an exogenous precursor ceramic repair agent was developed and applied to Al2O3/TiC/NiMo composite ceramic tools, which were treated by a two-step heat treatment process (heating at 3 °C/min to 300 °C for [...] Read more.
To address brittle cracks in ceramic tools, an exogenous precursor ceramic repair agent was developed and applied to Al2O3/TiC/NiMo composite ceramic tools, which were treated by a two-step heat treatment process (heating at 3 °C/min to 300 °C for 60 min, heating the sample at 5 °C/min to 500, 600, 700, 800, and 900 °C, holding each for 60 min). The crack healing mechanism and temperature dependency of the repair agent were investigated. Cutting performance, including surface roughness, cutting force, and tool life, was optimized using an L9(34) orthogonal design. The results show that at 900 °C, the repair agent decomposed to form SiOC (Silicon Oxycarbide) amorphous phase and TiB2 reinforced phase, filling the cracks and achieving atomic-level diffusion bonding. The flexural strength of the repaired sample recovered to 79.9% of the initial value (456.5 MPa), a 196.4% increase compared to the unrepaired sample. Optimal cutting parameters were found to be a cutting speed of 200 m/min, back draft of 0.1 mm, and feed of 0.1 mm/r. Under these conditions, surface roughness was 0.845 μm, cutting temperature was 258 °C, and stable tangential force was 70 N. The effective cutting distance of the repaired tool was increased from 1300 m to 1700 m. Wear was primarily abrasive and adhesive wear, and the SiOC phase formed by the repair agent helped to fill and repair the flank, thus extending tool life. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Graphical abstract

19 pages, 3536 KB  
Article
Optical Studies of Al2O3:ZnO and Al2O3:TiO2 Bilayer Films in UV-VIS-NIR Spectral Range
by Maciej Tram, Natalia Nosidlak, Magdalena M. Szindler, Marek Szindler, Katarzyna Tokarczyk, Piotr Dulian and Janusz Jaglarz
Appl. Sci. 2025, 15(24), 12870; https://doi.org/10.3390/app152412870 - 5 Dec 2025
Viewed by 231
Abstract
In this work, the results of ellipsometric studies of bilayer films of broadband oxides (Al2O3:ZnO, Al2O3:TiO2) are presented. Thin layers of Al2O3,ZnO and [...] Read more.
In this work, the results of ellipsometric studies of bilayer films of broadband oxides (Al2O3:ZnO, Al2O3:TiO2) are presented. Thin layers of Al2O3,ZnO and TiO2 were deposited on silicon substrate using the atomic layer deposition (ALD) method. The desired ranges of antireflective properties were selected, and then, based on optical modeling, the appropriate thicknesses of individual layers were determined. Optical constants were determined based on ellipsometric measurements in the spectral range of 193–1690 nm. For several selected samples, this range has been extended to 470–6500 cm−1. B-spline function, Tauc–Lorentz, Cody–Lorentz and Psemi-M0 oscillator models were used to describe the optical properties of the investigated films. Reflectance spectra for layers on a silicon substrate were determined in the range from 200 to 2500 nm. Additionally, complementary studies, SEM and EDS analyses, were also performed. The EDS investigations enabled the determination of the composition of the bilayer films. Spectrophotometric analysis demonstrated consistency between the obtained experimental data and theoretical predictions, confirming the validity of the applied model. The studies showed significant improvement in antireflective properties depending on the thickness of the prepared layers while maintaining an extinction coefficient close to zero, across much of the investigated spectral range, regardless of the layer thickness. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

20 pages, 5967 KB  
Article
Investigation of the Structural, Mechanical and Operational Properties of an Alloy AlSi18Cu3CrMn
by Desislava Dimova, Boyan Dochev, Karel Trojan, Kalina Kamarska, Yavor Sofronov, Mihail Zagorski, Veselin Tsonev and Antonio Nikolov
Materials 2025, 18(23), 5434; https://doi.org/10.3390/ma18235434 - 2 Dec 2025
Viewed by 287
Abstract
A non-standardized hypereutectic aluminum–silicon alloy, AlSi18Cu3CrMn, was developed. To refine the structure of the studied composition, a phosphorus modifier was used in an amount of 0.04 wt %, and a complex modifying treatment was applied by combining the chemical elements of phosphorus, titanium, [...] Read more.
A non-standardized hypereutectic aluminum–silicon alloy, AlSi18Cu3CrMn, was developed. To refine the structure of the studied composition, a phosphorus modifier was used in an amount of 0.04 wt %, and a complex modifying treatment was applied by combining the chemical elements of phosphorus, titanium, boron and beryllium (P, 0.04 wt %; Ti, 0.2 wt %; B, 0.04 wt %; Be, 0.007 wt %). To improve the mechanical and operational properties of the alloy, it was heat-treated (T6) at a temperature of 510–515 °C before quenching, with artificial aging applied at a temperature of 210 °C for 16 h. Phosphorus-modified alloy AlSi18Cu3CrMn was quenched in water at 20 °C, and the combined modified alloy was quenched in water at temperatures of 20 °C and 50 °C. By conducting a microstructural analysis, the free Si crystals and silicon crystals in the composition of the eutectic in the alloy structure were characterized, and by conducting XRD, the presence and type of secondary phases were established. The hardness of the alloy was measured, as well as the microhardness of the α-solid solution. Static uniaxial tensile testing was carried out at normal and elevated temperatures (working temperatures of 200 °C, 250 °C and 300 °C). By using a gravimetric method, the corrosion rate of the alloy in 1 M NaCl and 1 M H2SO4 was calculated. The mass wear, wear intensity and wear resistance of the studied AlSi18Cu3CrMn alloy were determined during reversible reciprocating motion in the boundary-layer lubrication regime. Full article
(This article belongs to the Special Issue High-Strength Lightweight Alloys: Innovations and Advancements)
Show Figures

Graphical abstract

18 pages, 8528 KB  
Article
Effect of PVD Nitride Coating Deposition on the High-Temperature Pin–Disc Friction Properties Between WC/Co Carbide and Ti2AlNb Alloy
by Liangliang Li, Xin Pan, Jianwei Mu, Jinfu Zhao, Wenqian Li, Zhifeng Liu and Jiru Wang
Metals 2025, 15(12), 1279; https://doi.org/10.3390/met15121279 - 22 Nov 2025
Viewed by 365
Abstract
Suitable nitride coating deposition could improve the wear resistance of WC/Co carbide tools when cutting Ti2AlNb typical difficult-to-machine alloy. However, there is no clear conclusion on which nitride series coating is suitable for improving the friction characteristics between WC/Co carbide and [...] Read more.
Suitable nitride coating deposition could improve the wear resistance of WC/Co carbide tools when cutting Ti2AlNb typical difficult-to-machine alloy. However, there is no clear conclusion on which nitride series coating is suitable for improving the friction characteristics between WC/Co carbide and Ti2AlNb alloy. In this research, the CrAlN, CrAlN/(CrAlB)N/CrAlN, and TiAlN/ZrN coatings were deposited on WC/Co carbide with the only variable of coating type, which were utilized to conduct the high-temperature pin disc experiments with Ti2AlNb alloy at 600 °C, respectively. The high-temperature friction characteristics were analyzed by the friction coefficient with time, the alloy wear rate, the surface morphology, and element distribution after wear. The results showed that the three types of coating all improved the high temperature friction and wear characteristics of WC/Co carbide. The Ti2AlNb alloy also exhibited good surface morphology after wear with TiAlN/ZrN-coated carbide. It is speculated that TiAlN/ZrN coating was the suitable coating deposition on WC/Co carbide tools to improve cutting performance of Ti2AlNb alloy. Full article
(This article belongs to the Special Issue Advances in Metal Cutting and Machining Processes)
Show Figures

Figure 1

27 pages, 9610 KB  
Article
Wear Performance of a Physical Vapour Deposition-Coated, Spark Plasma Sintered TiB2/Ti Composite Lubricated with Externally Introduced hBN at Temperatures up to 900 °C
by Remigiusz Michalczewski, Maciej Łuszcz, Marek Kalbarczyk, Zbigniew Słomka, Edyta Osuch-Słomka, Jarosław Molenda, Le Liu, Maksim Antonov, Irina Hussainova and Manel Rodríguez Ripoll
Materials 2025, 18(23), 5274; https://doi.org/10.3390/ma18235274 - 21 Nov 2025
Viewed by 509
Abstract
In this paper, the achieved state-of-the-art understanding regarding the wear behaviour of various PVD (physical vapour deposition) coatings deposited on TiB2/Ti composites produced by SPS (spark plasma sintering) is presented. The objective of this paper is to investigate the wear behaviour [...] Read more.
In this paper, the achieved state-of-the-art understanding regarding the wear behaviour of various PVD (physical vapour deposition) coatings deposited on TiB2/Ti composites produced by SPS (spark plasma sintering) is presented. The objective of this paper is to investigate the wear behaviour of various PVD coatings deposited on TiB2/Ti composites manufactured by SPS, when lubricated with hexagonal boron nitride (hBN) as an external solid lubricant in the range from room temperature up to 900 °C in friction contacts under extreme pressure and with oscillation relative motion. Four multicomponent and multilayer coatings were investigated based on AlCrN and TiCrN coatings with TiCrN-AlCrN/AlCrTiN/Si3N4 interlayers and various external layers (AlCrN, Si3N4, AlCrTiSiN, and AlCrTiSiN gradient with increasing oxygen gradient replacing nitrogen). The wear tests were performed by means of a ball-on-disc SRV friction and wear tester using reciprocating motion of the Si3N4 ball sliding against a coated disc from room temperature up to 900 °C. The best protection against wear and oxidation at higher temperatures (even up to 900 °C) was achieved for coatings with AlCrN and AlTiCrN external layers, and hBN lubricant was used simultaneously. Full article
Show Figures

Figure 1

19 pages, 5401 KB  
Article
High-Efficiency Lead-Free BNT-Based Relaxor Ferroelectrics via Synergistic A/B-Site Substitution for Enhanced Energy Storage and Stability
by Wenjie Zhou, Tao Du and Changbai Long
Materials 2025, 18(23), 5259; https://doi.org/10.3390/ma18235259 - 21 Nov 2025
Viewed by 369
Abstract
High-efficiency, lead-free dielectrics are sought for pulsed-power capacitors, yet pristine Bi0.5Na0.5TiO3 (BNT) suffers from large remanence, high coercivity, and limited breakdown strength. Here, we report (1 − x)Bi0.5Na0.5Ti0.97Nb0.03O3-xSr [...] Read more.
High-efficiency, lead-free dielectrics are sought for pulsed-power capacitors, yet pristine Bi0.5Na0.5TiO3 (BNT) suffers from large remanence, high coercivity, and limited breakdown strength. Here, we report (1 − x)Bi0.5Na0.5Ti0.97Nb0.03O3-xSr0.85Ba0.15Ta0.5+0.02xAl0.5−0.02xO3 (BNTNb–SBTA, x = 0–0.15) ceramics synthesized via solid-state reaction, achieving enhanced relaxor ferroelectric behavior through multi-cation substitution at A- and B-sites. X-ray diffraction confirms a pure perovskite solid solution, while scanning electron microscopy reveals grain refinement, suppressing oxygen vacancies and boosting the breakdown strength. Raman and dielectric analyses evidence strengthened relaxor behavior, accompanied by loop slimming and a systematic rise in breakdown strength. The composition x = 0.10 achieves the best trade-off, delivering Wrec = 3.357 J cm−3 and η = 90.5% at Eb = 240 kV cm−1. Robust operational stability is demonstrated with small variations of Wrec/η over 0.1–200 Hz, 25–175 °C, and 106 cycles. Pulsed tests show fast discharge (∼26 ns) with Wd = 0.826 J cm−3 at ∼90% efficiency under moderate fields. These results indicate that synergistic A/B-site disorder (Sr/Ba on A-site; Ta/Al with Nb on B-site), combined with microstructural densification, effectively minimizes Pr while elevating Eb, enabling high-efficiency energy storage under practical operating conditions. Full article
Show Figures

Figure 1

19 pages, 7270 KB  
Article
Evaluation of Microstructure and Tensile Properties of Al-12Si-4Cu-2Ni-0.5Mg Alloy Modified with Ca/P and TCB Complex
by Yuan Sun, Xiaoming Ren, Xueting Li, Hong Duan, Weiyi Wang, Mengxia Han, Guiliang Liu, Sida Liu and Xiangfa Liu
Metals 2025, 15(11), 1276; https://doi.org/10.3390/met15111276 - 20 Nov 2025
Viewed by 328
Abstract
The room-temperature and high-temperature microstructural characteristics and tensile properties of an Al-12Si-4Cu-2Ni-0.5Mg piston alloy modified with calcium (Ca; denoted as AC sample) or phosphorus (P; denoted as AP sample) under different heat treatment conditions were systematically analyzed. Under Ca modification, the second-phase network [...] Read more.
The room-temperature and high-temperature microstructural characteristics and tensile properties of an Al-12Si-4Cu-2Ni-0.5Mg piston alloy modified with calcium (Ca; denoted as AC sample) or phosphorus (P; denoted as AP sample) under different heat treatment conditions were systematically analyzed. Under Ca modification, the second-phase network structure of the alloy was adjusted and strengthened by an Al-TCB master alloy. Eutectic silicon (Si) particles in the AC sample possessed a fibrous structure, whereas the AP sample contained elongated eutectic Si particles, and Ca modification was found to be a potential method for simultaneously enhancing the strength and plasticity of the alloy to a matching degree at high temperatures. The T6 treatment noticeably increased the density of nanoscale precipitates; however, it also disrupted the growth of the second-phase network structure. Micron and submicron C-TiB2 and Al4C3 particles formed by the in-situ reaction of TCB particles acted as bridging phases within the second-phase network structure and enhanced the strength of the piston alloy. The ultimate tensile strength of the alloy at 350 °C increased from 74 to 101 MPa, representing a 36.5% enhancement. A comprehensive analysis revealed that Orowan strengthening was the main strengthening mechanism of the alloy at room temperature, whereas load transfer and network structure strengthening were the dominant strengthening mechanisms at high temperatures. Full article
Show Figures

Figure 1

23 pages, 24020 KB  
Article
Effect of TiB2 Content on Microstructure and Mechanical Properties of TiB2/Al-Zn-Mg-Cu Composites with High Zn Content
by Wenchao Sun, Zhilei Xiang, Jihao Li, Zian Yang, Yang Han and Ziyong Chen
Materials 2025, 18(22), 5191; https://doi.org/10.3390/ma18225191 - 15 Nov 2025
Viewed by 434
Abstract
The addition of reinforcement particles can considerably improve the mechanical properties of 7xxx series aluminum alloy. In this work, the effects of TiB2 reinforcement particles on the microstructure, mechanical properties, strengthening mechanisms, and aging precipitation of TiB2/Al-Zn-Mg-Cu composites were systematically [...] Read more.
The addition of reinforcement particles can considerably improve the mechanical properties of 7xxx series aluminum alloy. In this work, the effects of TiB2 reinforcement particles on the microstructure, mechanical properties, strengthening mechanisms, and aging precipitation of TiB2/Al-Zn-Mg-Cu composites were systematically investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile testing machine. The results indicate that when the TiB2 content is 1 wt.%, the composite achieves a tensile strength of 831 MPa while maintaining an elongation of 6.7%, meeting the research objectives of this experiment. When the aging heat treatment temperature is set at 120 °C, the peak aging time is shortened to 20 h. The interfacial phase composed of solute elements preferentially nucleates near the TiB2 particles during the cooling process. With the increase in TiB2 content, clustering in localized regions slows down the diffusion rate of interfacial phases into the matrix, thereby increasing the required duration of the solution treatment. Excellent interfacial relationships exist between TiB2 particles and both the aluminum matrix and the MgZn2 phase. It is also found that with the increase in TiB2 content, the aging-hardness response of TiB2/Al-Zn-Mg-Cu composites is accelerated and the work hardening rate is reduced. In addition, a multi-component strengthening model for the yield strength of the composite was established based on various strengthening mechanisms, including second-phase strengthening, dislocation strengthening, age-precipitation strengthening, and fine-grain strengthening. The results indicate that age-precipitation strengthening and dislocation strengthening are the most significant contributors to strength in the composite. Full article
Show Figures

Figure 1

14 pages, 3043 KB  
Article
First-Principles Study of AlCrFeMoTi High-Entropy Alloys
by Xiao Hu, Yilong Liu, Yunyun Wu, Shuliang Zou, Weiwei Xiao and Jinghao Huang
Symmetry 2025, 17(11), 1965; https://doi.org/10.3390/sym17111965 - 14 Nov 2025
Viewed by 403
Abstract
The AlCrFeMoTi high-entropy alloy exhibits promising application potential as a corrosion-resistant structural material in advanced nuclear energy systems, particularly in lead–bismuth fast reactors. In this present study, first-principles calculation based on the density functional theory was employed to investigate the phase and electronic [...] Read more.
The AlCrFeMoTi high-entropy alloy exhibits promising application potential as a corrosion-resistant structural material in advanced nuclear energy systems, particularly in lead–bismuth fast reactors. In this present study, first-principles calculation based on the density functional theory was employed to investigate the phase and electronic structure of AlCrFeMoTi HEA. The Gibbs free energy calculation results and XRD experimental results both indicate that the BCC phase is more stable for AlCrFeMoTi HEA. The atom distribution model was constructed according to the site preference of atoms occupying sublattices. The results indicate that alloying atoms have an obvious site preference. For example, Fe, Mo, and Cr atoms always prefer the 1a sublattice, while Al and Ti atoms tend to favor the 1b sublattice. And the atom site preference is temperature-sensitive. At 973 K, the site occupancy configuration is (Al5Cr16Fe26Mo17Ti0)1a(Al21Cr9Fe0Mo9Ti25)1b. Based on the steady-state phase structure, the band structure, density of states, and charge density were calculated. The electronic structure results show that metal bonds are formed between alloying elements in AlCrFeMoTi HEA, exhibiting strong metallic properties. Full article
(This article belongs to the Special Issue Feature Papers in Section "Engineering and Materials" 2025)
Show Figures

Figure 1

10 pages, 2450 KB  
Article
Change in the Morphology of Alloy Corrosion Products Based on the FeAl Intermetallic Phase After Oxidation in Water Vapor at a Temperature of 700 °C for up to 2000 h
by Janusz Cebulski, Dorota Pasek, Maria Sozańska, Magdalena Popczyk, Jadwiga Gabor, Andrzej Swinarew and Jakub Wieczorek
Materials 2025, 18(22), 5150; https://doi.org/10.3390/ma18225150 - 12 Nov 2025
Viewed by 386
Abstract
The surface of the Fe40Al5Cr0.2TiB alloy, after oxidation in steam at 700 °C, showed a varied morphology dependent on oxidation time. Initially, a fine, acicular oxide layer formed, which over time transformed into a more compact, lumpy structure corresponding to the α-Al2 [...] Read more.
The surface of the Fe40Al5Cr0.2TiB alloy, after oxidation in steam at 700 °C, showed a varied morphology dependent on oxidation time. Initially, a fine, acicular oxide layer formed, which over time transformed into a more compact, lumpy structure corresponding to the α-Al2O3 phase. EDS analysis confirmed the dominance of aluminum and oxygen in the oxidation products, and XRD studies revealed the presence of the α-alumina phase. Optical profilometry revealed a significant increase in roughness parameters (Ra and Rz) after long-term exposure (2000 h), which correlates with the thickening and sinterization of the oxide layer. The obtained results indicate that in a water vapor environment, a stable α-Al2O3 phase can already be formed at a temperature of 700 °C, and its development leads to increased roughness. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

10 pages, 5032 KB  
Article
Personalized Design of 3D-Printed Osteochondral Scaffold for Osteoarthritis Patients with Different Bone Conditions and Mechanical Evaluation
by Jian Zhou, Leixin Liu, Peixuan Zhi, Yanan Dong, Ziyu Liu and Yubo Fan
Bioengineering 2025, 12(11), 1226; https://doi.org/10.3390/bioengineering12111226 - 10 Nov 2025
Viewed by 540
Abstract
As osteoarthritis is a common disease in elderly people and large cartilage defects can only be treated by joint replacement surgery, a scaffold is seen as a potential treatment that could help patients to delay or avoid surgery. An ideal scaffold should have [...] Read more.
As osteoarthritis is a common disease in elderly people and large cartilage defects can only be treated by joint replacement surgery, a scaffold is seen as a potential treatment that could help patients to delay or avoid surgery. An ideal scaffold should have similar properties to the surrounding tissues. Thus, for different levels of OA, patients with different bone properties should use different scaffold structures with different mechanical or biological properties. In this paper five structures (A–E) are designed for young OA patients or patients with good bone mechanical properties, middle-age OA patients with weak bone mechanical properties or patients with little osteoporosis, and elderly OA patients who have severer OA and osteoporosis who are not able to perform normal activities. And these five scaffold structures are 3D-printed by an EOS machine with Ti6Al4V powder and evaluated by experiments based on a biomechanical bioreactor simulating the human knee joint and simulation through ANSYS. Structure D with a solid thick beam in the middle has the highest loading force, which is 3707.835 N, and structure E, composed of the polyhedron with the highest specific surface area, has the lowest loading force, which is 1837.402 N. Structures A, B, and C are intended for young OA patients or patients with good bone mechanical properties. Structures D and E are designed for patients who need to avoid or delay joint replacement surgery. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Graphical abstract

Back to TopTop