Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (857)

Search Parameters:
Keywords = Ti-4Al-2V titanium alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7588 KiB  
Article
Electrophoretic Deposition of Green-Synthesized Hydroxyapatite on Thermally Oxidized Titanium: Enhanced Bioactivity and Antibacterial Performance
by Mariana Relva, Daniela Santo, Ricardo Alexandre, Pedro Faia, Sandra Carvalho, Zohra Benzarti and Susana Devesa
Appl. Sci. 2025, 15(15), 8598; https://doi.org/10.3390/app15158598 (registering DOI) - 2 Aug 2025
Abstract
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer [...] Read more.
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer with a hydroxyapatite (HAp) top layer synthesized via a green route using Hylocereus undatus extract. The HAp was deposited by electrophoretic deposition (EPD), enabling continuous coverage and strong adhesion to the pre-treated Ti-6Al-4V substrate. Structural, morphological, chemical, and electrical characterizations were performed using XRD, SEM, EDS, Raman spectroscopy, and impedance spectroscopy. Bioactivity was assessed through apatite formation in simulated body fluid (SBF), while antibacterial properties were evaluated against Staphylococcus aureus. The results demonstrated successful formation of crystalline TiO2 (rutile phase) and calcium-rich HAp with good surface coverage. The HAp-coated surfaces exhibited significantly enhanced bioactivity and strong antibacterial performance, likely due to the combined effects of surface roughness and the bioactive compounds present in the plant extract. This study highlights the potential of eco-friendly, bio-inspired surface engineering to improve the biological performance of titanium-based implants. Full article
23 pages, 5943 KiB  
Article
Investigation of Titanium Alloy Cutting Dynamics in Thin-Layer Machining
by Anna Zawada-Tomkiewicz, Emilia Zeuschner and Dariusz Tomkiewicz
Appl. Sci. 2025, 15(15), 8535; https://doi.org/10.3390/app15158535 (registering DOI) - 31 Jul 2025
Abstract
Manufacturing in modern industrial sectors involves the machining of components where the undeformed chip thickness inevitably decreases to values comparable to the tool edge radius. Under such conditions, the ploughing effect between the workpiece and the tool becomes dominant, followed by the noticeable [...] Read more.
Manufacturing in modern industrial sectors involves the machining of components where the undeformed chip thickness inevitably decreases to values comparable to the tool edge radius. Under such conditions, the ploughing effect between the workpiece and the tool becomes dominant, followed by the noticeable formation of a stagnation zone. This paper presents research focused on the analysis of the cutting process for small cross-sections of the removed layers, based on cutting force components. This study investigated the machining of two titanium alloy grades—Ti Grade 5 (Ti-6Al-4V) and Ti Grade 2—with the main focus on process stability. A material separation model was analyzed to demonstrate the mechanism of material flow within the cross-section of the machined layer. It was found that the material has a limited ability to flow sideways at the boundary of the chip thickness, thus determining the probable size of the stagnation zone in front of the cutting edge. Orthogonal cutting experiments enabled the determination of the minimum chip thickness coefficient for constant temperature conditions, independent of the tool edge radius, as hmin0= 0.313. In oblique cutting tests, the sensitivity of thin-layer machining was demonstrated for the determined values of minimum undeformed chip thickness. By applying the 0–1 test for chaos, the measurement time (parameter T·dt) was determined for both titanium alloys to determine the range of observable chaotic behavior. The analyses confirmed that Ti Grade 2 enters chaotic dynamics much more rapidly than Ti Grade 5 and displays local cutting instabilities independent of the uncut chip thickness. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

21 pages, 14026 KiB  
Article
Development of PEO in Low-Temperature Ternary Nitrate Molten Salt on Ti6V4Al
by Michael Garashchenko, Yuliy Yuferov and Konstantin Borodianskiy
Materials 2025, 18(15), 3603; https://doi.org/10.3390/ma18153603 (registering DOI) - 31 Jul 2025
Viewed by 45
Abstract
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to [...] Read more.
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to the substrate. In this study, the PEO process was performed using a low-melting-point ternary eutectic electrolyte composed of Ca(NO3)2–NaNO3–KNO3 (41–17–42 wt.%) with the addition of ammonium dihydrogen phosphate (ADP). The use of this electrolyte system enables a reduction in the operating temperature from 280 to 160 °C. The effects of applied voltage from 200 to 400V, current frequency from 50 to 1000 Hz, and ADP concentrations of 0.1, 0.5, 1, 2, and 5 wt.% on the growth of titanium oxide composite coatings on a Ti-6Al-4V substrate were investigated. The incorporation of Ca and P was confirmed by phase and chemical composition analysis, while scanning electron microscopy (SEM) revealed a porous surface morphology typical of PEO coatings. Corrosion resistance in Hank’s solution, evaluated via Tafel plot fitting of potentiodynamic polarization curves, demonstrated a substantial improvement in electrochemical performance of the PEO-treated samples. The corrosion current decreased from 552 to 219 nA/cm2, and the corrosion potential shifted from −102 to 793 mV vs. the Reference Hydrogen Electrode (RHE) compared to the uncoated alloy. These findings indicate optimal PEO processing parameters for producing composite oxide coatings on Ti-6Al-4V alloy surfaces with enhanced corrosion resistance and potential bioactivity, which are attributed to the incorporation of Ca and P into the coating structure. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

19 pages, 2616 KiB  
Article
Structural Analysis of Joints Made of Titanium Alloy TI-6AL-4V and Stainless Steel AISI 321 with Developed Conical Contact Surfaces Obtained by Diffusion Welding
by Olena Karpovych, Ivan Karpovych, Oleksii Fedosov, Denys Zhumar, Yevhen Karakash, Miroslav Rimar, Jan Kizek and Marcel Fedak
Materials 2025, 18(15), 3596; https://doi.org/10.3390/ma18153596 (registering DOI) - 31 Jul 2025
Viewed by 104
Abstract
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate [...] Read more.
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate Electrolytic Tough Pitch Copper (Cu-ETP) copper layer, was solved. The joints were studied using micro-X-ray spectral analysis, microstructural analysis, and mechanical tests. High mutual diffusion of copper and titanium, along with increased concentrations of Cr and V in copper, was detected. The shear strength of the obtained welded joints is 250 MPa and 235 MPa at 30 min and 15 min, respectively, which is higher than the copper layer’s strength (180 MPa). The obtained results are explained by the dislocation diffusion mechanism in the volume of grains and beyond, due to thermal deformations during welding. Under operating conditions of internal pressure and cryogenic temperatures, the strength of the connection is ensured by the entire two-layer structure, and tightness is ensured by a vacuum-tight diffusion connection. The obtained strength of the connection (250 MPa) is sufficient under the specified operating conditions. Analysis of existing solutions in the literature review indicates that industrial application of technology for manufacturing bimetallic adapters from AISI 321 stainless steel and Ti-6Al-4V titanium alloy is limited to butt joints with small geometric dimensions. Studies of the transition zone structure and diffusion processes in bimetallic joints with developed conical contact surfaces enabled determination of factors affecting joint structure and diffusion coefficients. The obtained bimetallic adapters, made of Ti-6Al-4V titanium alloy and AISI 321 stainless steel, can be used to connect titanium high-pressure vessels with stainless steel pipelines. Full article
Show Figures

Figure 1

15 pages, 2683 KiB  
Article
Mechanical Properties and Fatigue Life Estimation of Selective-Laser-Manufactured Ti6Al4V Alloys in a Comparison Between Annealing Treatment and Hot Isostatic Pressing
by Xiangxi Gao, Xubin Ye, Yuhuai He, Siqi Ma and Pengpeng Liu
Materials 2025, 18(15), 3475; https://doi.org/10.3390/ma18153475 - 24 Jul 2025
Viewed by 154
Abstract
Selective laser melting (SLM) offers a novel approach for manufacturing intricate structures, broadening the application of titanium alloy parts in the aerospace industry. After the build period, heat treatments of annealing (AT) and hot isostatic pressing (HIP) are often implemented, but a comparison [...] Read more.
Selective laser melting (SLM) offers a novel approach for manufacturing intricate structures, broadening the application of titanium alloy parts in the aerospace industry. After the build period, heat treatments of annealing (AT) and hot isostatic pressing (HIP) are often implemented, but a comparison of their mechanical performances based on the specimen orientation is still lacking. In this study, horizontally and vertically built Ti6Al4V SLM specimens that underwent the aforementioned treatments, together with their microstructural and defect characteristics, were, respectively, investigated using metallography and X-ray imaging. The mechanical properties and failure mechanism, via fracture analysis, were obtained. The critical factors influencing the mechanical properties and the correlation of the fatigue lives and failure origins were also estimated. The results demonstrate that the mechanical performances were determined by the α-phase morphology and defects, which included micropores and fewer large lack-of-fusion defects. Following the coarsening of the α phase, the strength decreased while the plasticity remained stable. With the discrepancy in the defect occurrence, anisotropy and scatter of the mechanical performances were introduced, which was significantly alleviated with HIP treatment. The fatigue failure origins were governed by defects and the α colony, which was composed of parallel α phases. Approximately linear relationships correlating fatigue lives with the X-parameter and maximum stress amplitude were, respectively, established in the AT and HIP states. The results provide an understanding of the technological significance of the evaluation of mechanical properties. Full article
(This article belongs to the Section Metals and Alloys)
15 pages, 7193 KiB  
Article
Effects of Defocus Distance and Weld Spacing on Microstructure and Properties of Femtosecond Laser Welded Quartz Glass-TC4 Alloy Joints with Residual Stress Analysis
by Gang Wang, Runbo Zhang, Xiangyu Xu, Ren Yuan, Xuteng Lv and Chenglei Fan
Materials 2025, 18(14), 3390; https://doi.org/10.3390/ma18143390 - 19 Jul 2025
Viewed by 229
Abstract
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed [...] Read more.
This study develops an optimized femtosecond laser welding process for joining quartz glass and TC4 titanium alloy (Ti-6Al-4V) under non-optical contact conditions, specifically addressing the manufacturing needs of specialized photoelectric effect research containers. The joint primarily consists of parallel laser-welded zones (WZ) interspersed with base material. The defocus distance of the femtosecond laser predominantly influences the depth and phase composition of the WZ, while the weld spacing influences the crack distribution in the joint region. The maximum shear strength of 14.4 MPa was achieved at a defocusing distance of +0.1 mm (below the interface) and a weld spacing of 40 μm. The XRD stress measurements indicate that the defocusing distance mainly affects the stress along the direction of laser impact (DLI), whereas the weld spacing primarily influences the stress along the direction of spacing (DS). GPA results demonstrate that when the spacing is less than 30 μm, the non-uniform shrinkage inside the WZ induces tensile stress in the joint, leading to significant fluctuations in DS residual stress and consequently affecting the joint’s shear strength. This study investigates the effects of process parameters on the mechanical properties of dissimilar joints and, for the first time, analyzes the relationship between joint residual strain and femtosecond laser weld spacing, providing valuable insights for optimizing femtosecond laser welding processes. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 6308 KiB  
Article
Effect of Heat Treatment on Microstructure and Mechanical Properties of (TiB + TiC) /Ti-6Al-4V Composites Fabricated by Directed Energy Deposition
by Hai Gu, Guoqing Dai, Jie Jiang, Zulei Liang, Jianhua Sun, Jie Zhang and Bin Li
Metals 2025, 15(7), 806; https://doi.org/10.3390/met15070806 - 18 Jul 2025
Viewed by 249
Abstract
The titanium matrix composites (TMCs) fabricated via Directed Energy Deposition (DED) effectively overcome the issue of coarse columnar grains typically observed in additively manufactured titanium alloys. In this study, systematic annealing heat treatments were applied to in situ (TiB + TiC)/Ti-6Al-4V composites to [...] Read more.
The titanium matrix composites (TMCs) fabricated via Directed Energy Deposition (DED) effectively overcome the issue of coarse columnar grains typically observed in additively manufactured titanium alloys. In this study, systematic annealing heat treatments were applied to in situ (TiB + TiC)/Ti-6Al-4V composites to refine the microstructure and tailor mechanical properties. The results reveal that the plate-like α phase in the as-deposited composites gradually transforms into an equiaxed morphology with increasing annealing temperature and holding time. Notably, when the annealing temperature exceeds 1000 °C, significant coarsening of the TiC phase is observed, while the TiB phase remains morphologically stable. Annealing promotes decomposition of acicular martensite and stress relaxation, leading to a reduction in hardness compared to the as-deposited state. However, the reticulated distribution of the TiB and TiC reinforcement phases contributes to enhanced tensile performance. Specifically, the as-deposited composite achieves a tensile strength of 1109 MPa in the XOY direction, representing a 21.6% improvement over the as-cast counterpart, while maintaining a ductility of 2.47%. These findings demonstrate that post-deposition annealing is an effective strategy to regulate microstructure and achieve a desirable balance between strength and ductility in DED-fabricated titanium matrix composites. Full article
Show Figures

Figure 1

20 pages, 5430 KiB  
Article
Life Prediction Model for High-Cycle and Very-High-Cycle Fatigue of Ti-6Al-4V Titanium Alloy Under Symmetrical Loading
by Xi Fu, Lina Zhang, Wenzhao Yang, Zhaoming Yin, Jiakang Zhou and Hongwei Wang
Materials 2025, 18(14), 3354; https://doi.org/10.3390/ma18143354 - 17 Jul 2025
Viewed by 269
Abstract
The Ti-6Al-4V alloy is a typical α + β type titanium alloy and is widely used in the manufacture of aero-engine fans, compressor discs and blades. The working life of modern aero-engine components is usually required to reach more than 108 cycles, [...] Read more.
The Ti-6Al-4V alloy is a typical α + β type titanium alloy and is widely used in the manufacture of aero-engine fans, compressor discs and blades. The working life of modern aero-engine components is usually required to reach more than 108 cycles, which makes the infinite life design based on the traditional fatigue limit unsafe. In this study, through symmetrical loading high-cycle fatigue tests on Ti-6Al-4V titanium alloy, a nonlinear cumulative damage life prediction model was established. Further very-high-cycle fatigue tests of titanium alloys were carried out. The variation law of plastic strain energy in the evolution process of very-high-cycle fatigue damage of titanium alloy materials was described by introducing the internal stress parameter. A prediction model for the very-high-cycle fatigue life of titanium alloys was established, and the sensitivity analysis of model parameters was carried out. The results show that the established high-cycle/very-high-cycle fatigue models can fit the test data well. Moreover, based on the optimized model parameters through sensitivity analysis, the average error of the prediction results has decreased from 59% to 38%. The research aims to provide a model or method for predicting the engineering life of titanium alloys in the high-cycle/very-high-cycle range. Full article
(This article belongs to the Special Issue Fatigue Damage, Fracture Mechanics of Structures and Materials)
Show Figures

Figure 1

16 pages, 2566 KiB  
Article
Parameter Sensitivity Study of the Johnson–Cook Model in FEM Turning of Ti6Al4V Alloy
by Piotr Löschner, Piotr Niesłony and Szymon Kołodziej
Materials 2025, 18(14), 3351; https://doi.org/10.3390/ma18143351 - 17 Jul 2025
Viewed by 348
Abstract
The aim of this study was to analyse in detail the effect of varying the parameters of the Johnson–Cook (JC) material model on the results of a numerical simulation of the orthogonal turning process of the Ti6Al4V titanium alloy. The first step involved [...] Read more.
The aim of this study was to analyse in detail the effect of varying the parameters of the Johnson–Cook (JC) material model on the results of a numerical simulation of the orthogonal turning process of the Ti6Al4V titanium alloy. The first step involved an experimental study, including the recording of cutting force components and temperature, as well as the measurement of chip geometry, which was used to validate the FEM simulation. This was followed by a sensitivity analysis of the JC model with respect to five parameters, namely A, B, C, m, and n, each modified independently by ±20%. The effects of these changes on cutting forces, cutting zone temperature, stresses, and chip geometry were evaluated. The results showed that parameters A, B, and m had the greatest influence on the physical quantities analysed, while C and n are of secondary importance. The analysis highlighted the need for precise calibration of the JC model parameters, especially when modelling machining processes involving difficult-to-machine materials. The results provided practical guidance for optimising the selection of constitutive parameters in machining simulations. Full article
Show Figures

Figure 1

18 pages, 6861 KiB  
Article
Development of Viscoplastic Constitutive Model Considering Heating Rate Effect on Grain Size and Phase Evolution in Hot Deformation
by Zheng Gao, Shengyu Liu, Jiatian Lin, Zhihan Wang, Dechong Li and Kailun Zheng
Materials 2025, 18(14), 3251; https://doi.org/10.3390/ma18143251 - 10 Jul 2025
Viewed by 811
Abstract
The heating rates and forming temperatures during the hot forming process of titanium alloys cause significant differences in phase transformation, grain size, and dislocation evolution. The formability and service performance of titanium alloy formed components are affected by these factors. This study investigated [...] Read more.
The heating rates and forming temperatures during the hot forming process of titanium alloys cause significant differences in phase transformation, grain size, and dislocation evolution. The formability and service performance of titanium alloy formed components are affected by these factors. This study investigated the hot flow behaviors of Ti-6Al-4V at temperatures ranging from 800 to 900 °C and heating rates ranging from 0.1 to 10 °C/s. These were tested via Gleeble hot tensile experiments, and the grain size and phase evolution were quantitatively characterized via EBSD and XRD. The results suggest that a higher heating rate decreases the β-phase transformation and dislocation density and inhibits grain coarsening, leading to better formability. The heating rate was introduced into the viscoplastic constitutive model for the first time to achieve accurate predictions of the microstructure and hot flow behavior under different heating rates. The prediction accuracy of the hot flow behavior and phase volume fraction reaches 92.93% and 94.97%. The current-assisted hot stamping experiments and finite element (FE) simulations of Ti-6Al-4V irregular cross-section components were carried out at temperatures of 800 and 900 °C and at heating rates of 1 and 3 °C/s. The results show that the rapidly heated formed components exhibit better thickness uniformity and yield strength. The FE simulation guided by the optimized constitutive model has achieved a 96.96% and 92.76% prediction accuracy for the thickness distribution and β-phase volume fraction, respectively. Full article
Show Figures

Figure 1

18 pages, 8242 KiB  
Article
Quasi-In Situ EBSD Investigation of Variant Evolution and Twin Formation in a Hot Isostatic Pressing-Treated Additively-Manufactured Titanium Alloy Under Tensile Loading
by Fengli Zhu, Jiahong Liang, Guojian Cao, Aihan Feng, Hao Wang, Shoujiang Qu and Daolun Chen
Materials 2025, 18(13), 3169; https://doi.org/10.3390/ma18133169 - 3 Jul 2025
Viewed by 445
Abstract
The advent of additive manufacturing (AM), also known as 3D printing, has revolutionized the production of titanium alloys, offering significant advantages in fabricating complex geometries with enhanced mechanical properties. This study investigates the variant-specific deformation mechanisms in HIP-treated TA15 (Ti-6.5Al-2Zr-1Mo-1V) titanium alloy, fabricated [...] Read more.
The advent of additive manufacturing (AM), also known as 3D printing, has revolutionized the production of titanium alloys, offering significant advantages in fabricating complex geometries with enhanced mechanical properties. This study investigates the variant-specific deformation mechanisms in HIP-treated TA15 (Ti-6.5Al-2Zr-1Mo-1V) titanium alloy, fabricated via selective electron beam melting (SEBM). The alloy exhibits a dual-phase (α+β) microstructure, where six distinct α variants are formed through the β→α phase transformation following the Burgers orientation relationship. Variant selection during AM leads to a non-uniform distribution of these α variants, with α6 (22.3%) dominating due to preferential growth. Analysis of the prismatic slip Schmid factor reveals that α4–α6 variants, with higher Schmid factors (>0.45), primarily undergo prismatic slip, while α1–α3 variants, with lower Schmid factors (<0.3), rely on basal or pyramidal slip and twinning for plastic deformation. In-grain misorientation axis (IGMA) analysis further reveals strain-dependent slip transitions: pyramidal slip is activated in α1–α3 variants at lower strains, while prismatic slip becomes the dominant deformation mechanism in α4–α6 variants at higher strains. Additionally, deformation twins, primarily {10–12}<1–101> extension twins (7.1%), contribute to the plasticity of hard-oriented α variants. These findings significantly enhance the understanding of the orientation-dependent deformation mechanisms in HIPed TA15 alloy and provide a crucial basis for optimizing the performance of additively-manufactured titanium alloys. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

21 pages, 13563 KiB  
Article
Analysis of High-Speed Cutting Surface Layer Formation and Oxide Layer Thickness Prediction of Titanium Alloy (Ti6Al4V)
by Chenyu Wang, Changyou Li, Huihui Miao, Zhi Tan and Wei Sun
Materials 2025, 18(13), 3160; https://doi.org/10.3390/ma18133160 - 3 Jul 2025
Viewed by 314
Abstract
This study discusses the surface characteristics of titanium alloy Ti6Al4V during high-speed cutting, especially the effect of cutting speed on surface quality at different measuring scales. The experimental analysis shows that when the feed rate is 0.2 mm, and the detection scale is [...] Read more.
This study discusses the surface characteristics of titanium alloy Ti6Al4V during high-speed cutting, especially the effect of cutting speed on surface quality at different measuring scales. The experimental analysis shows that when the feed rate is 0.2 mm, and the detection scale is 1.2 mm, the surface roughness increases first and then decreases with the increase in the cutting speed. When the detection scale is 0.1 mm, the surface roughness continues to increase with the increase in the cutting speed. Based on the experimental results, this study adopted a research method combining experiment and simulation to intensely discuss the difference in the cutting speed’s mechanism of influence on surface quality under different detection scales. Based on the first principles, a prediction model for the oxide layer of high-speed cutting titanium alloy was constructed, and experiments verified the model’s accuracy. It was found that with the increase in the cutting speed, the cutting surface layer gradually formed a metamorphic layer, and the thickness of the oxide layer gradually increased, and it resultantly fell away. At the same time, the change in material microstructure and phase transition worked together to reduce the machining accuracy. In addition, the content of different components significantly affected the formation mechanism of the oxide layer, significantly increasing the Al content, which affected the oxygen diffusion activation energy and the oxide layer’s thickness. Full article
Show Figures

Figure 1

21 pages, 7297 KiB  
Article
Additively Produced Ti-6Al-4V Osteosynthesis Devices Meet the Requirements for Tensile Strength and Fatigue
by Alisdair R. MacLeod, Matthew Bishop, Alberto Casonato Longo, Alborz Shokrani, Chris Rhys Bowen and Harinderjit Singh Gill
J. Manuf. Mater. Process. 2025, 9(7), 227; https://doi.org/10.3390/jmmp9070227 - 3 Jul 2025
Viewed by 454
Abstract
The purpose of this study was to estimate the peak stresses in a laser powder bed fusion (LPBF) additive-manufactured (AM) osteosynthesis plate during physiological loading and establish if the mechanical properties of LPBF titanium alloy were suitable for this use case. Finite element [...] Read more.
The purpose of this study was to estimate the peak stresses in a laser powder bed fusion (LPBF) additive-manufactured (AM) osteosynthesis plate during physiological loading and establish if the mechanical properties of LPBF titanium alloy were suitable for this use case. Finite element models of subject-specific osteosynthesis plates for a cohort of 28 patients were created and used to calculate the peak maximum principal stresses during physiological loading, which was estimated to be 166 MPa twelve weeks post-operatively. All specimens were LPBF additively manufactured in Ti-6Al-4V alloy. ISO compliant tests were performed for tensile and fatigue, respectively. Fatigue testing was performed for specimens that had been heat-treated only and those that had been heat-treated and polished. The Upper Yield Stress was 1012.5 ± 19.2 MPa. The fatigue limit was 227 MPa for heat-treated only specimens and increased to 286 MPa for heat-treated and polished specimens. The finite element predicted stresses were below the experimentally established limits of yield and fatigue. The tensile and fatigue properties of heat-treated LPBF Ti-6Al-4V are therefore sufficient to meet the mechanical requirements of osteosynthesis plates. Polishing is recommended to improve fatigue resistance. Full article
Show Figures

Figure 1

20 pages, 8782 KiB  
Article
Laser Powder Bed Fusion of a Ti-16Nb-Based Alloy: Processability, Microstructure, and Mechanical Properties
by Azim Gökçe, Vamsi Krishna Balla, Subrata Deb Nath, Arulselvan Arumugham Akilan and Sundar V. Atre
Metals 2025, 15(7), 728; https://doi.org/10.3390/met15070728 - 29 Jun 2025
Viewed by 271
Abstract
Titanium alloys, especially Ti6Al4V, are widely used in biomedical implants due to their biocompatibility and mechanical strength. However, their high elastic modulus (>100 GPa), compared to that of human bone (10–30 GPa), often causes stress shielding, reducing implant lifespan. To address this, titanium [...] Read more.
Titanium alloys, especially Ti6Al4V, are widely used in biomedical implants due to their biocompatibility and mechanical strength. However, their high elastic modulus (>100 GPa), compared to that of human bone (10–30 GPa), often causes stress shielding, reducing implant lifespan. To address this, titanium alloys with lower elastic modulus are under development. In this study, Ti-based multi-element alloy with 16 wt.% Nb samples were fabricated using laser powder bed fusion (L-PBF) from a premixed powder blend of Ti6Al4V and Nb-Hf-Ti. Processing high-melting Nb-based alloys via L-PBF poses challenges, which were mitigated through optimized parameters, including a maximum laser power of 100 W. Eleven parameter sets were employed to evaluate printability, microstructure, and mechanical properties. Microstructural analysis revealed Widmanstätten structures composed of α and β phases, along with isolated spherical pores. Reduced hatch spacing and slower laser speed led to increased hardness. The highest hardness (~43 HRC) was observed at the highest energy density (266 J/mm3), while the lowest (~28 HRC) corresponded to 44 J/mm3. Elastic modulus values ranged from 30 to 35 GPa, closely matching that of bone. These results demonstrate the potential of the developed Ti-based alloy containing 16 wt.% Nb as a promising candidate for load-bearing biomedical implants. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Graphical abstract

19 pages, 11417 KiB  
Article
Microstructure and Mechanical Properties of Functionally Graded Materials on a Ti-6Al-4V Titanium Alloy by Laser Cladding
by Lanyi Liu, Xiaoyang Huang, Guocheng Wang, Xiaoyong Zhang, Kechao Zhou and Bingfeng Wang
Materials 2025, 18(13), 3032; https://doi.org/10.3390/ma18133032 - 26 Jun 2025
Viewed by 633
Abstract
Functionally graded materials (FGMs) are fabricated on Ti-6Al-4V alloy surfaces to improve insufficient surface hardness and wear resistance. Microstructure and mechanical properties and strengthening–toughening mechanisms of FGMs were investigated. The FGM cladding layer exhibits distinct gradient differentiation, demonstrating gradient variations in the nanoindentation [...] Read more.
Functionally graded materials (FGMs) are fabricated on Ti-6Al-4V alloy surfaces to improve insufficient surface hardness and wear resistance. Microstructure and mechanical properties and strengthening–toughening mechanisms of FGMs were investigated. The FGM cladding layer exhibits distinct gradient differentiation, demonstrating gradient variations in the nanoindentation hardness, wear resistance, and Al/V elemental composition. Molten pool dynamics analysis reveals that Marangoni convection drives Al/V elements toward the molten pool surface, forming compositional gradients. TiN-AlN eutectic structures generated on the FGM surface enhance wear resistance. Rapid solidification enables heterogeneous nucleation for grain refinement. The irregular wavy interface morphology strengthens interfacial bonding through mechanical interlocking, dispersing impact loads and suppressing crack propagation. FGMs exhibit excellent wear resistance and impact toughness compared with Ti-6Al-4V titanium alloy. The specific wear rate is 1.17 × 10−2 mm3/(N·m), dynamic compressive strength reaches 1701.6 MPa, and impact absorption energy achieves 189.6 MJ/m3. This work provides theoretical guidance for the design of FGM strengthening of Ti-6Al-4V surfaces. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

Back to TopTop