Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = Ti wire

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3932 KiB  
Article
Design and Development of a New 10 kV Overhead Line Fixing Device in Power System
by Bohan Liu, Shuhan Tao, Lingxi Chen, Jiawen Li, Xingtong Zhong, Lanxin Bao, You Shu and Yi Liu
Processes 2025, 13(8), 2379; https://doi.org/10.3390/pr13082379 - 26 Jul 2025
Viewed by 221
Abstract
In response to the problems of wire detachment, insulation layer damage, and low construction efficiency in the traditional hand tied wire fixing method for 10 kV overhead lines, this paper develops a new type of 10 kV overhead line fixing device. The device [...] Read more.
In response to the problems of wire detachment, insulation layer damage, and low construction efficiency in the traditional hand tied wire fixing method for 10 kV overhead lines, this paper develops a new type of 10 kV overhead line fixing device. The device mainly consists of a buckle type base and an infinitely adjustable gripper. The base is quickly installed through mechanical interlocking buckles, supplemented by auxiliary buckles to enhance stability, and the edge arc design improves operational safety. The clamp is equipped with a raised diamond-shaped structure to increase the friction coefficient and meshing strength. Combined with an arc-shaped inner surface and an infinitely adjustable screw, it can adapt to insulated wires of different diameters. The fixed device has a simple structure, easy installation, and advantages such as firm fixation and adaptability to overhead lines of different diameters. The fixed device of the overhead power line has been subjected to finite element mechanical simulation and electronic universal testing machine tension and pressure testing, and can meet the on-site mechanical performance, effectively improving the construction efficiency and safety of the overhead power line in the distribution network. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 2473 KiB  
Article
Experimental Investigations on Microstructure and Mechanical Properties of L-Shaped Structure Fabricated by WAAM Process of NiTi SMA
by Vatsal Vaghasia, Rakesh Chaudhari, Sakshum Khanna, Jash Modi and Jay Vora
J. Manuf. Mater. Process. 2025, 9(7), 239; https://doi.org/10.3390/jmmp9070239 - 11 Jul 2025
Viewed by 424
Abstract
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical [...] Read more.
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical properties. The 40 layers of L-shaped structure were successfully fabricated at optimized parameters of wire feed speed at 6 m/min, travel speed at 12 mm/s, and voltage at 20 V. The macrographs demonstrated the continuous bonding among the layers with complete fusion. The microstructure in the area between the two middle layers has exhibited a mixture of columnar grains (both coarse and fine), interspersed with dendritic colonies. The microstructure in the topmost layers has exhibited finer colonial structures in relatively greater numbers. The microhardness (MH) test has shown the average values of 283.2 ± 3.67 HV and 371.1 ± 5.81 HV at the bottom and topmost layers, respectively. A tensile test was conducted for specimens extracted from deposition and build directions, which showed consistent mechanical behavior. For the deposition direction, the average ultimate tensile strength (UTS) and elongation (EL) were obtained as 831 ± 22.91 MPa and 14.32 ± 0.55%, respectively, while the build direction has shown average UTS and EL values of 774 ± 6.56 MPa and 14.16 ± 0.21%, respectively. The elongation exceeding 10% in all samples suggests that the fabricated structure demonstrates properties comparable to those of wrought metal. Fractography of all tensile specimens has shown good ductility and toughness. Lastly, a differential scanning calorimetry test was carried out to assess the retention of shape memory effect for the fabricated structure. The authors believe that the findings of this work will be valuable for various industrial applications. Full article
Show Figures

Figure 1

13 pages, 2802 KiB  
Article
Redistribution of Residual Stresses in Titanium Alloy Butt-Welded Thick Plates Due to Wire-Cut Electrical Discharge Machining
by Qifeng Wu, Cunrui Bo, Kaixiang Sun and Liangbi Li
Metals 2025, 15(7), 750; https://doi.org/10.3390/met15070750 - 2 Jul 2025
Viewed by 247
Abstract
Welding and cutting behaviour may affect the mechanical properties of titanium alloy welded structures, which may have some impact on the safety assessment of the structure. This study analyses changes in residual stress in Ti80 butt-welded thick plates before and after wire-cut electric [...] Read more.
Welding and cutting behaviour may affect the mechanical properties of titanium alloy welded structures, which may have some impact on the safety assessment of the structure. This study analyses changes in residual stress in Ti80 butt-welded thick plates before and after wire-cut electric discharge machining, using numerical simulations based on thermo-elastoplastic theory and the element birth and death method, validated by X-ray non-destructive testing. The transverse residual tensile stress near the weld exhibits an asymmetric bimodal distribution, while the longitudinal stress is significantly higher than the transverse stress. Wire-cut electric discharge machining had minimal influence on the transverse residual stress distribution but led to partial relief of the longitudinal residual tensile stress. The maximum reductions in transverse and longitudinal welding residual tensile stresses are approximately 60% and 36%, respectively. The findings indicate that wire-cut electric discharge machining can alter surface residual stresses in Ti alloy butt-welded thick plates. This study also establishes a numerical simulation methodology for analysing welding residual stresses and their evolution due to wire-cut electric discharge machining. The results provide a theoretical basis for analysing the structural strength and safety of Ti-alloy-based deep-sea submersibles. Full article
Show Figures

Figure 1

20 pages, 5663 KiB  
Article
Nanoparticle-Enhanced Engine Oils for Automotive Applications: Thermal Conductivity and Heat Capacity Improvements
by G. D. C. P. Galpaya, M. D. K. M. Gunasena, D. K. A. Induranga, H. V. V. Priyadarshana, S. V. A. A. Indupama, E. R. J. M. D. D. P. Wijesekara, M. I. Ishra, M. M. M. G. P. G. Mantilaka and K. R. Koswattage
Molecules 2025, 30(13), 2695; https://doi.org/10.3390/molecules30132695 - 22 Jun 2025
Viewed by 583
Abstract
The poor thermal and physical properties of conventional engine oils limit vehicle performance and durability. This research aims to investigate the effect of nanoparticles such as fullerene C60, titanium dioxide (TiO2), iron oxide (Fe2O3), and [...] Read more.
The poor thermal and physical properties of conventional engine oils limit vehicle performance and durability. This research aims to investigate the effect of nanoparticles such as fullerene C60, titanium dioxide (TiO2), iron oxide (Fe2O3), and reduced graphene oxide (rGO) nanoparticles on 10W30 Mobil engine oil. In this study, the effect of nanoparticle concentrations at different mass fractions (0.01, 0.05, and 0.1) was examined within the temperature range 30–120 °C. The nanofluids were prepared using a two-step direct mixing method and thermal properties were measured using a LAMBDA thermal conductivity meter, which uses the transient hot wire method according to the ISO standards. Due to the low concentrations of the nanofluids, surfactants were not required at all, and the stability of the nanofluids was visually monitored over a period of four weeks. Accordingly, the largest improvement in thermal conductivity occurred with TiO2/10W30 at a mass fraction of 0.1 wt.% at 80 °C, and the specific heat capacity improved due to Fe2O3/10W30 addition at a mass fraction of 0.1 at 70 °C; these were 5.8% and 14.4%, respectively, for the base oil. Thermal diffusivity remained largely unaffected by the addition of the nanoparticles, and fullerene C60 showed no significant effect on any thermal property. It was concluded that the thermal properties of the engine oil were considerably enhanced by the added nanoparticles at different weight fractions and temperature values. Full article
Show Figures

Figure 1

17 pages, 8899 KiB  
Article
Study on Microstructure and Stress Distribution of Laser-GTA Narrow Gap Welding Joint of Ti-6Al-4V Titanium Alloy in Medium Plate
by Zhigang Cheng, Qiang Lang, Zhaodong Zhang, Gang Song and Liming Liu
Materials 2025, 18(13), 2937; https://doi.org/10.3390/ma18132937 - 21 Jun 2025
Viewed by 662
Abstract
Traditional narrow gap welding of thick titanium alloy plates easily produces dynamic molten pool flow instability, poor sidewall fusion, and excessive residual stress after welding, which leads to defects such as pores, cracks, and large welding deformations. In view of the above problems, [...] Read more.
Traditional narrow gap welding of thick titanium alloy plates easily produces dynamic molten pool flow instability, poor sidewall fusion, and excessive residual stress after welding, which leads to defects such as pores, cracks, and large welding deformations. In view of the above problems, this study takes 16-mm-thick TC4 titanium alloy as the research object, uses low-power pulsed laser-GTA flexible heat source welding technology, and uses the flexible regulation of space between the laser, arc, and wire to promote good fusion of the molten pool and side wall metal. By implementing instant ultrasonic impact treatment on the weld surface, the residual stress of the welded specimen is controlled within a certain range to reduce deformation after welding. The results show that the new welding process makes the joint stable, the side wall is well fused, and there are no defects such as pores and cracks. The weld zone is composed of a large number of α′ martensites interlaced with each other to form a basketweave structure. The tensile fracture of the joint occurs at the base metal. The joint tensile strength is 870 MPa, and the elongation after fracture can reach 17.1%, which is 92.4% of that of the base metal. The impact toughness at the weld is 35 J/cm2, reaching 81.8% of that of the base metal. After applying ultrasound, the average residual stress decreased by 96% and the peak residual stress decreased by 94.8% within 10 mm from the weld toe. The average residual stress decreased by 95% and the peak residual stress decreased by 95.5% within 10 mm from the weld root. The residual stress on the surface of the whole welded test plate could be controlled within 200 MPa. Finally, a high-performance thick Ti-alloy plate welded joint with good forming and low residual stress was obtained. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 3830 KiB  
Article
Microstructural Features and Mechanical Properties of Laser–MIG Hybrid Welded–Brazed Ti/Al Butt Joints with Different Filler Wires
by Xin Zhao, Zhibin Yang, Yonghao Huang, Hongjun Zhu and Shaozheng Dong
Metals 2025, 15(6), 674; https://doi.org/10.3390/met15060674 - 17 Jun 2025
Viewed by 375
Abstract
Laser–MIG hybrid welding–brazing was performed to join TC4 titanium alloy and 5083 aluminum alloy with ER5356, ER4043 and ER2319 filler wires. The effects of the different filler wires on the microstructural features and mechanical properties of Ti/Al welded–brazed butt joints were investigated in [...] Read more.
Laser–MIG hybrid welding–brazing was performed to join TC4 titanium alloy and 5083 aluminum alloy with ER5356, ER4043 and ER2319 filler wires. The effects of the different filler wires on the microstructural features and mechanical properties of Ti/Al welded–brazed butt joints were investigated in detail. The wetting and spreading effect of the ER4043 filler wire was the best, especially on the weld’s rear surface. Serrated-shaped and rod-like IMCs were generated at the top region of the interface of the joint with ER4043 filler wire, but rod-like IMCs did not appear at the joints with the other filler wires. Only serrated-shaped IMCs appeared in the middle and bottom regions for the three filler wires. The phase compositions of all the IMCs were inferred as being made up of TiAl3. The average thickness of the IMC layer of joints with the ER5356 and ER2319 filler wires was almost the same and thinner than that of the joint with the ER4043 filler wire. The average thickness was largest in the middle region and smallest in the bottom region for all the joints with the three filler wires. The average microhardness in the weld metal of ER5356, ER4043 and ER2319 filler wires could reach up to 77.7 HV, 91.2 HV and 85.4 HV, respectively. The average tensile strength of joints with the ER5356, ER4043 and ER2319 filler wires was 106 MPa, 238 MPa and 192 MPa, respectively. The tensile samples all fractured at the IMC interface and showed a mixed brittle–ductile fracture feature. These research results could help confirm the appropriate filler wire for the laser–MIG hybrid welding–brazing of Ti/Al dissimilar butt joints. Full article
(This article belongs to the Special Issue Laser Processing Technology for Metals)
Show Figures

Figure 1

15 pages, 13534 KiB  
Article
Mechanical Properties Analysis of WAAM Produced Wall Made from 6063 Alloy Using AC MIG Process
by Ivica Garašić, Mislav Štefok, Maja Jurica, Davor Skejić and Mato Perić
Appl. Sci. 2025, 15(12), 6740; https://doi.org/10.3390/app15126740 - 16 Jun 2025
Viewed by 374
Abstract
Wire and arc additive manufacturing (WAAM) is a promising method of producing medium- and large-sized aluminum alloy structures, though it faces challenges such as porosity, residual stresses and inconsistent mechanical properties. This study investigates the effect of current type (AC and DC MIG [...] Read more.
Wire and arc additive manufacturing (WAAM) is a promising method of producing medium- and large-sized aluminum alloy structures, though it faces challenges such as porosity, residual stresses and inconsistent mechanical properties. This study investigates the effect of current type (AC and DC MIG welding) and polarity balance (influencing the duration of the positive/negative period of the cycle) on the mechanical and microstructural properties of 6063 aluminum alloy walls produced by WAAM. A TiB2-refined Al–Mg–Si (6063) filler wire, specifically developed for arc-based processing, was used. Tensile tests, Vickers hardness measurements (HV5), optical microscopy and X-ray diffraction based on cosα method were used to evaluate performance in terms of strength, ductility, hardness, grain structure, porosity and residual stress. The results showed that the balance of AC polarity significantly affects wall geometry, porosity and grain structure. Increasing the negative polarity period resulted in taller and narrower walls, while the widest walls were produced with increased positive polarity. Residual stress measurements revealed a tensile–compressive–tensile distribution, with the DC-MIG samples showing the highest surface stress values. The highest tensile strength (172 MPa) was measured in the lower region of the DC-MIG sample, suggesting that areas near the substrate benefit from faster cooling. Full article
(This article belongs to the Special Issue Advanced Welding Technology and Its Applications)
Show Figures

Figure 1

22 pages, 4739 KiB  
Article
On the Use of Compressed Air and Synthetic Biodegradable Cutting Fluid to Enhance the Surface Quality of WAAM–CMT Manufactured Low-Alloy Steel Parts During Post-Processing Milling with Different Cooling–Lubrication Strategies
by Déborah de Oliveira, Marcos Vinícius Gonçalves, Guilherme Menezes Ribeiro, André Luis Silva da Costa, Luis Regueiras, Tiago Silva, Abílio de Jesus, Lucival Malcher and Maksym Ziberov
J. Manuf. Mater. Process. 2025, 9(6), 193; https://doi.org/10.3390/jmmp9060193 - 10 Jun 2025
Viewed by 537
Abstract
Additive manufacturing (AM) stands out for its variable applications in terms of material, quality, and geometry. Wire Arc Additive Manufacturing (WAAM) is remarkable for producing large parts in reduced times when compared to other AM methods. The possibility of producing a part with [...] Read more.
Additive manufacturing (AM) stands out for its variable applications in terms of material, quality, and geometry. Wire Arc Additive Manufacturing (WAAM) is remarkable for producing large parts in reduced times when compared to other AM methods. The possibility of producing a part with a near-net shape not only enhances productivity but also reduces resources usage. However, parts produced by WAAM may need post-processing by machining to achieve functional surface requirements. Therefore, it is important that machining, even if minimized, does not lead to a significant environmental impact. In this sense, this work evaluates the effect of using compressed air, dry cut, and synthetic biodegradable cutting fluid at varying nozzle positions and flow rates on the surface quality of ER70S-6 steel produced by WAAM, after milling with TiAlN-coated carbide tools. To analyze the surface roughness, parameters Ra, Rq, and Rz were measured and microscopy was used to further evaluate the surfaces. The surface hardness was also evaluated. The results showed that a flow rate of 10 L/min promotes better surface quality, which can be further improved using compressed air, leading to a surface quality 50% better when compared to dry cutting. Dry cut was not suitable for machining ER70S-6 WAAM material as it resulted in rough surface texture with an Rz = 4.02 µm. Compressed air was the best overall condition evaluated, achieving a 36% Ra reduction compared to dry cutting, the second-lowest hardness deviation at 6.51%, and improved sustainability by eliminating the need for cutting fluid. Full article
Show Figures

Figure 1

24 pages, 8807 KiB  
Article
Further Studies into the Growth of Small Naturally Occurring Three-Dimensional Cracks in Additively Manufactured and Conventionally Built Materials
by Shareen Chan, Daren Peng, Andrew S. M. Ang, Michael B. Nicholas, Victor K. Champagne, Aron Birt, Alex Michelson, Sean Langan, Jarrod Watts and Rhys Jones
Crystals 2025, 15(6), 544; https://doi.org/10.3390/cryst15060544 - 6 Jun 2025
Viewed by 826
Abstract
MIL-STD-1530D and the United States Air Force (USAF) Structures Bulletin EZ-SB-19-01 require an ability to predict the growth of naturally occurring three-dimensional cracks with crack depths equal to what they term an equivalent initial damage size (EIDS) of 0.254 mm. This requirement holds [...] Read more.
MIL-STD-1530D and the United States Air Force (USAF) Structures Bulletin EZ-SB-19-01 require an ability to predict the growth of naturally occurring three-dimensional cracks with crack depths equal to what they term an equivalent initial damage size (EIDS) of 0.254 mm. This requirement holds for both additively manufactured and conventionally built parts. The authors have previously presented examples of how to perform such predictions for additively manufactured (AM) Ti-6Al-4V; wire arc additively manufactured (WAAM) 18Ni 250 Maraging steel; and Boeing Space, Intelligence and Weapon Systems laser bed powder fusion (LPBF) Scalmalloy®, which is an additively manufactured Aluminium-Scandium-Mg alloy, using the Hartman-Schijve crack growth equation. In these studies, the constants used were as determined from ASTM E647 standard tests on long cracks, and the fatigue threshold term in the Hartman-Schijve equation was set to a small value (namely, 0.1 MPa √m). This paper illustrates how this approach can also be used to predict the growth of naturally occurring three-dimensional cracks in WAAM CP-Ti (commercially pure titanium) specimens built by Solvus Global as well as in WAAM-built Inconel 718. As in the prior studies mentioned above, the constants used in this analysis were taken from prior studies into the growth of long cracks in conventionally manufactured CP-Ti and in AM Inconel 718, and the fatigue threshold term in these analyses was set to 0.1 MPa √m. These studies are complemented via a prediction of the growth of naturally occurring three-dimensional cracks in conventionally built M300 steel. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 799 KiB  
Review
The Effect of Fluoride Mouthwashes on Orthodontic Appliances’ Corrosion and Mechanical Properties: A Scoping Review
by Miltiadis A. Makrygiannakis, Angeliki Anna Gkinosati, Sotirios Kalfas and Eleftherios G. Kaklamanos
Hygiene 2025, 5(2), 23; https://doi.org/10.3390/hygiene5020023 - 5 Jun 2025
Viewed by 630
Abstract
Fluoride mouthwashes are often recommended by dental professionals due to their proven benefits for oral hygiene. However, it is vital to acknowledge that these products may have undesirable effects on orthodontic treatment outcomes, particularly by altering the biomechanical properties of orthodontic devices and [...] Read more.
Fluoride mouthwashes are often recommended by dental professionals due to their proven benefits for oral hygiene. However, it is vital to acknowledge that these products may have undesirable effects on orthodontic treatment outcomes, particularly by altering the biomechanical properties of orthodontic devices and their components. To gain a comprehensive understanding of this potential issue, an extensive and systematic search was conducted across seven distinct databases. PRISMA extension for scoping reviews (PRISMA ScR) guidelines were followed. Following a detailed evaluation and careful scrutiny of the available evidence, a total of seven relevant studies met the inclusion criteria and were incorporated into the current scoping review. Findings indicated that regular intraoral use of fluoride-containing mouthwashes could lead to heightened corrosion and greater release of metal ions from stainless-steel brackets and nickel–titanium (NiTi) archwires. Additionally, the mechanical properties and structural integrity of titanium–molybdenum alloy (TMA) wires were negatively influenced by exposure to fluoride mouthwashes. Although existing evidence highlights these potential drawbacks, there remains a clear necessity for additional comprehensive research. Given the possibility that fluoride mouthwashes could adversely influence orthodontic treatment effectiveness, orthodontists and dental clinicians must exercise cautious judgment and deliberate consideration when prescribing fluoride-based mouthwashes for patients undergoing orthodontic therapy. Full article
Show Figures

Figure 1

13 pages, 3086 KiB  
Article
Laser-MIG Hybrid Welding–Brazing Characteristics of Ti/Al Butt Joints with Different Groove Shapes
by Xin Zhao, Zhibin Yang, Yonghao Huang, Taixu Qu, Rui Cheng and Haiting Lv
Metals 2025, 15(6), 625; https://doi.org/10.3390/met15060625 - 31 May 2025
Viewed by 376
Abstract
TC4 titanium alloy and 5083 aluminum alloy with different groove shapes were joined by laser-MIG hybrid welding–brazing using ER4043 filler wire. The effects of groove shape on the weld formation, intermetallic compounds and tensile property of the Ti/Al butt joints were investigated. The [...] Read more.
TC4 titanium alloy and 5083 aluminum alloy with different groove shapes were joined by laser-MIG hybrid welding–brazing using ER4043 filler wire. The effects of groove shape on the weld formation, intermetallic compounds and tensile property of the Ti/Al butt joints were investigated. The welds without obvious defects could be obtained with grooves of I-shape and V-shape on Ti side, while welds quality with grooves of V-shape on Al side and V-shape on both sides were slightly worse. The interfacial intermetallic compounds (IMCs) on the brazing interface were homogeneous in the joints with groove of V-shape on Ti side, and V-shape on both sides, which had similar thickness and were both composed of TiAl3. Unlike the IMCs mainly composed of TiAl3 at the I-shape groove interface, TiAl3, TiAl, and Ti3Al constituted the IMCs at the V-shape on Al side interface. The average tensile strength of Ti/Al joints with groove of I-shape was the highest at 238 MPa, and was lowest at 140 MPa with groove of V-shape on Al side. The tensile samples mainly fractured at IMCs interface and the fractured surfaces all exhibited mixed brittle–ductile fracture mode. Based on the above research results, I-shape groove was recommended for laser-arc hybrid welding–brazing of 4 mm thick Ti/Al dissimilar butt joints. Full article
(This article belongs to the Special Issue Advances in Laser Processing of Metals and Alloys)
Show Figures

Figure 1

17 pages, 5214 KiB  
Article
Development and Characterization of AZ91 Magnesium Alloy Reinforced with Ti Wires
by Wojciech Wyrwa, Adrianna Filipiak-Kaczmarek and Anna Nikodem
Materials 2025, 18(11), 2517; https://doi.org/10.3390/ma18112517 - 27 May 2025
Viewed by 449
Abstract
Lightweight metals are increasingly used in biomedical engineering, and can be found in orthopaedics (screws, implants), stomatology, cardiology (stents) and as scaffolds. Magnesium alloys have a low density (1.74 g/cm3), which is very close to that of bone (1.75 g/cm3 [...] Read more.
Lightweight metals are increasingly used in biomedical engineering, and can be found in orthopaedics (screws, implants), stomatology, cardiology (stents) and as scaffolds. Magnesium alloys have a low density (1.74 g/cm3), which is very close to that of bone (1.75 g/cm3), as well as high biocompatibility, and are biodegradable. Unfortunately, their disadvantage is their low resistance to corrosion in the human body, which further causes deterioration of mechanical and physical properties. Improvement of these properties can be achieved by making the composite on a magnesium matrix—depending on the reinforcement added, the required properties can be obtained. This paper presents the results of a study on the extrusion of a magnesium matrix composite with titanium (Ti) reinforcement. The study included three-point bending tests, from which it is clear that the introduction of Ti reinforcement improves the bending strength of the specimens. In addition, the samples were immersed in SBF (simulated body fluid) for 1, 2, 4, 8, 12 and 24 h to determine the degradation of the Mg–Ti composite. Full article
Show Figures

Figure 1

24 pages, 100135 KiB  
Article
The Influence of Annealing Temperature on the Microstructure and Performance of Cold-Rolled High-Conductivity and High-Strength Steel
by Shuhai Ge, Xiaolong Zhao, Weilian Zhou, Xueming Xu, Xingchang Tang, Junqiang Ren, Jiahe Zhang and Yaoxian Yi
Crystals 2025, 15(5), 469; https://doi.org/10.3390/cryst15050469 - 16 May 2025
Viewed by 697
Abstract
Low-carbon micro-alloyed steel has become a wire material with great potential for further development due to its excellent comprehensive performance; however, there is still a lack of insight into the evolution of its electrical conductivity during annealing treatment after undergoing deformation. In this [...] Read more.
Low-carbon micro-alloyed steel has become a wire material with great potential for further development due to its excellent comprehensive performance; however, there is still a lack of insight into the evolution of its electrical conductivity during annealing treatment after undergoing deformation. In this present contribution, we systematically explored the intrinsic correlation between the microstructural characteristics (including grain size evolution, dislocation density change, etc.) and performance indexes of cold-rolled high-conductivity high-strength steels and their mechanisms, using the annealing temperature, a key process parameter, as a variable. Characterization methods were used to comprehensively investigate the variation rule of the electrical conductivity of low-carbon micro-alloyed steels containing Ti-Nb elements under different annealing temperatures, as well as their influencing factors. The results show that for the ultra-low-carbon steel (0.002% C), the dislocation density continuously decreases with the increasing annealing temperature. Both experimental steels underwent complete recrystallization at 600 °C, with grain growth increasing at higher temperatures (with ultra-low-carbon steel being finer than low-carbon steel (0.075% C)). Dislocation density in ultra-low-carbon steel decreased steadily, whereas low-carbon steel exhibited an initial decline followed by an increase due to carbon-rich precipitate pinning. The yield ratio decreased with the annealing temperature, with optimal performance being at 700 °C for ultra-low-carbon steel (lowest resistivity: 13.75 μΩ/cm) and 800 °C for low-carbon steel (best conductivity: 14.66 μΩ/cm). Yield strength in ultra-low-carbon steel was dominated by grain and precipitation strengthening, while low-carbon steel relied more on precipitation and solid solution strengthening. Resistivity analysis confirmed that controlled precipitate size enhances conductivity. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

18 pages, 15634 KiB  
Article
Investigations on Cavitation Erosion and Wear Resistance of High-Alloy WC Coatings Manufactured by Electric Arc Spraying
by Edmund Levărdă, Dumitru-Codrin Cîrlan, Daniela Lucia Chicet, Marius Petcu and Stefan Lucian Toma
Materials 2025, 18(10), 2259; https://doi.org/10.3390/ma18102259 - 13 May 2025
Viewed by 398
Abstract
Due to the low hardness of carbon steels, their low resistance to wear, and erosion by cavitation and corrosion, it is necessary to protect the surfaces of parts with layers capable of ensuring the properties listed above. In this paper, we started from [...] Read more.
Due to the low hardness of carbon steels, their low resistance to wear, and erosion by cavitation and corrosion, it is necessary to protect the surfaces of parts with layers capable of ensuring the properties listed above. In this paper, we started from the premise that adding tungsten carbide (WC) powders during the electric arc spraying process of stainless steel would lead to obtaining a composite material coating resistant to wear and erosion at high temperatures, with relatively lower manufacturing costs. Thus, our research compared the following two types of coatings: a highly alloyed layer with WC, Cr, and TiC (obtained from 97MXC core wires) and a 60T/WC coating (obtained from a 60T solid-section wire to which WC was added), in terms of microstructure, mechanical properties, dry friction wear, and behaviour at erosion by cavitation (EC). The results of our research demonstrated that although the 60T/WC coating had lower erosion by cavitation behaviour than the 97MXC one, it can still be considered as a relatively good and inexpensive solution for protecting C15 steel parts. Full article
(This article belongs to the Special Issue Friction, Corrosion and Protection of Material Surfaces)
Show Figures

Figure 1

20 pages, 8552 KiB  
Article
Experimental Investigation of the Confinement of Concrete Columns with Welded Wire Reinforcement
by Abdelaziz Younes and Sami W. Tabsh
Buildings 2025, 15(9), 1494; https://doi.org/10.3390/buildings15091494 - 28 Apr 2025
Viewed by 497
Abstract
Traditional methods of construction for reinforced concrete columns utilize longitudinal steel bars and transverse ties. Field experience has shown that such a transverse reinforcement method is labor-intensive, time-consuming, and prone to inconsistencies in quality. Welded wire reinforcement (WWR) offers a prefabricated alternative, forming [...] Read more.
Traditional methods of construction for reinforced concrete columns utilize longitudinal steel bars and transverse ties. Field experience has shown that such a transverse reinforcement method is labor-intensive, time-consuming, and prone to inconsistencies in quality. Welded wire reinforcement (WWR) offers a prefabricated alternative, forming a closed cage that simplifies installation and speeds up the fabrication process. This study investigates the potential of using WWR as a replacement for conventional ties in reinforced concrete columns in pure compression. To achieve this objective, eight one-third-scale columns (1000 mm height, 200 × 200 mm cross-section) were tested under concentric axial loading inside a Universal Testing Machine. Four of the specimens contained WWR, while the other four had conventional ties. The variables that were considered in this study include the concrete compressive strength (34.3 and 43.5 MPa) and the grid size of the WWR (25 and 50 mm). This study investigated the influence of the type of transverse reinforcement on the strength, modulus of elasticity, and ductility of the confined concrete within the core. The findings of the study showed that lateral reinforcement in the form of WWR can increase the concrete core strength by 2.7% relative to corresponding columns employing ties when f′c = 34.3 MPa was used. Conversely, the utilization of ties proved to be more effective than WWR in improving concrete core strength by an average of 28.8% when f′c = 43.5 MPa was used. Additionally, WWR reinforced columns demonstrated a marginal 2.0% rise in the modulus of elasticity and a remarkable 21.0% increase in the ductility of the confined concrete core compared with corresponding tied columns. Theoretical predictions of the axial compressive capacity of WWR reinforced columns subjected to concentric loading based on the ACI-318 code provisions underestimated the experimental results by 20%. These findings demonstrate that WWR can serve as an effective substitute for conventional ties, particularly in cases where rapid installation and reduced labor costs are prioritized. Full article
(This article belongs to the Special Issue Experimental and Theoretical Studies on Steel and Concrete Structures)
Show Figures

Figure 1

Back to TopTop