Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = Thermal Sensation Vote

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1848 KB  
Article
Thermophysiological and Subjective Thermal Responses to Soft and Rigid Spinal Exoskeletons in Young Male Workers: An Experimental Study
by Yang Liu, Zhuoya Zhang, Yanmin Xue, Mengcheng Wang, Hao Fan, Rui Li, Zhi Qiao and Xingbo Yao
Appl. Sci. 2026, 16(2), 820; https://doi.org/10.3390/app16020820 - 13 Jan 2026
Viewed by 142
Abstract
In industrial and logistics settings, the use of soft and rigid spinal exoskeletons has been increasing. However, under a unified assistance level and comparable work scenarios, systematic comparisons of their effects on users’ thermophysiological responses and subjective thermal perceptions remain limited. Twenty male [...] Read more.
In industrial and logistics settings, the use of soft and rigid spinal exoskeletons has been increasing. However, under a unified assistance level and comparable work scenarios, systematic comparisons of their effects on users’ thermophysiological responses and subjective thermal perceptions remain limited. Twenty male participants performed manual handling tasks under three load conditions (5, 10, and 15 kg) in three experimental conditions: without the exoskeleton (WEXO), a rigid exoskeleton (REXO), and a soft exoskeleton (SEXO). Metabolic rate, mean skin temperature (MST), thermal comfort vote (TCV), and thermal sensation vote (TSV) were measured. The key findings are as follows: Compared with WEXO, both exoskeletons significantly reduced metabolic rate. Across all loads, SEXO yielded a lower metabolic rate than REXO and showed a more gradual linear increase as the load increased, whereas REXO exhibited a larger rise at 15 kg. Overall, MST was higher in REXO than in SEXO. Wearing an exoskeleton was often associated with increased skin temperature at 5–10 kg, yet MST decreased for both exoskeletons at 15 kg. Subjective ratings further indicated better TCV and TSV with SEXO than with REXO, with the difference more pronounced under higher loads. Taken together, under the conditions of this study, the soft exoskeleton appears to better balance assistive benefits and thermal comfort. Nevertheless, its heat transfer and heat dissipation performance should be further optimized in future designs. Full article
(This article belongs to the Special Issue Human-Centered Design in Wearable Technology)
Show Figures

Figure 1

17 pages, 1357 KB  
Article
Impact of Temperature Drift on Thermal Sensation in nZEB Residential Buildings Under Winter Conditions
by Arturs Staveckis and Anatolijs Borodinecs
Energies 2026, 19(1), 151; https://doi.org/10.3390/en19010151 - 27 Dec 2025
Viewed by 246
Abstract
This paper is dedicated to investigating how short-term indoor temperature drift influences occupants’ thermal sensation in residential nZEB buildings and how this affects the applicability of steady-state comfort prediction. Residential buildings frequently operate under transient conditions, where the classical PMV approach may deviate [...] Read more.
This paper is dedicated to investigating how short-term indoor temperature drift influences occupants’ thermal sensation in residential nZEB buildings and how this affects the applicability of steady-state comfort prediction. Residential buildings frequently operate under transient conditions, where the classical PMV approach may deviate from reported sensation. The objective of this paper is to evaluate the agreement between steady-state PMV and occupants’ thermal sensation votes under winter conditions to test a regression-based correction index Aeff and an adjusted indicator PMVadj while preserving the PMV concept. The study uses high-resolution measurements of indoor air temperature and mean radiant temperature synchronised with TSV responses, followed by statistical evaluation using error metrics and correlation analysis. The results show that baseline PMV correlates well with TSV but exhibits a consistent magnitude mismatch under transient conditions. The proposed PMVadj reduces this mismatch, decreasing NRMSE from 17.61% to 14.00% and slightly improving agreement with Pearson r = 82.18%, R2 = 67.54%. Regression analysis shows that Aeff is strongly associated with the indoor air temperature drift rate ΔTint with R2 = 0.6805, but has a weaker relationship with ΔTMRTt, R2 = 0.1851. The research provides a practical basis for improving PMV-based comfort assessment during winter operation in residential nZEB. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

22 pages, 3945 KB  
Article
Fan Coil Unit Influence on Thermal Comfort in Waiting Areas of Energy-Efficient Office Buildings
by Małgorzata Fedorczak-Cisak, Alicja Kowalska-Koczwara, Aleksandra Buda-Chowaniec, Mirosław Dechnik, Michał Ciuła and Anna Shymanska
Energies 2025, 18(23), 6187; https://doi.org/10.3390/en18236187 - 26 Nov 2025
Viewed by 543
Abstract
Ensuring thermal comfort in waiting areas is essential for visitor satisfaction and well-being. In the context of nearly zero-energy buildings (nZEBs), these spaces—typically characterized by short-term occupancy, transient user behavior, and the need for rapid temperature adjustment—pose specific challenges for HVAC control in [...] Read more.
Ensuring thermal comfort in waiting areas is essential for visitor satisfaction and well-being. In the context of nearly zero-energy buildings (nZEBs), these spaces—typically characterized by short-term occupancy, transient user behavior, and the need for rapid temperature adjustment—pose specific challenges for HVAC control in balancing comfort and energy demand. This study investigates the influence of a ceiling-mounted fan coil unit (FCU) operating in heating mode on thermal comfort conditions in an nZEB office waiting area. Measurements were conducted at multiple points within the space to assess microclimate parameters, followed by the calculation of the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) indices, supported by occupant feedback collected through short interviews. The results showed that although the FCU effectively increased the average temperature, its intermittent operation and localized air jets during the heating phase caused temporary discomfort near the unit. Occupant feedback confirmed sensations of discomfort due to strong air movement during FCU operation but indicated slightly higher overall dissatisfaction and smaller variability compared to model-based PPD values, reflecting the averaging effect of occupant perception over time. These findings highlight the need for optimized FCU control strategies in waiting areas, such as operating at reduced fan speeds and preheating the heat exchanger, to enhance occupant comfort. This study contributes to improving HVAC control concepts for semi-transient spaces in nZEBs. Full article
Show Figures

Figure 1

19 pages, 4532 KB  
Article
The Effects of Constant Mechanical Wind, Sinusoidal Wind, and Simulated Natural Wind on Thermal Comfort in a Slightly Hot Environment
by Jing Li, Jing Ling, Jinwen Liu, Mingliang Gu, Yijia Wang, Bin Cao, Kang Qin and Miao Yuan
Buildings 2025, 15(20), 3711; https://doi.org/10.3390/buildings15203711 - 15 Oct 2025
Cited by 1 | Viewed by 786
Abstract
In high-temperature environments, using airflow systems has been demonstrated to be an effective method of regulating thermal sensation and enhancing thermal comfort. Given the importance of optimizing airflow selection strategies, the impact of different airflow forms on thermal comfort is a topic worthy [...] Read more.
In high-temperature environments, using airflow systems has been demonstrated to be an effective method of regulating thermal sensation and enhancing thermal comfort. Given the importance of optimizing airflow selection strategies, the impact of different airflow forms on thermal comfort is a topic worthy of consideration. This study aimed to compare and analyze thermal comfort under three distinct airflow conditions: constant mechanical wind, sinusoidal wind and simulated natural wind. The experimental condition was set to a high temperature of 30 °C. The experimental results show that thermal sensation votes (TSV) are lower and thermal comfort votes (TCV) are higher in the simulated natural wind environment than in the other two environments. Statistical analysis of subjects’ environmental preferences showed that simulated natural wind was the most preferred option. When exposed to simulated natural wind, subjects reported a stronger sense of softness and relaxation than when exposed to constant mechanical wind or sinusoidal wind. Additionally, the level of calmness experienced under the simulated natural wind condition was found to be lower than that observed under the constant mechanical wind condition. Comparing TSV and TCV results over time reveals that thermal comfort is influenced not only by thermal sensation but also by the stimulation that different types of airflow variation exert on the human body. Concurrently, in airflow environments, thermal sensation exhibits a non-linear relationship with changes in skin temperature, and this relationship may be influenced by airflow stimulation. This study clarifies the mechanism by which different airflows affect thermal comfort differently in high-temperature environments. It thereby provides both experimental evidence and theoretical support for the airflow design of air-conditioning systems, with the goal of aligning such designs with human physiological perceptual characteristics. Full article
Show Figures

Figure 1

31 pages, 2850 KB  
Review
Effective Heat Transfer Mechanisms of Personal Comfort Systems for Thermal Comfort and Energy Savings: A Review
by Prabhath Dhammika Tharindu Arachchi Appuhamilage and Hom B. Rijal
Energies 2025, 18(19), 5226; https://doi.org/10.3390/en18195226 - 1 Oct 2025
Cited by 1 | Viewed by 1317
Abstract
Personal comfort systems (PCSs), which provide targeted heating or cooling to specific body parts, have emerged as a promising solution to enhance occupant comfort while reducing energy use in buildings. Among the many factors influencing PCS performance, heat transfer mechanisms (HTMs) play a [...] Read more.
Personal comfort systems (PCSs), which provide targeted heating or cooling to specific body parts, have emerged as a promising solution to enhance occupant comfort while reducing energy use in buildings. Among the many factors influencing PCS performance, heat transfer mechanisms (HTMs) play a pivotal role. However, a critical gap remains in the literature regarding the identification of optimal HTMs for achieving both thermal comfort and energy efficiency in PCSs. To address this gap, our study investigates the impact of conduction, convection, and radiation in PCSs on thermal comfort enhancement and energy performance under both heating and cooling modes. A meta-analysis was conducted, extracting data from 64 previous studies to evaluate the effects of HTMs of PCSs on thermal sensation vote (TSV), overall comfort (OC) and corrective energy power (CEP). Results indicate that PCSs typically improve users’ thermal sensation and comfort by about one scale unit in both heating and cooling modes. Radiative HTM is the most effective individual method, while combined conductive and convective HTMs perform best overall. Most PCSs operate efficiently, consuming less than 200 W/°C, with conduction in heating and convection in cooling being recommended for optimal comfort and energy efficiency. These findings suggest that selecting optimal HTMs for PCSs is crucial for achieving maximum comfort performance and energy savings. Data on combined HTMs of PCSs remain limited, underscoring the need for further research in this area. Future research should prioritize optimizing HTMs, especially radiative and combined methods, to maximize comfort and energy savings in PCS design. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

20 pages, 2665 KB  
Article
Subjective Perception and Cooling Effect for Dynamic Ventilation with Fluctuating Air Velocity
by Chunfeng Lao, Jing Ling, Jing Li, Jinghua Jiang, Sheng Zhang, Yan Yan, Yue Yin and Mingliang Gu
Buildings 2025, 15(16), 2871; https://doi.org/10.3390/buildings15162871 - 14 Aug 2025
Cited by 1 | Viewed by 980
Abstract
Dynamic ventilation has proven effective in enhancing indoor thermal comfort. However, previous studies often expose participants to inconsistent thermal environments, potentially compromising the accuracy of subjective evaluations. To address this limitation, this study implemented dynamic ventilation with fluctuating air velocity in an accurately [...] Read more.
Dynamic ventilation has proven effective in enhancing indoor thermal comfort. However, previous studies often expose participants to inconsistent thermal environments, potentially compromising the accuracy of subjective evaluations. To address this limitation, this study implemented dynamic ventilation with fluctuating air velocity in an accurately controlled environmental chamber. Objective measurements of indoor air velocity and air temperature distribution are conducted, and subjective thermal sensation votes are collected under thermally consistent environments among participants. During the experiment, all participants experience similar dynamic thermal environments. The results show that participants experience thermal comfort under dynamic ventilation. Dynamic ventilation enhances convective heat transfer between the human body and the surrounding air and stimulates cutaneous cold receptors. The pronounced cooling effect of dynamic airflow contributes to a reduction in skin temperature on the head, chest, upper arm, forearm, hand, and thigh, with a temperature drop ranging from 1.3% to 2.8%. In addition, dynamic ventilation significantly reduces draft risk, with the proportion of participants reporting a dissatisfied sensation decreasing from 10% to 0%. This study demonstrates the advantages of dynamic ventilation in improving thermal comfort and minimizing draft risk under controlled and uniform environmental conditions for all participants. Full article
(This article belongs to the Special Issue Development of Indoor Environment Comfort)
Show Figures

Figure 1

26 pages, 5677 KB  
Article
CFD Investigation on the Thermal Comfort for an Office Room
by Mazen M. Othayq
Buildings 2025, 15(15), 2802; https://doi.org/10.3390/buildings15152802 - 7 Aug 2025
Viewed by 1506
Abstract
Heating, Ventilating, and Air Conditioning (HVAC) systems are important and essential for use in our daily comfort, either in homes, work, or transportation. And it is crucial to study the air movement coming from the inlet diffuser for a better design to enhance [...] Read more.
Heating, Ventilating, and Air Conditioning (HVAC) systems are important and essential for use in our daily comfort, either in homes, work, or transportation. And it is crucial to study the air movement coming from the inlet diffuser for a better design to enhance thermal comfort and energy consumption. The primary objective of the presented work is to investigate the thermal comfort within a faculty office occupied by two faculty members using the Computational Fluid Dynamics (CFD) methodology. First, an independent mesh study was performed to reduce the uncertainty related to the mesh size. In addition, the presented CFD approach was validated against available experimental data from the literature. Then, the effect of inlet air temperature and velocity on air movement and temperature distribution is investigated using Ansys Fluent. To be as reasonable as possible, the persons who occupy the office, lights, windows, tables, the door, and computers are accounted for in the CFD simulation. After that, the Predicted Mean Vote (PMV) was evaluated at three different locations inside the room, and the approximate total energy consumption was obtained for the presented cases. The CFD results showed that, for the presented cases, the sensation was neutral with the lowest energy consumption when the supply air velocity was 1 m/s and the temperature was 21 °C. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 2386 KB  
Article
Assessing Thermal Comfort in Green and Conventional Office Buildings in Hot Climates
by Abdulrahman Haruna Muhammad, Ahmad Taki and Sanober Hassan Khattak
Sustainability 2025, 17(15), 7078; https://doi.org/10.3390/su17157078 - 5 Aug 2025
Cited by 2 | Viewed by 1494
Abstract
Green buildings are recognised for their potential to reduce energy consumption, minimise environmental impact, and improve occupants’ well-being, benefits that are especially critical in rapidly urbanising regions. However, questions remain about whether these buildings fully meet occupant comfort expectations while delivering energy efficiency. [...] Read more.
Green buildings are recognised for their potential to reduce energy consumption, minimise environmental impact, and improve occupants’ well-being, benefits that are especially critical in rapidly urbanising regions. However, questions remain about whether these buildings fully meet occupant comfort expectations while delivering energy efficiency. This is particularly relevant in Africa, where climate conditions and energy infrastructure challenges make sustainable building operation essential. Although interest in sustainable construction has increased, limited research has examined the real-world performance of green buildings in Africa. This study helps address that gap by evaluating indoor thermal comfort in a green-certified office building and two conventional office buildings in Abuja, Nigeria, through post-occupancy evaluation (POE). The Predicted Mean Vote (PMV) and Thermal Sensation Vote (TSV) were used to assess comfort, revealing discrepancies between predicted and actual occupant responses. In the green building, PMV indicated near-neutral conditions (0.28), yet occupants reported a slightly cool sensation (TSV: −1.1). Neutral temperature analysis showed that the TSV-based neutral temperature (26.5 °C) was 2.2 °C higher than the operative temperature (24.3 °C), suggesting overcooling. These findings highlight the importance of incorporating occupant feedback into HVAC control. Aligning cooling setpoints with comfort preferences could improve satisfaction and reduce unnecessary cooling, promoting energy-efficient building operation. Full article
Show Figures

Figure 1

16 pages, 2566 KB  
Article
Human Responses to Different Built Hyperthermal Environments After Short-Term Heat Acclimation
by Shuai Zhang, Qingqin Wang, Haizhu Zhou, Tianyang Wang and Guanguan Jia
Buildings 2025, 15(14), 2581; https://doi.org/10.3390/buildings15142581 - 21 Jul 2025
Viewed by 953
Abstract
Hyperthermal environments are encountered in many situations, and significant heat stress can exacerbate the fatigue perception of individuals and potentially threaten their safety. Heat acclimation (HA) interventions have many benefits in preventing the risk of incidents. However, whether HA interventions in specific environments [...] Read more.
Hyperthermal environments are encountered in many situations, and significant heat stress can exacerbate the fatigue perception of individuals and potentially threaten their safety. Heat acclimation (HA) interventions have many benefits in preventing the risk of incidents. However, whether HA interventions in specific environments can cope with other different hyperthermal environments remains uncertain. In this study, forty-three young male participants were heat-acclimated over 10 days of training on a motorized treadmill in a fixed hyperthermal environment, and they were tested in different hyperthermal environments. Physiological indices (rectal temperature (Tr), heart rate (HR), skin temperature (Tsk), and total sweat loss (Msl)) and subjective perception (rating of perceived exertion (RPE) and thermal sensation votes (TSVs)) were measured during both the heat stress test (HST) sessions and HA training sessions. The results show that HR and Tsk significantly differed between pre- and post-heat acclimation (p < 0.05 for all) following the acclimation program. However, after heat acclimation training, the reduction in Tr (ΔTr) was more notable in lower-ET* environments, and Msl showed distinct changes in different ET* environments. The RPE and TSV decreased after HA interventions, although the difference was not significant. The results indicate that HA can effectively reduce the peak of physiological parameters. However, when subjected to stronger heat stress, the improvement effects of heat acclimation on human responses will be affected. In addition, HA can alleviate physiological thermal strain, thereby reducing the adverse effects on mobility, but it has no effect on the supervisor’s ability to perceive the environment. This study suggests that additional HA training can reduce the risk of activities in high-temperature environments but exhibits different effects under different environmental conditions, indicating that hot acclimation suits have selective effects on the environment. This study provides recommendations for additional HA training before high-temperature activities. Full article
(This article belongs to the Special Issue Low-Carbon Urban Areas and Neighbourhoods)
Show Figures

Figure 1

22 pages, 2304 KB  
Article
Personalized Human Thermal Sensation Prediction Based on Bayesian-Optimized Random Forest
by Hao Yang and Maoyu Ran
Buildings 2025, 15(14), 2539; https://doi.org/10.3390/buildings15142539 - 19 Jul 2025
Cited by 1 | Viewed by 1415
Abstract
Establishing a predictive model for human thermal sensation serves as the fundamental theoretical basis for intelligent control of building HVAC systems based on thermal comfort. The traditional Predicted Mean Vote (PMV) model exhibits low accuracy in predicting human thermal sensation and is not [...] Read more.
Establishing a predictive model for human thermal sensation serves as the fundamental theoretical basis for intelligent control of building HVAC systems based on thermal comfort. The traditional Predicted Mean Vote (PMV) model exhibits low accuracy in predicting human thermal sensation and is not well suited for practical applications. In this study, real thermal sensation survey data were collected and used to first analyze the discrepancy between PMV model predictions and actual human thermal sensation. Subsequently, a simple thermal sensation prediction model was developed using multiple linear regression. More accurate personalized thermal sensation prediction models were then constructed using various machine learning algorithms, followed by a comparative analysis of their performance. Finally, the best-performing model was further optimized using Bayesian methods to enhance hyperparameter tuning efficiency and improve the accuracy of personalized human thermal sensation prediction. Full article
Show Figures

Figure 1

25 pages, 4088 KB  
Article
A Study on Outdoor Thermal Comfort During Military Training for College Freshmen: A Survey in a Cold Region of China
by Hongchi Zhang, Liangshan You, Bingru Chen, Yuqiu Wang, Fei Guo and Peisheng Zhu
Buildings 2025, 15(14), 2454; https://doi.org/10.3390/buildings15142454 - 12 Jul 2025
Viewed by 1206
Abstract
College student military training is an organized, high-intensity, short-term militarized activity in China; this study aims to explore the differences in thermal perception between different intensities of military training. Questionnaires and microclimate measurements were conducted during summer military training in cold regions, including [...] Read more.
College student military training is an organized, high-intensity, short-term militarized activity in China; this study aims to explore the differences in thermal perception between different intensities of military training. Questionnaires and microclimate measurements were conducted during summer military training in cold regions, including the Protective and Rescue Training and Assessment (PRTA), Formation Training (FT), the Shooting and Tactical Training and Assessment (STTA), the Route March (RM), and Dagger Practice (DP). The results indicated that (1) there was no significant correlation between the intensity of the activity and votes on thermal perception. The strongest thermal sensations, the lowest comfort, and the lowest thermal acceptability were experienced during FT, with a lower activity intensity. (2) Air temperature (Ta), globe temperature (Tg), relative humidity (RH), mean radiant temperature (Tmrt), and solar radiation (G) had significant effects on the TSV. (3) FT involved the lowest neutral temperatures (NUTCI/NPET), while DP and RM training had the highest NUTCI and NPET values, respectively. The neutral temperature range during military training was narrower compared to that in other aerobic activities. This study reveals, for the first time, the non-traditional correlation between military training intensity and thermal perception, confirming the specificity of thermal sensations in mandatory training and providing a theoretical basis for optimizing military training arrangements and developing thermal protection strategies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 6447 KB  
Article
Optimizing Thermal Comfort with Adaptive Behaviours in South Australian Residential Buildings
by Szymon Firląg and Artur Miszczuk
Energies 2025, 18(13), 3498; https://doi.org/10.3390/en18133498 - 2 Jul 2025
Viewed by 700
Abstract
This study focuses on thermal comfort in residential buildings within the Iron Triangle area of South Australia, examining how indoor conditions influence residents’ comfort and adaptive behaviours. Conducted from June 2023 to February 2024 across 30 homes in Port Pirie, Port Augusta, and [...] Read more.
This study focuses on thermal comfort in residential buildings within the Iron Triangle area of South Australia, examining how indoor conditions influence residents’ comfort and adaptive behaviours. Conducted from June 2023 to February 2024 across 30 homes in Port Pirie, Port Augusta, and Whyalla, the research gathered data from 38 residents, who reported indoor comfort levels in living rooms and bedrooms. A total of 3540 responses were obtained. At the same time, the measurement of indoor conditions in the buildings was performed using a small HOBO MX1104 device. Using the Mean Thermal Sensation Vote (MTSV) concept, it was possible to determine the neutral operative temperature and temperature ranges for thermal comfort categories. According to the defined linear regression formula, the neutral temperature was 23.9 °C. In living rooms, it was slightly lower, at 23.7 °C, and in bedrooms, slightly higher, at 24.4 °C. For comparison, the neutral temperature was calculated based on the average Predicted Mean Vote (MPMV) and equal to 24.3 °C. Comparison of the regression curves showed that in terms of slope, the MPMV curve is steeper (slope 0.282) than the MTSV curve (slope 0.1726), and lies above it. Regarding the residents’ behaviour, a strong correlation was found between the operative temperature To and the degree of clothing Icl in living rooms. Use of ceiling fans was also studied. A clear trend was also observed regarding window and door opening. The findings of the research can be used to inform the design and operation of residential buildings with a view to enhancing thermal comfort and energy efficiency. Full article
Show Figures

Figure 1

21 pages, 3571 KB  
Article
An Experimental Study of Wind-Driven Ventilation with Double Skin Facade During Transition Seasons
by Guoqing He, Zhewen Fan, Yuan Meng, Linfeng Yao and Changqing Ye
Energies 2025, 18(13), 3249; https://doi.org/10.3390/en18133249 - 21 Jun 2025
Cited by 1 | Viewed by 2082
Abstract
Double skin facade (DSF) is an energy-efficient solution for glazing facades. However, previous studies have reported inconsistent findings regarding thermal comfort in naturally ventilated DSF buildings. To examine this issue, this study evaluated airflow velocities in naturally ventilated DSF buildings during transition seasons [...] Read more.
Double skin facade (DSF) is an energy-efficient solution for glazing facades. However, previous studies have reported inconsistent findings regarding thermal comfort in naturally ventilated DSF buildings. To examine this issue, this study evaluated airflow velocities in naturally ventilated DSF buildings during transition seasons through a comparative study approach. A full-scale box-type DSF room and a traditional window-wall room were simultaneously monitored in a laboratory building under real climatic conditions, with indoor environmental parameters recorded for 10 days. Airflow sensation surveys complemented the physical measurements to evaluate perceived comfort. The results showed that the DSF room consistently exhibited lower air velocities (≤0.2 m/s) compared to the traditional room, demonstrating minimal response to wind conditions related to its small openings (opening ratio of 4.7%) and increased flow resistance from the dual-layer structure of the DSF. Under unfavorable wind conditions, the DSF room demonstrated higher ventilation rates due to the enhanced stack effect. However, this advantage had a negligible effect on the thermal comfort vote for the indoor temperature range (26 °C to 28 °C). These findings highlight the climate-dependent performance of DSFs: while advantageous for thermal comfort in cooler climates, they may lead to reduced thermal comfort in warm and hot climates due to low indoor airflow velocities. Future work could include the optimization of DSF opening configurations to enhance wind-driven ventilation while maintaining stack ventilation benefits. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings—2nd Edition)
Show Figures

Figure 1

17 pages, 3695 KB  
Article
Optimization Design of Indoor Thermal Environment and Air Quality in Rural Residential Buildings in Northern China
by Lei Yu, Xuening Han, Songyang Ju, Yuejiao Tao and Xiaolong Xu
Buildings 2025, 15(12), 2050; https://doi.org/10.3390/buildings15122050 - 14 Jun 2025
Viewed by 1138
Abstract
In this work, the indoor thermal environment and indoor air quality of rural houses in Northern China were investigated in detail. The current heating situation in rural areas, the causes of indoor air pollution, and the indoor ventilation habits of residents were analyzed. [...] Read more.
In this work, the indoor thermal environment and indoor air quality of rural houses in Northern China were investigated in detail. The current heating situation in rural areas, the causes of indoor air pollution, and the indoor ventilation habits of residents were analyzed. The indoor thermal environment and indoor air quality were improved by upgrading the thermal insulation of the rural housing envelope and installing indoor ventilation systems with heat recovery, leading to an average indoor temperature increase of 6 °C. The Predicted Mean Vote reached approximately 1.0, so the human body heat sensation was more moderate. The air age was greatly reduced, and the indoor air quality was significantly improved. The Predicted Percentage of Dissatisfied dramatically decreased to 15%. Thus, when focusing on heat source renovation in rural areas, priority should be given to improving the energy efficiency of buildings, especially the building envelope insulation performance. Ventilation and air exchange systems with heat recovery are inexpensive and effective, and they are suitable for rural dwellings where the temperatures are not as high as they should be but where the indoor air quality is poor and ventilation is urgently needed. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 7475 KB  
Article
Determining Indoor Parameters for Thermal Comfort and Energy Saving in Shopping Malls in Summer: A Field Study in China
by Wenjing Xu, Qiong He, Chenghao Hua and Yufei Zhao
Sustainability 2025, 17(11), 4876; https://doi.org/10.3390/su17114876 - 26 May 2025
Viewed by 2995
Abstract
Local data about indoor thermal comfort are in short supply, which are always different from the predicted results produced by models shown in previous studies. Shopping malls that consume substantial energy need to save energy, provided that thermal comfort is maintained. Therefore, this [...] Read more.
Local data about indoor thermal comfort are in short supply, which are always different from the predicted results produced by models shown in previous studies. Shopping malls that consume substantial energy need to save energy, provided that thermal comfort is maintained. Therefore, this research investigated indoor thermal comfort using field measurements and questionnaires in a typical shopping mall in Danyang, China, with a hot summer and cold winter climate in order to explore local demands and energy-saving potential. The findings are as follows: (1) The average air temperature (Ta) and operative temperature (Top) are 26.7 °C and 26.4 °C, which implies a minor influence from radiation and other factors on Ta. Women are more sensitive to changes in outdoor temperature since clothing insulation (Icl) varies by gender: 0.31 clo and 0.36 clo for male and female individuals, respectively. (2) The thermal neutral temperature (TNT) derived from the thermal sensation vote (TSV) is 25.26 °C, which is significantly higher than the 21.77 °C obtained from the predicted mean vote (PMV) model. (3) There is a wide range of acceptable temperatures for thermal comfort because the highest temperature was identified by the thermal comfort vote (TCV) at 27.55 °C, followed closely by 27.48 °C, 26.78 °C, and 25.32 °C, which were separately derived from the thermal acceptance vote (TAV), TSV, and predicted percentage of dissatisfied (PPD) people; these were based on an upper limit of the acceptable 80% range. (4) In total, 94.85% of respondents accepted the indoor air quality, although the median concentration of CO2 was 772 ppm, and the neutral relative humidity level was 70.60%. Meanwhile, there is an important relationship between air quality satisfaction and operative temperature; thus, the temperature (26.93 °C) with peak satisfaction can enhance air quality perception and thermal comfort. (5) The energy savings that can be achieved are 25.77% and 9.12% at most based on acceptable thermal comfort compared with baseline energy consumption at 23 °C and 26 °C, respectively. Full article
Show Figures

Figure 1

Back to TopTop