Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = TRK inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3579 KB  
Article
Protective Effects of Cord Blood Serum (CBS) on Retinal Pigment Epithelium (ARPE-19) and Retinal Photoreceptor-like (661W) Cell Line Viability Under In Vitro Oxidative Stress
by Ilenia Motta, Francesca Corsi, Ilaria Piano, Silvia Bisti, Elisa Bergantin, Marina Buzzi, Maria Claudia Gargini and Piera Versura
Biomolecules 2026, 16(1), 131; https://doi.org/10.3390/biom16010131 - 12 Jan 2026
Viewed by 180
Abstract
Neuroprotection represents a promising approach for mitigating retinal degeneration. Cord blood serum (CBS), rich in trophic factors such as the brain-derived neurotrophic factor (BDNF), has shown therapeutic potential for ocular surface diseases; however, its role in retinal neuroprotection remains underexplored. This study evaluates [...] Read more.
Neuroprotection represents a promising approach for mitigating retinal degeneration. Cord blood serum (CBS), rich in trophic factors such as the brain-derived neurotrophic factor (BDNF), has shown therapeutic potential for ocular surface diseases; however, its role in retinal neuroprotection remains underexplored. This study evaluates the protective effects of CBS on retinal pigment epithelium (ARPE-19) and photoreceptor-like (661W) cells exposed to oxidative stress. Cells were cultured in media supplemented with fetal bovine serum (FBS) or CBS with either high (CBS-H) or low (CBS-L) BDNF content. Oxidative stress was induced using hydrogen peroxide (H2O2), and cell viability was measured via an MTS assay. ZO-1 expression was analyzed in ARPE-19 cells to assess tight junction integrity, while mitochondrial function in 661W cells was examined using MitoRed staining. TrkB receptor involvement was investigated using the inhibitor K252a and Western blot analysis. CBS significantly improved cell viability under oxidative conditions. CBS-H increased ZO-1 expression in ARPE-19 cells, indicating preserved epithelial integrity. In 661W cells, CBS maintained mitochondrial integrity and enhanced TrkB phosphorylation, while TrkB inhibition reduced its protective effect. These findings indicate that CBS confers neuroprotection through BDNF-TrkB signaling together with other trophic factors, supporting its potential as a multifactorial therapeutic strategy for retinal degeneration that deserves further exploration. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Retinal Pigment Epithelium)
Show Figures

Figure 1

12 pages, 1107 KB  
Article
Evaluation of NTRK Fusions Detection Method in Esophageal Squamous Cell Carcinoma and Gastric Adenocarcinoma
by Tomoyuki Momma, Motonobu Saito, Shotaro Nakajima, Katsuharu Saito, Erika Machida, Ken Miyabe, Yusuke Sato, Hiroyuki Hanayama, Hirokazu Okayama, Zenichiro Saze, Kosaku Mimura, Naoto Tsuchiya, Akiteru Goto, Kouya Shiraishi and Koji Kono
Int. J. Mol. Sci. 2026, 27(1), 336; https://doi.org/10.3390/ijms27010336 - 28 Dec 2025
Viewed by 359
Abstract
Neurotrophic tyrosine receptor kinase (NTRK) fusions function as oncogenes and have been targeted by TRK inhibitors with excellent clinical outcomes. The international expert consensus recommends immunohistochemical (IHC) screening for TRK protein followed by next generation sequencing (NGS) to measure expression of [...] Read more.
Neurotrophic tyrosine receptor kinase (NTRK) fusions function as oncogenes and have been targeted by TRK inhibitors with excellent clinical outcomes. The international expert consensus recommends immunohistochemical (IHC) screening for TRK protein followed by next generation sequencing (NGS) to measure expression of NTRK fusions for tumors with low NTRK fusion expression. To confirm the clinical utility of this recommendation in esophageal and gastric cancers, total TRK protein expression was measured by IHC using anti-pan-TRK antibody in 254 esophageal squamous cell carcinoma (ESCC) and 401 gastric adenocarcinoma (GA) samples. Subsequently, DNA-based NGS and fluorescence in situ hybridization (FISH) were performed for tumors expressing TRK to measure NTRK fusion expression. Further, expression of NTRK fusions was evaluated in esophageal and gastric cancers using public databases. IHC staining revealed TRK was expressed in 10 out of 254 ESCC and 0 out of 401 GC cases. NGS and FISH analyses were performed for 10 TRK positive ESCC cases, identifying that none of these cases harbored NTRK fusions. In silico analyses further confirmed that NTRK fusions are rarely present in esophageal and gastric cancers. IHC screening for TRK protein is recommended to detect NTRK fusions, but this method may include many false-positives cases based on the sequencing analysis. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

21 pages, 19563 KB  
Article
Trk Signaling Inhibition Reduces cSCC Growth and Invasion in In Vitro and Zebrafish Models and Enhances Photodynamic Therapy Outcome
by Marika Quadri, Natascia Tiso, Marco Iuliano, Paolo Rosa, Roberta Lotti, Giorgio Mangino, Alessandra Marconi and Elisabetta Palazzo
Int. J. Mol. Sci. 2025, 26(21), 10434; https://doi.org/10.3390/ijms262110434 - 27 Oct 2025
Viewed by 594
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, with a rising global incidence. Neurotrophins (NTs) and their receptors, including TrkA and CD271, play key roles in epidermal homeostasis and tumor progression. We showed that CD271 expression and function are [...] Read more.
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, with a rising global incidence. Neurotrophins (NTs) and their receptors, including TrkA and CD271, play key roles in epidermal homeostasis and tumor progression. We showed that CD271 expression and function are critical for low- to high-risk progression of cSCC, while TrkA is highly expressed in poorly differentiated tumors. Although NTRK fusions are recognized as oncogenic drivers, the functional impact of TrkA signaling in cSCC remains underexplored. In this study, we investigated the effects of TrkA inhibition, using both the pan-Trk inhibitor K252a and siRNA-mediated silencing, on cSCC cell lines. We evaluated cell growth and invasion in vitro, using 2D and 3D cultures, and in vivo using zebrafish xenografts. TrkA inhibition significantly reduced tumor growth and invasion, with efficacy comparable to standard chemotherapeutics (5-FU, cisplatin). Additionally, TrkA blockade downregulated mitogenic and invasive markers. Importantly, TrkA inhibition enhanced the response to photodynamic therapy in cSCC spheroids. In zebrafish, Trk-targeted interventions reduced metastatic dissemination. These findings highlight TrkA as a key regulator of cSCC survival and metastasis, suggesting its potential as a therapeutic target either alone or in combination with existing treatments. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Skin Diseases)
Show Figures

Figure 1

11 pages, 3622 KB  
Case Report
Dissociation Between Tumor Response and PTTM Progression During Entrectinib Therapy in NTRK Fusion-Positive Colon Cancer
by Hideki Nagano, Shigekazu Ohyama, Atsushi Sato, Jun Igarashi, Tomoko Yamamoto and Mikiko Kobayashi
Curr. Oncol. 2025, 32(9), 506; https://doi.org/10.3390/curroncol32090506 - 11 Sep 2025
Cited by 1 | Viewed by 804
Abstract
We report a rare case of pulmonary tumor thrombotic microangiopathy (PTTM) in a patient with metastatic neurotrophic tropomyosin receptor kinase (NTRK) fusion-positive transverse colon cancer who exhibited a marked radiologic and biochemical response to entrectinib. Despite significant tumor shrinkage, progressive dyspnea and hypoxemia [...] Read more.
We report a rare case of pulmonary tumor thrombotic microangiopathy (PTTM) in a patient with metastatic neurotrophic tropomyosin receptor kinase (NTRK) fusion-positive transverse colon cancer who exhibited a marked radiologic and biochemical response to entrectinib. Despite significant tumor shrinkage, progressive dyspnea and hypoxemia developed approximately four weeks after therapy initiation. Chest CT revealed diffuse interstitial infiltrates, initially interpreted as drug-induced pneumonitis or infection. Entrectinib was discontinued, but respiratory failure progressed, and the patient died shortly thereafter. Autopsy revealed widespread pulmonary microangiopathy with fibrocellular intimal proliferation and tumor emboli in small pulmonary arteries, consistent with PTTM. Notably, no hematogenous metastases were identified; instead, tumor spread appeared to occur via an atypical lymphatic route through the thoracic duct. The tumor exhibited microsatellite stability and a modest mutation burden, suggesting that lymphatic dissemination and microvascular pathology may progress independently of these genomic features. This case underscores a critical dissociation between oncologic response and vascular complications, indicating that tropomyosin receptor kinase (TRK) inhibitor monotherapy may be insufficient to prevent PTTM. Comprehensive management may require concurrent strategies targeting the pulmonary microvasculature, including antiangiogenic therapy and modulation of cytokine and growth factor signaling. Full article
(This article belongs to the Section Surgical Oncology)
Show Figures

Figure 1

21 pages, 4617 KB  
Article
Apelin-13-Mediated Upregulation of METTL3 Ameliorates Alzheimer’s Disease via Inhibiting Neuroinflammation Through m6A-Dependent Regulation of lncRNA BDNF-AS
by Li Han, Siwen Wei, Rong Wang, Yiran Liu, Yi Zhong, Juan Fu, Huaiqing Luo and Meihua Bao
Biomolecules 2025, 15(8), 1188; https://doi.org/10.3390/biom15081188 - 18 Aug 2025
Cited by 14 | Viewed by 1582
Abstract
Apelin-13, a neuropeptide, has been recognized for its neuroprotective properties. Our previous study found apelin-13 improves cognitive function in Alzheimer’s disease (AD) rats by inhibiting neuroinflammation through upregulation of BDNF/TrkB signaling pathway. However, the precise mechanism by which apelin-13 modulates BDNF remains unclear. [...] Read more.
Apelin-13, a neuropeptide, has been recognized for its neuroprotective properties. Our previous study found apelin-13 improves cognitive function in Alzheimer’s disease (AD) rats by inhibiting neuroinflammation through upregulation of BDNF/TrkB signaling pathway. However, the precise mechanism by which apelin-13 modulates BDNF remains unclear. Thus, this study aimed to unravel the specific regulatory mechanism by which apelin-13 regulates BDNF. Bilaterally intracerebroventricular injection with Aβ25–35 was used to establish an in vivo model of AD. For the generation of METTL3 KO rats, the Crispr/Cas9 method was applied. PC12 cells were treated with Aβ25–35 to establish an in vitro model of AD. The cognitive function of the rats was evaluated with the Morris water maze and the novel object recognition test. Hippocampal damage and neuron loss were detected through H&E and immunofluorescent staining. METTL3, BDNF, TrkB, and p-TrkB were examined by Western blotting. Inflammation-related cytokines, IBA1, GFAP, IL-1β, and TNF-α were detected by Western blotting, immunofluorescent staining, ELISA, and qRT-PCR. m6A modification level was evaluated through MeRIP. A flow cytometer was applied to evaluate cell apoptosis. Cell proliferation was examined using MTT. m6A methylation inhibitor DAA reverses the improvement effect of apelin-13 on cognitive function, hippocampal nerve damage, neuron loss, and neuroinflammation in Aβ25–35-treated rats. Further results showed that apelin-13 upregulated METTL3, BDNF-AS m6A methylation, inhibited BDNF-AS expression, and subsequently upregulated BDNF/TrkB signaling pathway and reduced neuroinflammation in in vivo and in vitro AD models in a dose-dependent manner. Knockdown of METTL3 abolished apelin-13’s improvement effect in AD rats. Apelin-13-mediated upregulation of METTL3 enhances neuroinflammation inhibition and BDNF/TrkB signaling pathway via m6A-dependent downregulation of lncRNA BDNF-AS, thus ameliorating AD. Our study offers novel insights into the pathogenesis of AD and identifies potential drug targets for its treatment. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 7293 KB  
Article
Components of Mineralocorticoid Receptor System in Human DRG Neurons Co-Expressing Pain-Signaling Molecules: Implications for Nociception
by Shaaban A. Mousa, Xueqi Hong, Elsayed Y. Metwally, Sascha Tafelski, Jan David Wandrey, Jörg Piontek, Sascha Treskatsch, Michael Schäfer and Mohammed Shaqura
Cells 2025, 14(15), 1142; https://doi.org/10.3390/cells14151142 - 24 Jul 2025
Viewed by 1341
Abstract
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR [...] Read more.
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR activation in rat DRG neurons by its endogenous ligand, aldosterone. This study aimed to determine whether MR, its protective enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), its endogenous ligand aldosterone, and the aldosterone-synthesizing enzyme CYP11B2 are expressed in human DRG neurons and whether they colocalize with key pain-associated signaling molecules as potential targets for genomic regulation. To this end, we performed mRNA transcript profiling and immunofluorescence confocal microscopy on human and rat DRG tissues. We detected mRNA transcripts for MR, 11β-HSD2, and CYP11B2 in human DRG, alongside transcripts for key thermosensitive and nociceptive markers such as TRPV1, the TTX-resistant sodium channel Nav1.8, and the neuropeptides CGRP and substance P (Tac1). Immunofluorescence analysis revealed substantial colocalization of MR with 11β-HSD2 and CGRP, a marker of unmyelinated C-fibers and thinly myelinated Aδ-fibers, in human DRG. MR immunoreactivity was primarily restricted to small- and medium-diameter neurons, with lower expression in large neurons (>70 µm). Similarly, aldosterone colocalized with CYP11B2 and MR with nociceptive markers including TRPV1, Nav1.8, and TrkA in human DRG. Importantly, functional studies demonstrated that prolonged intrathecal inhibition of aldosterone synthesis within rat DRG neurons, using an aldosterone synthase inhibitor significantly downregulated pain-associated molecules and led to sustained attenuation of inflammation-induced hyperalgesia. Together, these findings identify a conserved peripheral MR signaling axis in humans and highlight its potential as a novel target for pain modulation therapies. Full article
(This article belongs to the Section Cellular Neuroscience)
Show Figures

Figure 1

14 pages, 1101 KB  
Systematic Review
TRK Inhibitors in Adult and Pediatric High-Grade Gliomas: A Systematic Review and Individual Participant Data Meta-Analysis
by Massimiliano Domenico Rizzaro, Claudia Fanizzi, Giorgio Fiore, Luigi Gianmaria Remore, Antonella Maria Ampollini, Mauro Pluderi, Manuela Caroli and Marco Locatelli
Cancers 2025, 17(13), 2089; https://doi.org/10.3390/cancers17132089 - 23 Jun 2025
Cited by 1 | Viewed by 1792
Abstract
Background: High-grade glioma (HGG) is the most common primary malignant brain tumor, with peak incidence in the fifth and sixth decades of life. Although HGG is rare in children, the prognosis remains poor, with a median overall survival (OS) of less than two [...] Read more.
Background: High-grade glioma (HGG) is the most common primary malignant brain tumor, with peak incidence in the fifth and sixth decades of life. Although HGG is rare in children, the prognosis remains poor, with a median overall survival (OS) of less than two years. Recently, TRK inhibitors have been approved for the treatment of tumors harboring NTRK gene fusions. In this review, we analyzed data from early clinical trials investigating the use of these agents in patients with HGG. Methods: A systematic literature search was performed in the PubMed database. Studies involving patients with HGG treated with TRK inhibitors were included. We analyzed progression-free survival (PFS), 24-week disease control rate, and complete or partial radiological responses according to the Response Assessment in Neuro-Oncology (RANO) criteria. Results: Sixteen studies comprising 55 patients with HGG harboring NTRK gene fusions (19 adults and 36 children) were included. A statistically significant difference in PFS was observed between pediatric and adult patients treated with TRK inhibitors (17 vs. 8.5 months; p < 0.001). Pediatric patients also exhibited a higher rate of complete or partial radiological response compared to adults (94% vs. 57%). Discussion: Although the available evidence on TRK inhibitors in HGG is limited, the findings of this review highlight a potentially promising role for these agents, particularly in the treatment of pediatric HGGs. Full article
Show Figures

Figure 1

22 pages, 11258 KB  
Article
High-Risk Neuroblastoma Stage 4 (NBS4): Developing a Medicinal Chemistry Multi-Target Drug Approach
by Amgad Gerges and Una Canning
Molecules 2025, 30(10), 2211; https://doi.org/10.3390/molecules30102211 - 19 May 2025
Viewed by 1303
Abstract
Childhood neuroblastoma (NB) is a malignant tumour that is a member of a class of embryonic tumours that have their origins in sympathoadrenal progenitor cells. There are five stages in the clinical NB staging system: 1, 2A, 2B, 3, 4S, and 4. For [...] Read more.
Childhood neuroblastoma (NB) is a malignant tumour that is a member of a class of embryonic tumours that have their origins in sympathoadrenal progenitor cells. There are five stages in the clinical NB staging system: 1, 2A, 2B, 3, 4S, and 4. For those diagnosed with stage 4 neuroblastoma (NBS4), the treatment options are limited with a survival rate of between 40 and 50%. Since 1975, more than 15 targets have been identified in the search for a treatment for high-risk NBS4. This article is concerned with the search for a multi-target drug treatment for high-risk NBS4 and focuses on four possible treatment targets that research has identified as having a role in the development of NBS4 and includes the inhibitors Histone Deacetylase (HDAC), Bromodomain (BRD), Hedgehog (HH), and Tropomyosin Kinase (TRK). Computer-aided drug design and molecular modelling have greatly assisted drug discovery in medicinal chemistry. Computational methods such as molecular docking, homology modelling, molecular dynamics, and quantitative structure–activity relationships (QSAR) are frequently used as part of the process for finding new therapeutic drug targets. Relying on these techniques, the authors describe a medicinal chemistry strategy that successfully identified eight compounds (inhibitors) that were thought to be potential inhibitors for each of the four targets listed above. Results revealed that all four targets BRD, HDAC, HH and TRK receptors binding sites share similar amino acid sequencing that ranges from 80 to 100%, offering the possibility of further testing for multi-target drug use. Two additional targets were also tested as part of this work, Retinoic Acid (RA) and c-Src (Csk), which showed similarity (of the binding pocket) across their receptors of 80–100% but lower than 80% for the other four targets. The work for these two targets is the subject of a paper currently in progress. Full article
Show Figures

Graphical abstract

23 pages, 710 KB  
Review
Precision Medicine for Pediatric Glioma and NF1-Associated Tumors: The Role of Small Molecule Inhibitors
by Samuele Renzi, Julie Bennett, Nirav Thacker and Chantel Cacciotti
Curr. Oncol. 2025, 32(5), 280; https://doi.org/10.3390/curroncol32050280 - 15 May 2025
Cited by 3 | Viewed by 4420
Abstract
Pediatric gliomas encompass the most common brain tumor in children and are subdivided into pediatric low-grade gliomas (pLGGs) and pediatric high-grade gliomas (pHGGs). The era of molecular diagnosis has shifted the treatment paradigms and management of these patients. RAS/MAPK pathway alterations serve as [...] Read more.
Pediatric gliomas encompass the most common brain tumor in children and are subdivided into pediatric low-grade gliomas (pLGGs) and pediatric high-grade gliomas (pHGGs). The era of molecular diagnosis has shifted the treatment paradigms and management of these patients. RAS/MAPK pathway alterations serve as the driver in the majority of pLGGs, a subset of pHGG and NF1-related plexiform neurofibromas (PNs). The role of small molecule inhibitors in the treatment of these tumors has evolved in the past decade, facilitated through multiple clinical trials and moving into earlier stages of treatment. Although these developments hold promise, questions remain regarding targeted therapy, the long-term toxicities, the duration of treatment and the potential effects on the natural history of the tumor behavior. Full article
(This article belongs to the Special Issue Clinical Outcomes and New Treatments in Pediatric Brain Tumors)
Show Figures

Figure 1

25 pages, 1542 KB  
Review
Advances in Targeted and Systemic Therapy for Salivary Gland Carcinomas: Current Options and Future Directions
by Sushanth Sreenivasan, Rahim A. Jiwani, Richard White, Veli Bakalov, Ryan Moll, Joseph Liput and Larisa Greenberg
Curr. Oncol. 2025, 32(4), 232; https://doi.org/10.3390/curroncol32040232 - 16 Apr 2025
Cited by 2 | Viewed by 5578
Abstract
Salivary gland carcinomas (SGCs) represent a rare and heterogeneous group of malignancies accounting for 3–6% of all head and neck cancers. While surgical resection and radiotherapy remain the standard for locoregional control, systemic treatment is indicated for recurrent or metastatic disease. Advances in [...] Read more.
Salivary gland carcinomas (SGCs) represent a rare and heterogeneous group of malignancies accounting for 3–6% of all head and neck cancers. While surgical resection and radiotherapy remain the standard for locoregional control, systemic treatment is indicated for recurrent or metastatic disease. Advances in molecular profiling have identified actionable targets such as NTRK gene fusions, HER2, immune checkpoint regulators, androgen receptors, and RET receptors. These have facilitated the development of targeted therapies, including TRK inhibitors, HER2-directed agents, and androgen receptor modulators, as well as emerging combinations of immunotherapy and chemotherapy. Despite these advancements, challenges such as resistance mechanisms and limited therapeutic efficacy persist. Overall response rates remain relatively low across most systemic therapies, reflecting a persistent unmet clinical need. This review discusses the current landscape of treatment options and explores promising clinical trials and future directions to enhance outcomes for patients with SGCs. Full article
(This article belongs to the Section Head and Neck Oncology)
Show Figures

Figure 1

10 pages, 1418 KB  
Communication
Cellular Receptor Tyrosine Kinase Signaling Plays Important Roles in SARS-CoV-2 Infection
by Shania Sanchez, Brigitte H. Flannery, Hannah Murphy, Qinfeng Huang, Hinh Ly and Yuying Liang
Pathogens 2025, 14(4), 333; https://doi.org/10.3390/pathogens14040333 - 31 Mar 2025
Cited by 3 | Viewed by 2626
Abstract
Current antiviral treatments often target specific viral components, which can lead to the rapid emergence of drug-resistant mutants. Targeting host signaling pathways, including their associated cellular factors, that are important for virus replication is a novel approach toward the development of next-generation antivirals [...] Read more.
Current antiviral treatments often target specific viral components, which can lead to the rapid emergence of drug-resistant mutants. Targeting host signaling pathways, including their associated cellular factors, that are important for virus replication is a novel approach toward the development of next-generation antivirals to overcome drug resistance. Various cellular receptor tyrosine kinases (RTKs) have previously been shown to play important roles in mediating viral replication including coronaviruses. In this study, we examined the roles of RTKs in SARS-CoV-2 replication in two cell lines, A549-ACE2 (human lung epithelial cells) and Vero-E6 (African Green Monkey kidney cell), via chemical inhibitors. We showed that the HER2 inhibitor Lapatinib significantly reduced viral replication in both cell lines, the TrkA inhibitor GW441756 was effective only in A549-ACE2 cells, while the EGFR inhibitor Gefitinib had little effect in either cell line. Lapatinib and GW441756 exhibited a high therapeutic index (CC50/EC50 > 10) in A549-ACE2 cells. Time-of-addition experiments indicated that Lapatinib may inhibit the early entry step, whereas GW441756 can affect post-entry steps of the viral life cycle. These findings suggest the important roles of HER2 and TrkA signaling in SARS-CoV-2 infection in human lung epithelial cells and support further investigation of RTK inhibitors as potential COVID-19 treatments. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

25 pages, 1633 KB  
Review
Salivary Gland Cancers in the Era of Molecular Analysis: The Role of Tissue and Liquid Biomarkers
by Elisabetta Broseghini, Francesca Carosi, Mirea Berti, Samuele Compagno, Anna Ghelardini, Matteo Fermi, Giulia Querzoli and Daria Maria Filippini
Cancers 2025, 17(4), 660; https://doi.org/10.3390/cancers17040660 - 15 Feb 2025
Cited by 5 | Viewed by 5717
Abstract
Background: Salivary gland cancers (SGCs) are a rare and heterogeneous group of malignancies, accounting for approximately 5% of head and neck cancers. Despite their rarity, advances in molecular profiling have revealed a variety of genetic and molecular pathways, many of which are [...] Read more.
Background: Salivary gland cancers (SGCs) are a rare and heterogeneous group of malignancies, accounting for approximately 5% of head and neck cancers. Despite their rarity, advances in molecular profiling have revealed a variety of genetic and molecular pathways, many of which are potentially actionable with targeted therapies. Methods: We reviewed the current literature involving the molecular landscape of SGCs, encompassing the diagnostic and prognostic value of tissue and liquid biomarkers and the potential therapeutic targets across various histological subtypes. Results: Our review highlights key molecular diagnostic findings such as the CRTC1-MAML2 fusion in mucoepidermoid carcinoma and MYB-NFIB rearrangements in adenoid cystic carcinoma, but also targetable alterations such as HER2 and AR positivity in salivary duct carcinoma and ETV6-NTRK3 fusion in secretory carcinoma. Liquid biopsy (both blood- or salivary-based), including circulating tumor DNA, circulating tumor cells, and miRNAs, offers novel, noninvasive approaches for disease monitoring and personalized treatment. Emerging therapies such as HER2 inhibitors, androgen deprivation therapy, and TRK inhibitors underscore the shift towards precision oncology in managing these malignancies. Conclusions: Despite promising advances, challenges remain due to the rarity and phenotypic heterogeneity of SGCs, emphasizing the need for molecularly stratified clinical trials. This review presents an overview of tissue and liquid biomarkers, focusing on molecular targets and therapeutic innovations that lay the foundation for improved diagnostic and treatment strategies for SGCs. Full article
(This article belongs to the Special Issue Advances in Salivary Gland Carcinoma: 2nd Edition)
Show Figures

Figure 1

23 pages, 1642 KB  
Review
NGF in Neuropathic Pain: Understanding Its Role and Therapeutic Opportunities
by Mario García-Domínguez
Curr. Issues Mol. Biol. 2025, 47(2), 93; https://doi.org/10.3390/cimb47020093 - 31 Jan 2025
Cited by 10 | Viewed by 7407
Abstract
Nerve growth factor (NGF) is one of the essential components that have been implicated in the pathophysiology of neuropathic pain, a condition that develops following nerve injury or dysfunction. This neurotrophin is critical for the survival and maintenance of sensory neurons, and its [...] Read more.
Nerve growth factor (NGF) is one of the essential components that have been implicated in the pathophysiology of neuropathic pain, a condition that develops following nerve injury or dysfunction. This neurotrophin is critical for the survival and maintenance of sensory neurons, and its dysregulation has been implicated in the sensitization of pain pathways. NGF interacts with its receptor TrkA and p75NTR to activate intracellular signaling pathways associated with nociception and the emergence of allodynia and hyperalgesia. Therapeutic approaches employing neutralizing antibodies and molecule inhibitors have been highly effective at both preclinical and clinical levels, hence giving hope again for the use of NGF as an important biomarker and therapeutic target in the management of neuropathic pain. By exploiting the unique properties of NGF and its interactions within the nervous system, new therapeutic modalities could be designed to enhance efficacy while minimizing side effects. In conclusion, taking advantage of the multifaceted dynamics of NGF could provide effective pain management therapies to finally respond to the unmet needs of patients experiencing neuropathic pain. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 3890 KB  
Article
A TaqMan-Based qRT-PCR Assay for Accurate Evaluation of the Oncogenic TrkAIII Splice Variant in Tumor cDNAs
by Maddalena Sbaffone, Antonietta Rosella Farina, Ilaria Martelli, Eugenio Pontieri, Stefano Guadagni, Andrew Reay Mackay, Lucia Cappabianca and Veronica Zelli
Cancers 2025, 17(3), 471; https://doi.org/10.3390/cancers17030471 - 30 Jan 2025
Cited by 1 | Viewed by 1929
Abstract
Background: Alternative NTRK1/TrkA splicing resulting in TrkAIII expression, originally discovered in advanced-stage metastatic neuroblastomas, is also pronounced in prostate, medullary thyroid, glioblastoma multiforme, MCPyV-positive Merkel cell, cutaneous malignant melanoma, and pituitary neuroendocrine tumor subsets. In tumor models, TrkAIII exhibits actionable oncogenic activity equivalent [...] Read more.
Background: Alternative NTRK1/TrkA splicing resulting in TrkAIII expression, originally discovered in advanced-stage metastatic neuroblastomas, is also pronounced in prostate, medullary thyroid, glioblastoma multiforme, MCPyV-positive Merkel cell, cutaneous malignant melanoma, and pituitary neuroendocrine tumor subsets. In tumor models, TrkAIII exhibits actionable oncogenic activity equivalent to the TrkT3-fused oncogene, and in tumor cell lines, alternative TrkAIII splicing is promoted by hypoxia, nutrient deprivation, endoplasmic reticulum stress, and SV40 large T antigen, implicating tumor microenvironmental conditions and oncogenic polyoma viruses in tumor-associated TrkAIII expression. Collectively, these observations characterize TrkAIII as a potentially frequent, actionable oncogenic alternative to TrkA gene fusion in different tumor types. Currently, therapeutic approval for efficacious Trk inhibitors is restricted to Trk-fused gene positive tumors and not for tumors potentially driven by TrkAIII. Methods: With the therapeutically relevant aim of improving the identification of tumors potentially driven by TrkAIII, we have developed a TaqMan-based qRT-PCR assay for evaluating TrkAIII expression in tumor cDNAs. Results: This assay, validated using gel-purified fs-TrkA and TrkAIII cDNAs alone and in complex cDNA mixtures, employs primers and probes designed from fs-TrkA and TrkAIII sequences, with specificity provided by a TaqMan probe spanning the TrkAIII exon 5–8 splice junction. It is highly efficient, reproducible, and specific and can detect as few as 10 TrkAIII copies in complex RNAs extracted from either fresh or FFPE tumor tissues. Conclusions: Inclusion of this assay into precision oncology algorithms, when paired with fs-TrkA qRT-PCR and TrkA immune histochemistry, will make it easier to identify patients with therapy-resistant, advanced-stage metastatic Trk-fused gene-negative tumors potentially driven by TrkAIII, for whom approval of third-line effective Trk inhibitors could be extended. Full article
Show Figures

Figure 1

13 pages, 3630 KB  
Article
NGF-TrkA Axis Enhances PDGF-C-Mediated Angiogenesis in Osteosarcoma via miR-29b-3p Suppression: A Potential Therapeutic Strategy Using Larotrectinib
by Sheng-Mou Hou, Ching-Yuan Cheng, Wei-Li Chen, En-Ming Chang and Chih-Yang Lin
Life 2025, 15(1), 99; https://doi.org/10.3390/life15010099 - 15 Jan 2025
Cited by 3 | Viewed by 1985
Abstract
Angiogenesis plays a critical role in osteosarcoma (OS) growth and metastasis. While nerve growth factor (NGF) is implicated in cancer progression, its role in OS angiogenesis remains unclear. This study explored NGF’s effects on angiogenesis and the underlying molecular mechanisms. Analysis of GEO [...] Read more.
Angiogenesis plays a critical role in osteosarcoma (OS) growth and metastasis. While nerve growth factor (NGF) is implicated in cancer progression, its role in OS angiogenesis remains unclear. This study explored NGF’s effects on angiogenesis and the underlying molecular mechanisms. Analysis of GEO (GSE16088) data identified five angiogenesis markers significantly upregulated in OS tissues. In vitro experiments demonstrated that NGF enhanced HUVEC tube formation by upregulating platelet-derived growth factor C (PDGF-C) expression and suppressing microRNA-29b-3p (miR-29b-3p). The results of tube formation assays confirmed that NGF stimulation significantly increased the angiogenic capacity of MG63/NGF cells compared to MG63 cells. Furthermore, larotrectinib, a TrkA inhibitor, effectively reduced the migration and invasion abilities of MG63/NGF cells in a dose-dependent manner. These findings suggest that the NGF-TrkA axis promotes PDGF-C-mediated angiogenesis by inhibiting miR-29b-3p signaling. Larotrectinib could serve as a potential therapeutic agent targeting NGF-mediated angiogenesis in OS, offering a promising avenue for treatment. Full article
(This article belongs to the Special Issue Bone Cancer: From Molecular Mechanism to Treatment)
Show Figures

Figure 1

Back to TopTop