Precision Medicine for Pediatric Glioma and NF1-Associated Tumors: The Role of Small Molecule Inhibitors
Abstract
:1. Introduction
2. Low-Grade Glioma
2.1. MEK Inhibitors
2.2. BRAF Inhibitors
2.3. Next-Generation RAF Inhibitors
2.4. FGFR Inhibitors
2.5. TRK Inhibitors
2.6. m-TOR Inhibition
3. Tuberous Sclerosis
m-TOR Inhibition
4. High-Grade Glioma
4.1. MEK Inhibitors
4.2. BRAF Inhibitors
4.3. m-TOR Inhibition
4.4. CDK4/6 Inhibition
5. Neurofibromatosis Type 1 and Plexiform Neurofibromas
5.1. MEK Inhibitors
5.2. Multiple Tyrosine Kinase Inhibitor
6. Toxicity
6.1. MEK and BRAF Inhibitors
6.2. Pan-RAF Inhibitors
6.3. FGFR Inhibitors
6.4. TRK Inhibitors
6.5. mTOR Inhibitor
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Gittleman, H.; Liao, P.; Vecchione-Koval, T.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol. 2017, 19, v1–v88. [Google Scholar] [CrossRef] [PubMed]
- Merchant, T.E.; Conklin, H.M.; Wu, S.; Lustig, R.H.; Xiong, X. Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: Prospective evaluation of cognitive, endocrine, and hearing deficits. J. Clin. Oncol. 2009, 27, 3691–3697. [Google Scholar] [CrossRef]
- Packer, R.J.; Lange, B.; Ater, J.; Nicholson, H.S.; Allen, J.; Walker, R.; Prados, M.; Jakacki, R.; Reaman, G.; Needles, M.N. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J. Clin. Oncol. 1993, 11, 850–856. [Google Scholar] [CrossRef]
- Ryall, S.; Zapotocky, M.; Fukuoka, K.; Nobre, L.; Guerreiro Stucklin, A.; Bennett, J.; Siddaway, R.; Li, C.; Pajovic, S.; Arnoldo, A.; et al. Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell 2020, 37, 569–583.E5. [Google Scholar] [CrossRef] [PubMed]
- Ryall, S.; Tabori, U.; Hawkins, C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol. Commun. 2020, 8, 30. [Google Scholar] [CrossRef]
- Fangusaro, J.; Onar-Thomas, A.; Young Poussaint, T.; Wu, S.; Ligon, A.H.; Lindeman, N.; Banerjee, A.; Packer, R.J.; Kilburn, L.B.; Goldman, S.; et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: A multicentre, phase 2 trial. Lancet Oncol. 2019, 20, 1011–1022. [Google Scholar] [CrossRef]
- Fangusaro, J.; Onar-Thomas, A.; Poussaint, T.Y.; Wu, S.; Ligon, A.H.; Lindeman, N.; Campagne, O.; Banerjee, A.; Gururangan, S.; Kilburn, L.B.; et al. A phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: A Pediatric Brain Tumor Consortium study. Neuro Oncol. 2021, 23, 1777–1788. [Google Scholar] [CrossRef]
- Bouffet, E.; Geoerger, B.; Moertel, C.; Whitlock, J.A.; Aerts, I.; Hargrave, D.; Osterloh, L.; Tan, E.; Choi, J.; Russo, M.; et al. Efficacy and Safety of Trametinib Monotherapy or in Combination With Dabrafenib in Pediatric. J. Clin. Oncol. 2023, 41, 664–674. [Google Scholar] [CrossRef]
- Bouffet, E.; Hansford, J.R.; Garrè, M.L.; Hara, J.; Plant-Fox, A.; Aerts, I.; Locatelli, F.; van der Lugt, J.; Papusha, L.; Sahm, F.; et al. Dabrafenib plus Trametinib in Pediatric Glioma with BRAF V600 Mutations. N. Engl. J. Med. 2023, 389, 1108–1120. [Google Scholar] [CrossRef]
- Perreault, S.; Larouche, V.; Tabori, U.; Hawkin, C.; Lippé, S.; Ellezam, B.; Décarie, J.C.; Théoret, Y.; Métras, M.; Sultan, S.; et al. A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer 2019, 19, 1250. [Google Scholar] [CrossRef] [PubMed]
- Robison, N.; Pauly, J.; Malvar, J.; Gardner, S.; Allen, J.; Margol, A.; MacDonald, T.; Bendel, A.; Kilburn, L.; Cluster, A.; et al. LTBK-04. LATE BREAKING ABSTRACT: MEK162 (binimetinib) in children with progressive or recurrent low-grade glioma: A multi-institutional phase II and target validation study. Neuro Oncol. 2022, 24, i191–i192. [Google Scholar] [CrossRef]
- Trippett, T.; Toledano, H.; Campbell Hewson, Q.; Verschuur, A.; Langevin, A.M.; Aerts, I.; Howell, L.; Gallego, S.; Rossig, C.; Smith, A.; et al. Cobimetinib in Pediatric and Young Adult Patients with Relapsed or Refractory Solid Tumors (iMATRIX-cobi): A Multicenter, Phase I/II Study. Target. Oncol. 2022, 17, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Hargrave, D.R.; Bouffet, E.; Tabori, U.; Broniscer, A.; Cohen, K.J.; Hansford, J.R.; Geoerger, B.; Hingorani, P.; Dunkel, I.J.; Russo, M.W.; et al. Efficacy and Safety of Dabrafenib in Pediatric Patients with BRAF V600 Mutation–Positive Relapsed or Refractory Low-Grade Glioma: Results from a Phase I/IIa Study. Clin. Cancer Res. 2019, 25, 7303–7311. [Google Scholar] [CrossRef]
- Nicolaides, T.; Nazemi, K.J.; Crawford, J.; Kilburn, L.; Minturn, J.; Gajjar, A.; Gauvain, K.; Leary, S.; Dhall, G.; Aboian, M.; et al. Phase I study of vemurafenib in children with recurrent or progressive BRAF. Oncotarget 2020, 11, 1942–1952. [Google Scholar] [CrossRef] [PubMed]
- Del Bufalo, F.; Ceglie, G.; Cacchione, A.; Alessi, I.; Colafati, G.S.; Carai, A.; Diomedi-Camassei, F.; De Billy, E.; Agolini, E.; Mastronuzzi, A.; et al. V600E Inhibitor (Vemurafenib) for BRAF V600E Mutated Low Grade Gliomas. Front. Oncol. 2018, 8, 526. [Google Scholar] [CrossRef]
- Nobre, L.; Zapotocky, M.; Ramaswamy, V.; Ryall, S.; Bennett, J.; Alderete, D.; Balaguer Guill, J.; Baroni, L.; Bartels, U.; Bavle, A.; et al. Outcomes of BRAF V600E Pediatric Gliomas Treated With Targeted BRAF Inhibition. JCO Precis. Oncol. 2020, 4, 561–571. [Google Scholar] [CrossRef]
- Kilburn, L.B.; Khuong-Quang, D.A.; Hansford, J.R.; Landi, D.; van der Lugt, J.; Leary, S.E.S.; Driever, P.H.; Bailey, S.; Perreault, S.; McCowage, G.; et al. The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: The phase 2 FIREFLY-1 trial. Nat. Med. 2024, 30, 207–217. [Google Scholar] [CrossRef]
- van Tilburg, C.M.; Kilburn, L.B.; Perreault, S.; Schmidt, R.; Azizi, A.A.; Cruz-Martínez, O.; Zápotocký, M.; Scheinemann, K.; Meeteren, A.Y.N.S.; Sehested, A.; et al. LOGGIC/FIREFLY-2: A phase 3, randomized trial of tovorafenib vs. chemotherapy in pediatric and young adult patients with newly diagnosed low-grade glioma harboring an activating RAF alteration. BMC Cancer 2024, 24, 147. [Google Scholar] [CrossRef]
- de la Fuente, M.; Butowski, N.A.; Taylor, J.; Yaeger, R.; Tsai, F.Y.C.; Janku, F.; Allen, C.E.; Ammakkanavar, N.; Michelson, G.; Jiang, P.; et al. TRLS-02. SAFETY AND EFFICACY OF BRAF INHIBITOR PLIXORAFENIB (FORE8394; PLX8394) IN CHILDREN AND ADULTS WITH RECURRENT, BRAF-ALTERED PRIMARY CENTRAL NERVOUS SYSTEM TUMORS (PCNST). Neuro Oncol. 2024, 26. [Google Scholar] [CrossRef]
- Karajannis, M.A.; Legault, G.; Fisher, M.J.; Milla, S.S.; Cohen, K.J.; Wisoff, J.H.; Harter, D.H.; Goldberg, J.D.; Hochman, T.; Merkelson, A.; et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol. 2014, 16, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.D.; Yao, X.; London, W.B.; Kao, P.C.; Gore, L.; Hunger, S.; Geyer, R.; Cohen, K.J.; Allen, J.C.; Katzenstein, H.M.; et al. A POETIC Phase II study of continuous oral everolimus in recurrent, radiographically progressive pediatric low-grade glioma. Pediatr. Blood Cancer 2021, 68, e28787. [Google Scholar] [CrossRef]
- Lamoureux, A.A.; Fisher, M.J.; Lemelle, L.; Pfaff, E.; Amir-Yazdani, P.; Kramm, C.; De Wilde, B.; Kazanowska, B.; Hutter, C.; Pfister, S.M.; et al. Clinical characteristics and outcome of central nervous system tumors harboring NTRK gene fusions. Clin. Cancer Res. 2025, 31, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.V.; Robinson, G.W.; Gauvain, K.; Basu, E.M.; Macy, M.E.; Maese, L.; Whipple, N.S.; Sabnis, A.J.; Foster, J.H.; Shusterman, S.; et al. Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1, or ALK aberrations (STARTRK-NG). Neuro Oncol. 2022, 24, 1776–1789. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Chou, A.J.; Williams, P.M.; Roy-Chowdhuri, S.; Patton, D.R.; Coffey, B.D.; Reid, J.M.; Piao, J.; Saguilig, L.; Alonzo, T.A.; et al. Erdafitinb in patients with FGFR-altered tumors: Results from the NCI-COG Pediatric MATCH trial arm B (APEC1621B). J. Clin. Oncol. 2023, 41, 10007. [Google Scholar] [CrossRef]
- Pant, S.; Schuler, M.; Iyer, G.; Witt, O.; Doi, T.; Qin, S.; Tabernero, J.; Reardon, D.A.; Massard, C.; Minchom, A.; et al. Erdafitinib in patients with advanced solid tumours with FGFR alterations (RAGNAR): An international, single-arm, phase 2 study. Lancet Oncol. 2023, 24, 925–935. [Google Scholar] [CrossRef]
- Doz, F.; van Tilburg, C.M.; Geoerger, B.; Højgaard, M.; Øra, I.; Boni, V.; Capra, M.; Chisholm, J.; Chung, H.C.; DuBois, S.G.; et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol. 2022, 24, 997–1007. [Google Scholar] [CrossRef]
- Banerjee, A.; Jakacki, R.I.; Onar-Thomas, A.; Wu, S.; Nicolaides, T.; Young Poussaint, T.; Fangusaro, J.; Phillips, J.; Perry, A.; Turner, D.; et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: A Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol. 2017, 19, 1135–1144. [Google Scholar] [CrossRef]
- Viskochil, D.; Wysocki, M.; Learoyd, M.; Sun, P.; So, K.; Evans, A.; Lai, F.; Hernàndez, H.S. Effect of food on selumetinib pharmacokinetics and gastrointestinal tolerability in adolescents with neurofibromatosis type 1-related plexiform neurofibromas. Neuro Oncol. Adv. 2024, 6, vdae036. [Google Scholar] [CrossRef]
- Robert, C.; Grob, J.J.; Stroyakovskiy, D.; Karaszewska, B.; Hauschild, A.; Levchenko, E.; Chiarion Sileni, V.; Schachter, J.; Garbe, C.; Bondarenko, I.; et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 2019, 381, 626–636. [Google Scholar] [CrossRef]
- Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M.; Zhang, P.; Mookerjee, B.; et al. Dabrafenib plus trametinib in patients with previously untreated BRAF. Lancet Oncol. 2017, 18, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients with Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Hashemi, S.M.S.; Mazieres, J.; Kim, T.M.; Quoix, E.; Souquet, P.J.; Barlesi, F.; Baik, C.; et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients with BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 2022, 17, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.C.; Cabanillas, M.E.; Boran, A.; et al. Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: Updated analysis from the phase II ROAR basket study. Ann. Oncol. 2022, 33, 406–415. [Google Scholar] [CrossRef]
- Tran, B.; Cohen, M.S. The discovery and development of binimetinib for the treatment of melanoma. Expert Opin. Drug Discov. 2020, 15, 745–754. [Google Scholar] [CrossRef]
- Robinson, G.W.; Vinitsky, A.; Bag, A.K.; Chiang, J.; Li, Q.; Lin, T.; Hoehn, M.E.; Edwards, A.; Storment, D.; Singh, A.; et al. LGG-53. RESULTS FROM THE PHASE 1 AND PHASE 1 EXPANSION COHORTS OF SJ901: A PHASE 1/2 TRIAL OF SINGLE-AGENT MIRDAMETINIB (PD-0325901) IN CHILDREN, ADOLESCENTS, AND YOUNG ADULTS WITH LOW-GRADE GLIOMA. Neuro Oncol. 2024, 26. [Google Scholar] [CrossRef]
- Kieran, M.W.; Geoerger, B.; Dunkel, I.J.; Broniscer, A.; Hargrave, D.; Hingorani, P.; Aerts, I.; Bertozzi, A.I.; Cohen, K.J.; Hummel, T.R.; et al. A Phase I and Pharmacokinetic Study of Oral Dabrafenib in Children and Adolescent Patients with Recurrent or Refractory. Clin. Cancer Res. 2019, 25, 7294–7302. [Google Scholar] [CrossRef]
- Erker, C.; Vanan, M.I.; Larouche, V.; Nobre, L.; Cacciotti, C.; Vairy, S.; Zelcer, S.; Fleming, A.; Bouffet, E.; Jabado, N.; et al. Canadian Consensus for Treatment of BRAF. Curr. Oncol. 2024, 31, 4022–4029. [Google Scholar] [CrossRef]
- O’Hare, P.; Cooney, T.; de Blank, P.; Gutmann, D.H.; Kieran, M.; Milde, T.; Fangusaro, J.; Fisher, M.; Avula, S.; Packer, R.; et al. Resistance, rebound, and recurrence regrowth patterns in pediatric low-grade glioma treated by MAPK inhibition: A modified Delphi approach to build international consensus-based definitions-International Pediatric Low-Grade Glioma Coalition. Neuro Oncol. 2024, 26, 1357–1366. [Google Scholar] [CrossRef]
- Witt, O.; Sait, S.F.; Diez, B.D.; Cardoso, A.; Reardon, D.A.; Welsh, L.; Shih, K.C.; Baldini, C.; Massard, C.; Loriot, Y.; et al. Efficacy and safety of erdafitinib in pediatric patients with advanced solid tumors and FGFR alterations in the phase 2 RAGNAR trial. J. Clin. Oncol. 2024, 42, 10002. [Google Scholar] [CrossRef]
- Spanggaard, I.; Matrana, M.; Rocha-Lima, C.; Mahipal, A.; Vieito, M.; Hervieu, A.; Ahn, M.-J.; Goyal, L.; Ahnert, J.R.; Veronese, L.; et al. Pemigatinib For Previously Treated Central Nervous System Tumors With Activating FGFR Mutations or Translocations: Results From FIGHT-207 (S17.004). Neurology 2023, 100, 4218. [Google Scholar] [CrossRef]
- Gatalica, Z.; Xiu, J.; Swensen, J.; Vranic, S. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol. 2019, 32, 147–153. [Google Scholar] [CrossRef]
- Laetsch, T.W.; DuBois, S.G.; Mascarenhas, L.; Turpin, B.; Federman, N.; Albert, C.M.; Nagasubramanian, R.; Davis, J.L.; Rudzinski, E.; Feraco, A.M.; et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018, 19, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.D.; De Braud, F.; Drilon, A.; Siena, S.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.J.; Chiu, C.H.; Lin, J.J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Patients With NTRK Fusion-Positive Solid Tumors. Clin. Cancer Res. 2022, 28, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Solomon, B.J.; Besse, B.; Bauer, T.M.; Felip, E.; Soo, R.A.; Camidge, D.R.; Chiari, R.; Bearz, A.; Lin, C.C.; Gadgeel, S.M.; et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: Results from a global phase 2 study. Lancet Oncol. 2018, 19, 1654–1667. [Google Scholar] [CrossRef]
- Manoharan, N.; Liu, K.X.; Mueller, S.; Haas-Kogan, D.A.; Bandopadhayay, P. Pediatric low-grade glioma: Targeted therapeutics and clinical trials in the molecular era. Neoplasia 2023, 36, 100857. [Google Scholar] [CrossRef]
- Haas-Kogan, D.A.; Aboian, M.S.; Minturn, J.E.; Leary, S.E.S.; Abdelbaki, M.S.; Goldman, S.; Elster, J.D.; Kraya, A.; Lueder, M.R.; Ramakrishnan, D.; et al. Everolimus for Children with Recurrent or Progressive Low-Grade Glioma: Results from the Phase II PNOC001 Trial. J. Clin. Oncol. 2024, 42, 441–451. [Google Scholar] [CrossRef]
- Ullrich, N.J.; Prabhu, S.P.; Reddy, A.T.; Fisher, M.J.; Packer, R.; Goldman, S.; Robison, N.J.; Gutmann, D.H.; Viskochil, D.H.; Allen, J.C.; et al. A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: A Neurofibromatosis Clinical Trials Consortium study. Neuro Oncol. 2020, 22, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Cockerell, I.; Christensen, J.; Hoei-Hansen, C.E.; Holst, L.; Grenaa Frederiksen, M.; Issa-Epe, A.I.; Nedregaard, B.; Solhoff, R.; Heimdal, K.; Johannessen Landmark, C.; et al. Effectiveness and safety of everolimus treatment in patients with tuberous sclerosis complex in real-world clinical practice. Orphanet J. Rare Dis. 2023, 18, 377. [Google Scholar] [CrossRef]
- Krueger, D.A.; Care, M.M.; Holland, K.; Agricola, K.; Tudor, C.; Mangeshkar, P.; Wilson, K.A.; Byars, A.; Sahmoud, T.; Franz, D.N. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med. 2010, 363, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Franz, D.N.; Agricola, K.; Mays, M.; Tudor, C.; Care, M.M.; Holland-Bouley, K.; Berkowitz, N.; Miao, S.; Peyrard, S.; Krueger, D.A. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann. Neurol. 2015, 78, 929–938. [Google Scholar] [CrossRef]
- Herrlinger, U.; Tzaridis, T.; Mack, F.; Steinbach, J.P.; Schlegel, U.; Sabel, M.; Hau, P.; Kortmann, R.D.; Krex, D.; Grauer, O.; et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial. Lancet 2019, 393, 678–688. [Google Scholar] [CrossRef]
- Cohen, K.J.; Pollack, I.F.; Zhou, T.; Buxton, A.; Holmes, E.J.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Hamilton, R.L.; Lavey, R.S.; et al. Temozolomide in the treatment of high-grade gliomas in children: A report from the Children’s Oncology Group. Neuro Oncol. 2011, 13, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Schindler, G.; Capper, D.; Meyer, J.; Janzarik, W.; Omran, H.; Herold-Mende, C.; Schmieder, K.; Wesseling, P.; Mawrin, C.; Hasselblatt, M.; et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011, 121, 397–405. [Google Scholar] [CrossRef]
- Mackay, A.; Burford, A.; Carvalho, D.; Izquierdo, E.; Fazal-Salom, J.; Taylor, K.R.; Bjerke, L.; Clarke, M.; Vinci, M.; Nandhabalan, M.; et al. Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 2017, 32, 520–537.E5. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, A.; Ryzhova, M.; Hovestadt, V.; Bender, S.; Sturm, D.; Capper, D.; Meyer, J.; Schrimpf, D.; Kool, M.; Northcott, P.A.; et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol. 2015, 129, 669–678. [Google Scholar] [CrossRef]
- Eckstein, O.S.; Allen, C.E.; Williams, P.M.; Roy-Chowdhuri, S.; Patton, D.R.; Coffey, B.; Reid, J.M.; Piao, J.; Saguilig, L.; Alonzo, T.A.; et al. Phase II Study of Selumetinib in Children and Young Adults With Tumors Harboring Activating Mitogen-Activated Protein Kinase Pathway Genetic Alterations: Arm E of the NCI-COG Pediatric MATCH Trial. J. Clin. Oncol. 2022, 40, 2235–2245. [Google Scholar] [CrossRef]
- Hargrave, D.R.; Moreno, L.; Broniscer, A.; Bouffet, E.; Aerts, I.; Andre, N.; Shen, W.-P.V.; Bertozzi-Salamon, A.-I.; Cohen, K.J.; Dunkel, I.J.; et al. Dabrafenib in pediatric patients with BRAF/ V600–positive high-grade glioma (HGG). J. Clin. Oncol. 2018, 36, 10505. [Google Scholar] [CrossRef]
- Hargrave, D.R.; Terashima, K.; Hara, J.; Kordes, U.R.; Upadhyaya, S.A.; Sahm, F.; Bouffet, E.; Packer, R.J.; Witt, O.; Sandalic, L.; et al. Phase II Trial of Dabrafenib Plus Trametinib in Relapsed/Refractory. J. Clin. Oncol. 2023, 41, 5174–5183. [Google Scholar] [CrossRef]
- Rosenberg, T.; Yeo, K.K.; Mauguen, A.; Alexandrescu, S.; Prabhu, S.P.; Tsai, J.W.; Malinowski, S.; Joshirao, M.; Parikh, K.; Farouk Sait, S.; et al. Upfront molecular targeted therapy for the treatment of BRAF-mutant pediatric high-grade glioma. Neuro Oncol. 2022, 24, 1964–1975. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, J.M.; Mitchell, T.C.; Huang, A.C.; Aleman, T.S.; Kim, B.J.; Schuchter, L.M.; Linette, G.P.; Karakousis, G.C.; Mitnick, S.; Giles, L.; et al. BAMM (BRAF Autophagy and MEK Inhibition in Melanoma): A Phase I/II Trial of Dabrafenib, Trametinib, and Hydroxychloroquine in Advanced BRAFV600-mutant Melanoma. Clin. Cancer Res. 2022, 28, 1098–1106. [Google Scholar] [CrossRef]
- Awada, G.; Schwarze, J.K.; Tijtgat, J.; Fasolino, G.; Kruse, V.; Neyns, B. A lead-in safety study followed by a phase 2 clinical trial of dabrafenib, trametinib and hydroxychloroquine in advanced BRAFV600 mutant melanoma patients previously treated with BRAF-/MEK-inhibitors and immune checkpoint inhibitors. Melanoma Res. 2022, 32, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.M.; Thompson, J.C.; Griesinger, A.M.; Amani, V.; Donson, A.M.; Birks, D.K.; Morgan, M.J.; Mirsky, D.M.; Handler, M.H.; Foreman, N.K.; et al. Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov. 2014, 4, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Chong, Q.Y.; Kok, Z.H.; Bui, N.L.; Xiang, X.; Wong, A.L.; Yong, W.P.; Sethi, G.; Lobie, P.E.; Wang, L.; Goh, B.C. A unique CDK4/6 inhibitor: Current and future therapeutic strategies of abemaciclib. Pharmacol. Res. 2020, 156, 104686. [Google Scholar] [CrossRef] [PubMed]
- Liu, I.; Alencastro Veiga Cruzeiro, G.; Bjerke, L.; Rogers, R.F.; Grabovska, Y.; Beck, A.; Mackay, A.; Barron, T.; Hack, O.A.; Quezada, M.A.; et al. GABAergic neuronal lineage development determines clinically actionable targets in diffuse hemispheric glioma, H3G34-mutant. Cancer Cell 2024, 42, 1528–1548.e17. [Google Scholar] [CrossRef]
- Martin, J.M.; Goldstein, L.J. Profile of abemaciclib and its potential in the treatment of breast cancer. Onco Targets Ther. 2018, 11, 5253–5259. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Searle, K.; Jerzak, K.J. Central nervous system-specific efficacy of CDK4/6 inhibitors in randomized controlled trials for metastatic breast cancer. Oncotarget 2019, 10, 6317–6322. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Sahebjam, S.; Le Rhun, E.; Bachelot, T.; Kabos, P.; Awada, A.; Yardley, D.; Chan, A.; Conte, P.; Diéras, V.; et al. A Phase II Study of Abemaciclib in Patients with Brain Metastases Secondary to Hormone Receptor-Positive Breast Cancer. Clin. Cancer Res. 2020, 26, 5310–5319. [Google Scholar] [CrossRef]
- Liu, B.; Hu, Z.Y.; Xie, N.; Liu, L.; Li, J.; Yang, X.; Xiao, H.; Zhao, X.; Tian, C.; Wu, H.; et al. Beyond clinical trials: CDK4/6 inhibitor efficacy predictors and nomogram model from real-world evidence in metastatic breast cancer. Cancer Innov. 2024, 3, e143. [Google Scholar] [CrossRef]
- Coffee, E.; Panageas, K.; Young, R.; Morrison, T.; Daher, A.; Grommes, C.; Gavrilovic, I.; Lin, A.; Miller, A.; Schaff, L.; et al. CTNI-55. THE CDK4/6 INHIBITOR ABEMACICLIB IN PATIENTS WITH RECURRENT MENINGIOMA AND OTHER PRIMARY CNS TUMORS. Neuro-Oncology 2021, 23, vi72–vi73. [Google Scholar] [CrossRef]
- DeWire, M.; Fuller, C.; Hummel, T.R.; Chow, L.M.L.; Salloum, R.; de Blank, P.; Pater, L.; Lawson, S.; Zhu, X.; Dexheimer, P.; et al. A phase I/II study of ribociclib following radiation therapy in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). J. Neurooncol. 2020, 149, 511–522. [Google Scholar] [CrossRef]
- DeWire, M.D.; Fuller, C.; Campagne, O.; Lin, T.; Pan, H.; Young Poussaint, T.; Baxter, P.A.; Hwang, E.I.; Bukowinski, A.; Dorris, K.; et al. A Phase I and Surgical Study of Ribociclib and Everolimus in Children with Recurrent or Refractory Malignant Brain Tumors: A Pediatric Brain Tumor Consortium Study. Clin. Cancer Res. 2021, 27, 2442–2451. [Google Scholar] [CrossRef] [PubMed]
- Tien, A.C.; Li, J.; Bao, X.; Derogatis, A.; Kim, S.; Mehta, S.; Sanai, N. A Phase 0 Trial of Ribociclib in Recurrent Glioblastoma Patients Incorporating a Tumor Pharmacodynamic- and Pharmacokinetic-Guided Expansion Cohort. Clin. Cancer Res. 2019, 25, 5777–5786. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Kim, A.E.; Wang, N.; Lee, E.Q.; Ligibel, J.; Cohen, J.V.; Chukwueke, U.N.; Mahar, M.; Oh, K.; White, M.D.; et al. Palbociclib demonstrates intracranial activity in progressive brain metastases harboring cyclin-dependent kinase pathway alterations. Nat. Cancer 2021, 2, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Young, J.S.; Kidwell, R.L.; Zheng, A.; Haddad, A.F.; Aghi, M.K.; Raleigh, D.R.; Schulte, J.D.; Butowski, N.A. CDK 4/6 inhibitors for the treatment of meningioma. Front. Oncol. 2022, 12, 931371. [Google Scholar] [CrossRef] [PubMed]
- Thill, M.; Schmidt, M. Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. Ther. Adv. Med. Oncol. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Fradley, M.G.; Nguyen, N.H.K.; Madnick, D.; Chen, Y.; DeMichele, A.; Makhlin, I.; Dent, S.; Lefebvre, B.; Carver, J.; Upshaw, J.N.; et al. Adverse Cardiovascular Events Associated With Cyclin-Dependent Kinase 4/6 Inhibitors in Patients With Metastatic Breast Cancer. J. Am. Heart Assoc. 2023, 12, e029361. [Google Scholar] [CrossRef]
- Evans, D.G.; Howard, E.; Giblin, C.; Clancy, T.; Spencer, H.; Huson, S.M.; Lalloo, F. Birth incidence and prevalence of tumor-prone syndromes: Estimates from a UK family genetic register service. Am. J. Med. Genet. A 2010, 152A, 327–332. [Google Scholar] [CrossRef]
- Mautner, V.F.; Asuagbor, F.A.; Dombi, E.; Fünsterer, C.; Kluwe, L.; Wenzel, R.; Widemann, B.C.; Friedman, J.M. Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro Oncol. 2008, 10, 593–598. [Google Scholar] [CrossRef]
- Gross, A.M.; Singh, G.; Akshintala, S.; Baldwin, A.; Dombi, E.; Ukwuani, S.; Goodwin, A.; Liewehr, D.J.; Steinberg, S.M.; Widemann, B.C. Association of plexiform neurofibroma volume changes and development of clinical morbidities in neurofibromatosis 1. Neuro Oncol. 2018, 20, 1643–1651. [Google Scholar] [CrossRef] [PubMed]
- Ikuta, K.; Nishida, Y.; Sakai, T.; Koike, H.; Ito, K.; Urakawa, H.; Imagama, S. Surgical Treatment and Complications of Deep-Seated Nodular Plexiform Neurofibromas Associated with Neurofibromatosis Type 1. J. Clin. Med. 2022, 11, 5695. [Google Scholar] [CrossRef] [PubMed]
- Weiss, B.D.; Wolters, P.L.; Plotkin, S.R.; Widemann, B.C.; Tonsgard, J.H.; Blakeley, J.; Allen, J.C.; Schorry, E.; Korf, B.; Robison, N.J.; et al. NF106: A Neurofibromatosis Clinical Trials Consortium Phase II Trial of the MEK Inhibitor Mirdametinib (PD-0325901) in Adolescents and Adults With NF1-Related Plexiform Neurofibromas. J. Clin. Oncol. 2021, 39, 797–806. [Google Scholar] [CrossRef]
- Fisher, M.J.; Shih, C.S.; Rhodes, S.D.; Armstrong, A.E.; Wolters, P.L.; Dombi, E.; Zhang, C.; Angus, S.P.; Johnson, G.L.; Packer, R.J.; et al. Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: A phase 2 trial. Nat. Med. 2021, 27, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.M.; Dombi, E.; Wolters, P.L.; Baldwin, A.; Dufek, A.; Herrera, K.; Martin, S.; Derdak, J.; Heisey, K.S.; Whitcomb, P.M.; et al. Long-term safety and efficacy of selumetinib in children with neurofibromatosis type 1 on a phase 1/2 trial for inoperable plexiform neurofibromas. Neuro Oncol. 2023, 25, 1883–1894. [Google Scholar] [CrossRef]
- Gross, A.M.; Glassberg, B.; Wolters, P.L.; Dombi, E.; Baldwin, A.; Fisher, M.J.; Kim, A.; Bornhorst, M.; Weiss, B.D.; Blakeley, J.O.; et al. Selumetinib in children with neurofibromatosis type 1 and asymptomatic inoperable plexiform neurofibroma at risk for developing tumor-related morbidity. Neuro Oncol. 2022, 24, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Dombi, E.; Baldwin, A.; Marcus, L.J.; Fisher, M.J.; Weiss, B.; Kim, A.; Whitcomb, P.; Martin, S.; Aschbacher-Smith, L.E.; Rizvi, T.A.; et al. Activity of Selumetinib in Neurofibromatosis Type 1-Related Plexiform Neurofibromas. N. Engl. J. Med. 2016, 375, 2550–2560. [Google Scholar] [CrossRef]
- Gross, A.M.; Wolters, P.L.; Dombi, E.; Baldwin, A.; Whitcomb, P.; Fisher, M.J.; Weiss, B.; Kim, A.; Bornhorst, M.; Shah, A.C.; et al. Selumetinib in Children with Inoperable Plexiform Neurofibromas. N. Engl. J. Med. 2020, 382, 1430–1442. [Google Scholar] [CrossRef]
- Mueller, S.; Reddy, A.T.; Dombi, E.; Allen, J.; Packer, R.; Clapp, W.; Goldman, S.; Schorry, E.; Tonsgard, J.; Blakeley, J.; et al. NFB-17. MEK INHIBITOR BINIMETINIB SHOWS CLINICAL ACTIVITY IN CHILDREN WITH NEUROFIBROMATOSIS TYPE 1- ASSOCIATED PLEXIFORM NEUROFIBROMAS: A REPORT FROM PNOC AND THE NF CLINICAL TRIALS CONSORTIUM. Neuro Oncol. 2020, 22, iii420–iii421. [Google Scholar] [CrossRef]
- Moertel, C.L.; Hirbe, A.C.; Shuhaiber, H.H.; Bielamowicz, K.; Sidhu, A.; Viskochil, D.; Weber, M.D.; Lokku, A.; Smith, L.M.; Foreman, N.K.; et al. ReNeu: A Pivotal, Phase IIb Trial of Mirdametinib in Adults and Children With Symptomatic Neurofibromatosis Type 1-Associated Plexiform Neurofibroma. J. Clin. Oncol. 2025, 43, 716–729. [Google Scholar] [CrossRef]
- Packer, R.J.; Ater, J.; Allen, J.; Phillips, P.; Geyer, R.; Nicholson, H.S.; Jakacki, R.; Kurczynski, E.; Needle, M.; Finlay, J.; et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J. Neurosurg. 1997, 86, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Ater, J.L.; Zhou, T.; Holmes, E.; Mazewski, C.M.; Booth, T.N.; Freyer, D.R.; Lazarus, K.H.; Packer, R.J.; Prados, M.; Sposto, R.; et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: A report from the Children’s Oncology Group. J. Clin. Oncol. 2012, 30, 2641–2647. [Google Scholar] [CrossRef]
- Bhatia, S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin. Oncol. 2013, 40, 666–675. [Google Scholar] [CrossRef]
- Egan, G.; Hamilton, J.; McKeown, T.; Bouffet, E.; Tabori, U.; Dirks, P.; Bartels, U. Trametinib Toxicities in Patients With Low-grade Gliomas and Diabetes Insipidus: Related Findings? J. Pediatr. Hematol. Oncol. 2020, 42, e248–e250. [Google Scholar] [CrossRef] [PubMed]
- Loriot, Y.; Matsubara, N.; Park, S.H.; Huddart, R.A.; Burgess, E.F.; Houede, N.; Banek, S.; Guadalupi, V.; Ku, J.H.; Valderrama, B.P.; et al. Erdafitinib or Chemotherapy in Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2023, 389, 1961–1971. [Google Scholar] [CrossRef]
- Kommalapati, A.; Tella, S.H.; Borad, M.; Javle, M.; Mahipal, A. FGFR Inhibitors in Oncology: Insight on the Management of Toxicities in Clinical Practice. Cancers 2021, 13, 2698. [Google Scholar] [CrossRef]
- Farouk Sait, S.; Fischer, C.; Antal, Z.; Spatz, K.; Prince, D.E.; Ibanez, K.; Behr, G.G.; Dunkel, I.J.; Karajannis, M.A. Slipped capital femoral epiphyses: A major on-target adverse event associated with FGFR tyrosine kinase inhibitors in pediatric patients. Pediatr. Blood Cancer 2023, 70, e30410. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.J.; Tan, D.S.P. TRK inhibitors: Managing on-target toxicities. Ann. Oncol. 2020, 31, 1109–1111. [Google Scholar] [CrossRef]
- Liguori, V.; Gaio, M.; Zinzi, A.; Cagnotta, C.; Riccardi, C.; Docimo, G.; Capuano, A. The Safety Profiles of Two First-Generation NTRK Inhibitors: Analysis of Individual Case Safety Reports from the FDA Adverse Event Reporting System (FAERS) Database. Biomedicines 2023, 11, 2538. [Google Scholar] [CrossRef]
- Delgado, J.; Pean, E.; Melchiorri, D.; Migali, C.; Josephson, F.; Enzmann, H.; Pignatti, F. The European Medicines Agency review of entrectinib for the treatment of adult or paediatric patients with solid tumours who have a neurotrophic tyrosine receptor kinase gene fusions and adult patients with non-small-cell lung cancer harbouring ROS1 rearrangements. ESMO Open 2021, 6, 100087. [Google Scholar] [CrossRef]
- Arena, C.; Bizzoca, M.E.; Caponio, V.C.A.; Troiano, G.; Zhurakivska, K.; Leuci, S.; Lo Muzio, L. Everolimus therapy and side-effects: A systematic review and meta-analysis. Int. J. Oncol. 2021, 59, 54. [Google Scholar] [CrossRef] [PubMed]
- Paplomata, E.; Zelnak, A.; O’Regan, R. Everolimus: Side effect profile and management of toxicities in breast cancer. Breast Cancer Res. Treat. 2013, 140, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Junpaparp, P.; Sharma, B.; Samiappan, A.; Rhee, J.H.; Young, K.R. Everolimus-induced severe pulmonary toxicity with diffuse alveolar hemorrhage. Ann. Am. Thorac. Soc. 2013, 10, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Gascon, B.; Yang, A.; Gauvreau, C.; Bennett, J.; Nobre, L.; Tabori, U.; Hawkins, C.; Pechlivanoglou, P.; Denburg, A. Cost-effectiveness of dabrafenib plus trametinib in BRAFV600E-mutant pediatric low-grade glioma: A microsimulation study. J. Clin. Oncol. 2024, 42, 2055. [Google Scholar] [CrossRef]
Targeted Therapy Study Information/Design | Target | Study Population | Response Rate/Outcome | Median Time to Response |
---|---|---|---|---|
Selumetinib [7,8] Phase I/II | MEKi | Non-NF1 progressive, recurrent, or refractory pilocytic astrocytoma with KIAA1549::BRAF or BRAF p.V600E (stratum 1) | 32% CR or PR 40% SD 28% PD 2-year PFS 70% | Median time to PR 7.54 months |
NF1-associated progressive, recurrent, or refractory pLGGs (stratum 3) | 36% CR or PR 60% SD 2-year PFS 96%. | 3.57 months | ||
Non-NF1 recurrent, progressive, or refractory optic pathway and hypothalamic pLGGs (stratum 4) | 24% PR 56% SD 2-year PFS 78% | |||
Trametinib [9] Phase I/II | MEKi | Relapsed/refractory BRAF p.V600E tumors | 15% response rate PFS 16.4 months | |
Trametinib and Dabrafenib [9] Phase I/II | MEKi and BRAFi | Relapsed/refractory BRAF p.V600E pLGG | Response rate 25% PFS 36.9 months | |
Dabrafenib and Trametinib [10] Phase II | MEKi and BRAFi | Upfront/newly diagnosed BRAF p.V600E pLGG | ORR 47% PFS 20.1 months | |
Trametinib [11] Phase II | MEKi | Progressive/refractory pLGGs with MAPK/ERK pathway activation. Patients with NF1 and without NF1 | Ongoing study | |
MEK162 [12] (binimetinib) Phase II | MEKi | Recurrent or progressive pLGGs with BRAF fusion, NF1-associated pLGGs and those without documented BRAF fusion | 56% radiographic response | |
Cobimetinib [13] Phase I/II | MEKi | Pediatric and young adult patients with relapsed or refractory solid tumors | ORR 5.4% Median PFS 20.2 months | |
Selumetinib Randomized, prospective Children’s Oncology group (COG) phase III study (NCT04166409/NCT03871257 or ACNS1831/1833) | MEKi | Newly diagnosed and previously untreated optic pathway/hypothalamic gliomas with and without NF1 | ||
Dabrafenib Phase I/II [14] | BRAFi | Recurrent/refractory pLGGs with BRAF p.V600E | ORR 44% 1-year PFS 85% | 3.8 months |
Vemurafenib [15] Phase I | BRAFi | Recurrent/refractory BRAF p.V600E pLGGs | 1 patient CR, and 5 PR, with the remaining 13 SD | |
Vemurafenib [16] Retrospective | BRAFi | BRAF p.V600E LGGs (upfront or relapse/recurrence) | 57% response rate | Time to best radiographic response 3 months, |
Dabrafenib or Vemurafenib [17] Retrospective | BRAFi | BRAF p.V600E gliomas (upfront or relapse/recurrence) | Objective radiographic responses 80% pLGGs. PFS at 2 years was 81.6% | Average time to response 4 months. |
Tovorafenib [18] Phase II | Next-generation RAFi | BRAF-altered relapsed or refractory pLGG | ORR 67% by RANO-HGG criteria ORR 51% by RAPNO | 5.3 months |
Tovorafenib monotherapy [19] LOGIC/FIREFLY-2 trial Phase III—randomized trial of tovorafenib vs. chemotherapy (VCR/carbo or vinblastine) | Next-generation RAFi | Upfront pLGG | Ongoing study | |
Vinblastine with Tovorafenib VICTORY (NCT06381570) | Next-generation RAFi | Recurrent/progressive RAF-altered pLGG | Ongoing study | |
Plixorafenib [20] Phase 1/2 | Next-generation RAFi | Recurrent/progressive BRAF-altered solid tumors | 42% ORR | |
Plixorafenib Phase II NCT05503797 | Next-generation RAFi | Children or adults with BRAF-altered tumors | Ongoing study | |
Sorafanib [21] Phase II | Relapsed or refractory pediatric low-grade astrocytoma | Radiographic progression in 9 (82%) patients, requiring discontinuation of sorafenib | Not reported | |
Everolimus [22] Phase II | mTOR | Progressive pLGG | Response rate 52.2% 2, 3 and 5-year PFS were 39 ± 11%, 26 ± 11% and 26 ± 11%, respectively, 2, 3 and 5-year OS 93 ± 6% | 0.9 months |
Everolimus (Phase 1-2 trial) | mTOR | Children 3 years older with progressing subependymal giant-cell astrocytomas (SEGA) | Tumor volume reduced by at least 30% in 21 patients (75%); reductions of 50% or more in 9 patients (32%) | At the 3-month mark, tumor reduction in 27/28 patients |
Trametinib and everolimus PNOC phase I trial (NCT04485559) | MEKI/mTOR | Recurrent LGGs and HGG | Ongoing study | |
Hydroxychloroquine with trametinib and/or dabrafenib Phase I/II trial PBTC-055 (NCT04201457) | MEKi/BRAFi | Recurrent pLGGs or pHGGs with BRAF alterations | Ongoing study | |
Larotrectinib [23] (retrospective) | TRK | Patients with TRK fusion-positive solid and CNS tumors | ORR of 68.8% in the pediatric population | Median overall survival of 185.5 months in the pediatric population |
STARTRK-NG [24] (NCT 02650401) phase 1-2 trial | ALK, ROS-1, NTRK1-3 | Pediatric or CNS tumors with either an ALK, a ROS1, or a NTRK 1-3 rearrangement | ORR 57.7% | Not available |
Erdafitinib [25] (phase 2 COG Match trial) | FGFR 1-4 | Arm B (APEC1621B) evaluated the efficacy of erdafitinib in patients aged 1–21 whose tumors harbored a FGFR 1-4 rearrangement | Partial response or stable disease in 54% of the patients with an FGFR 1 fusion | 6-month OS of 89.7% |
Erdafinitib [26] (RAGNAR phase 2 trial) | FGFR1-4 | Patients 12 years of older whose solid or CNS tumor harbored a FGFR1-4 mutation | No response in the CNS low-grade tumor subgroup | - |
Larotrectinib [27] (combined analyses of three phase 1/2 clinical trials) | TRK | Pediatric and adult patients with TRK fusion-positive solid and CNS tumors | ORR of 30% | At the 1-year mark, 55% of the patients remained progression-free |
Targeted Therapy Study Information/Design | Target | Study Population | Response Rate/Outcome | Median Time to Response |
---|---|---|---|---|
Selumetinib [58] Pediatric MATCH | Relapsed or refractory solid tumors, lymphomas and histiocytic disorders | No objective response 2 pHGGs showed SD 6-month PFS 15% | ||
Dabrafenib or Vemurafenib [17] Retrospective | BRAFi | BRAF p.V600E-mutated gliomas (upfront or relapse/recurrence) | 36% of pHGGs responded to BRAF inhibition, with all except one progressing within 18 months PFS at 2 years 81.6% | 4 months |
Dabrafenib [59] Phase I/II | BRAFi | Refractory, recurrent or progressive BRAF p.V600E pHGG | ORR was 45% | |
Dabrafenib and Trametinib [60] Phase II | BRAFi/MEKi | Relapsed/refractory BRAF p.V600E pHGG | ORR 56% by RANO criteria Median PFS 9 months, OS 32.8 months | 4 months |
BRAF +/− MEK inhibitors [61] Retrospective | BRAFi/MEKi | BRAF-mutated pHGGs (upfront therapy) | 13 patients with measurable disease and imaging available for central review, 8 responses (2 with CR, 6 with PR) 3-year PFS 65% and OS 82% | Median time to best response of 2.5 months |
Dabrafenib and Trametinib (NCT03919071) | BRAFi/MEKi | Newly diagnosed BRAF p.V600E pHGG | Ongoing study | |
Trametinib and everolimus. PNOC phase I trial (NCT04485559) | MEKi | Recurrent pLGGs and pHGG | Ongoing study | |
Hydroxychloroquine with trametinib and/or dabrafenib. Phase I/II trial PBTC-055 (NCT04201457) | MEKi | Recurrent pLGGs or pHGGs with BRAF alterations | Ongoing study | |
Larotrectinib [23] (retrospective) | TRK | Patients with TRK fusion-positive solid and CNS tumors | ORR of 68.8% in the pediatric population | Median overall survival of 185.5 months in the pediatric population |
Larotrectinib [27] (combined analyses of three phase 1/2 clinical trials) | TRK | Pediatric and adult patients with TRK fusion-positive solid and CNS tumors | ORR of 30% | At the 1-year mark, 55% of the patients remained progression-free |
STARTRK-NG (NCT 02650401) phase 1-2 trial | ALK, ROS-1, NTRK1-3 | Pediatric or CNS tumors with either an ALK, a ROS1 or a NTRK 1-3 rearrangement | ORR 57.7% | Not available |
Repotrectinib (phase 1-2 open label study) | ALK, ROS-1, NTRK1-3 | Pediatric and adult patients with advanced or metastatic malignancies harboring ALK, ROS-1 or NTRK 1-3 mutations | - | Ongoing study |
BIOMEDE 2.0 (Randomized, open-label, muticenter study (ONC 201 vs. everolimus) | K27M mTOR | DIPG/DMG K27-mutated | - | Ongoing study |
Study (N) | Target | Study Population | Response Rate/Outcome | Median Time to Response | |
---|---|---|---|---|---|
Selumetinib NCT01362803 | Phase I [28] | MEK | Inoperable symptomatic PN | cPR: 75% PFS: 52 cycles | Best: 22 cycles |
Phase II [58] stratum 1 | Age: 2–18 yrs Inoperable symptomatic PN | cPR: 68% PFS: not reached | Best: 16 cycles | ||
Phase II [8] stratum 2 | Age: 2–18 yrs Inoperable asymptomatic PN | cPR: 72% PFS: not reached | Best: 24 cycles | ||
Binimetinib [12] | Age: 2–16 yr pediatric cohort | PR: 74% | Not reported | ||
Mirdametinib | NCT02096471 [83] | Age: >16 yrs Inoperable progressive/morbid PN | PR: 42% | ||
ReNeu [36] (58 adults, 56 children) | Children: 2–17 yrs, adults >18 Inoperable PNs with morbidity | Children PR: 52% Adult: PR: 41% | Children: 13.4 m Adult: 15.2 m | ||
Trametinib | (NCT02124772) 26 PN | Age: 1 m–18 yrs Inoperable medically significant PN | PR: 46% | Not reported | |
TRAM-01 [11] (30 PN) NCT03363217 | Age: 1 m–25 yrs Inoperable progressive/symptomatic PN | PR: 62.5% | Not reported | ||
Cabozantinib [84] NCT02101736 | TKI | Age: >16 yrs Inoperable progressive/symptomatic PN | PR: 42% | Not reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renzi, S.; Bennett, J.; Thacker, N.; Cacciotti, C. Precision Medicine for Pediatric Glioma and NF1-Associated Tumors: The Role of Small Molecule Inhibitors. Curr. Oncol. 2025, 32, 280. https://doi.org/10.3390/curroncol32050280
Renzi S, Bennett J, Thacker N, Cacciotti C. Precision Medicine for Pediatric Glioma and NF1-Associated Tumors: The Role of Small Molecule Inhibitors. Current Oncology. 2025; 32(5):280. https://doi.org/10.3390/curroncol32050280
Chicago/Turabian StyleRenzi, Samuele, Julie Bennett, Nirav Thacker, and Chantel Cacciotti. 2025. "Precision Medicine for Pediatric Glioma and NF1-Associated Tumors: The Role of Small Molecule Inhibitors" Current Oncology 32, no. 5: 280. https://doi.org/10.3390/curroncol32050280
APA StyleRenzi, S., Bennett, J., Thacker, N., & Cacciotti, C. (2025). Precision Medicine for Pediatric Glioma and NF1-Associated Tumors: The Role of Small Molecule Inhibitors. Current Oncology, 32(5), 280. https://doi.org/10.3390/curroncol32050280