TRK Inhibitors in Adult and Pediatric High-Grade Gliomas: A Systematic Review and Individual Participant Data Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
- (1)
- Included at least one patient with a histological and molecular diagnosis of intracranial high-grade glioma (HGG) harboring NTRK gene fusions or mutations.
- (2)
- Reported treatment with TRK inhibitors (either as first-line or adjuvant therapy).
- (3)
- Were published in English.
- (1)
- Studies focusing solely on the biological or molecular mechanisms of TRK inhibitors (e.g., in vitro or animal models) without reporting clinical outcomes.
- (2)
- Studies involving only patients with a histological or molecular diagnosis of low-grade glioma (LGG).
- (3)
- Reports on patients receiving TRK inhibitors without a confirmed histological diagnosis (e.g., under compassionate use protocols).
- (4)
- Studies including patients with encephalic or spinal gliomatosis.
- (5)
- Studies including patients with spinal high-grade gliomas.
- (6)
- Studies lacking individual patient-level data or those that did not report clinical outcomes following TRK inhibitor treatment.
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analyses
3. Results
3.1. Study Selection
3.2. Demographic Data
3.3. Clinical Outcome and Comparison Between the Two Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NTRK | neurotrophic tyrosine receptor kinase |
OS | overall survival |
PFS | progression-free survival |
aHGG | adult high-grade glioma |
pHGG | pediatric high-grade glioma |
RANO | Response Assessment in Neuro-Oncology |
References
- Das, J.M. Neuro-Oncology Explained Through Multiple Choice Questions; Springer Nature: Dordrecht, The Netherlands, 2023; ISBN 3031132548. [Google Scholar]
- Sun, Y.; Xiong, Z.-Y.; Yan, P.-F.; Jiang, L.-L.; Nie, C.-S.; Wang, X. Characteristics and prognostic factors of age-stratified high-grade intracranial glioma patients: A population-based analysis. Bosn. J. Basic Med. Sci. 2019, 19, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Harter, D.H.; Wilson, T.A.; Karajannis, M.A. Glioblastoma multiforme: State of the art and future therapeutics. Surg. Neurol. Int. 2014, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Bowers, D.C.; Weprin, B.E. Intramedullary Spinal Cord Tumors. Curr. Treat. Options Neurol. 2003, 5, 207–212. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Brown, N.F.; Ottaviani, D.; Tazare, J.; Gregson, J.; Kitchen, N.; Brandner, S.; Fersht, N.; Mulholland, P. Survival Outcomes and Prognostic Factors in Glioblastoma. Cancers 2022, 14, 3161. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, P.; Luo, W.; Pehlivan, K.C.; Hoang, H.; Rajappa, P.; Cripe, T.P.; Cassady, K.A.; Lee, D.A.; Cairo, M.S. Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations. Front. Immunol. 2022, 13, 1038096. [Google Scholar] [CrossRef]
- Hatoum, R.; Chen, J.-S.; Lavergne, P.; Shlobin, N.A.; Wang, A.; Elkaim, L.M.; Dodin, P.; Couturier, C.P.; Ibrahim, G.M.; Fallah, A.; et al. Extent of Tumor Resection and Survival in Pediatric Patients With High-Grade Gliomas: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2226551. [Google Scholar] [CrossRef]
- Silva da Costa, M.D.; Camargo, N.C.; Dastoli, P.A.; Nicácio, J.M.; Benevides Silva, F.A.; Sucharski Figueiredo, M.L.; Chen, M.J.; Cappellano, A.M.; Saba da Silva, N.; Cavalheiro, S. High-grade gliomas in children and adolescents: Is there a role for reoperation? J. Neurosurg. Pediatr. 2021, 27, 160–169. [Google Scholar] [CrossRef]
- Vanan, M.I.; Eisenstat, D.D. Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neuro-Oncol. Pract. 2014, 1, 145–157. [Google Scholar] [CrossRef]
- Chatwin, H.V.; Cruz, J.C.; Green, A.L. Pediatric high-grade glioma: Moving toward subtype-specific multimodal therapy. FEBS J. 2021, 288, 6127–6141. [Google Scholar] [CrossRef] [PubMed]
- Suri, V.; Das, P.; Jain, A.; Sharma, M.C.; Borkar, S.A.; Suri, A.; Gupta, D.; Sarkar, C. Pediatric glioblastomas: A histopathological and molecular genetic study. Neuro-Oncology 2009, 11, 274–280. [Google Scholar] [CrossRef]
- Ishikawa, E.; Tsuboi, K.; Saijo, K.; Harada, H.; Takano, S.; Nose, T.; Ohno, T. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res. 2004, 24, 1861–1871. [Google Scholar]
- Khotskaya, Y.B.; Holla, V.R.; Farago, A.F.; Mills Shaw, K.R.; Meric-Bernstam, F.; Hong, D.S. Targeting TRK family proteins in cancer. Pharmacol. Ther. 2017, 173, 58–66. [Google Scholar] [CrossRef]
- Amatu, A.; Sartore-Bianchi, A.; Bencardino, K.; Pizzutilo, E.; Tosi, F.; Siena, S. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann. Oncol. 2019, 30, viii5–viii15. [Google Scholar] [CrossRef]
- Torre, M.; Vasudevaraja, V.; Serrano, J.; DeLorenzo, M.; Malinowski, S.; Blandin, A.-F.; Pages, M.; Ligon, A.H.; Dong, F.; Meredith, D.M.; et al. Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol. Commun. 2020, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018, 15, 731–747. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.D.; Zhou, S.; Huse, J.T.; de Groot, J.F.; Xiu, J.; Subramaniam, D.S.; Mehta, S.; Gatalica, Z.; Swensen, J.; Sanai, N.; et al. Targetable Gene Fusions Associate with the IDH Wild-Type Astrocytic Lineage in Adult Gliomas. J. Neuropathol. Exp. Neurol. 2018, 77, 437–442. [Google Scholar] [CrossRef]
- Wu, G.; Diaz, A.K.; Paugh, B.S.; Rankin, S.L.; Ju, B.; Li, Y.; Zhu, X.; Qu, C.; Chen, X.; Zhang, J.; et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 2014, 46, 444–450. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; DeGroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- OCEBM Levels of Evidence—Centre for Evidence-Based Medicine (CEBM), University of Oxford. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (accessed on 13 February 2021).
- Joanna Briggs Institute. Critical Appraisal Tools for Use in JBI Systematic Reviews: Checklist for Case Reports; JBI: Adelaide, Australia, 2020; Available online: https://jbi.global/critical-appraisal-tools (accessed on 27 May 2025).
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Lancaster, G.A.; Thabane, L. Guidelines for reporting non-randomised pilot and feasibility studies. Pilot Feasibility Stud. 2019, 5, 114. [Google Scholar] [CrossRef]
- Doz, F.; van Tilburg, C.M.; Geoerger, B.; Højgaard, M.; Øra, I.; Boni, V.; Capra, M.; Chisholm, J.; Chung, H.C.; DuBois, S.G.; et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro-Oncology 2021, 24, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.E.; Park, C.-K.; Kim, S.-K.; Phi, J.H.; Paek, S.H.; Choi, J.Y.; Kang, H.J.; Lee, J.H.; Won, J.K.; Yun, H.; et al. NTRK-fused central nervous system tumours: Clinicopathological and genetic insights and response to TRK inhibitors. Acta Neuropathol. Commun. 2024, 12, 118. [Google Scholar] [CrossRef]
- Ziegler, D.S.; Wong, M.; Mayoh, C.; Kumar, A.; Tsoli, M.; Mould, E.; Tyrrell, V.; Khuong-Quang, D.-A.; Pinese, M.; Gayevskiy, V.; et al. Brief Report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. Br. J. Cancer 2018, 119, 693–696. [Google Scholar] [CrossRef]
- Simoneau, J.; Robertson, P.; Muraszko, K.; Maher, C.O.; Garton, H.; Calvert, R.; Koschmann, C.; Upadhyaya, S.A.; Mody, R.; Brown, N.; et al. Long-Term Tumor Stability After First-Line Treatment with Larotrectinib in an Infant with NTRK2 Fusion–Positive High-Grade Glioma. J. Natl. Compr. Cancer Netw. 2024, 22, e247045. [Google Scholar] [CrossRef]
- Alharbi, M.; Mobark, N.A.; Balbaid, A.A.O.; Alanazi, F.A.; Aljabarat, W.A.R.; Bakhsh, E.A.; Ramkissoon, S.H.; Abedalthagafi, M. Regression of ETV6-NTRK3 Infantile Glioblastoma After First-Line Treatment With Larotrectinib. JCO Precis. Oncol. 2020, 4, 796–800. [Google Scholar] [CrossRef]
- Mangum, R.; Reuther, J.; Bertrand, K.C.; Chandramohan, R.; Kukreja, M.K.; Paulino, A.C.; Muzny, D.; Hu, J.; Gibbs, R.A.; Curry, D.J.; et al. Durable Response to Larotrectinib in a Child With Histologic Diagnosis of Recurrent Disseminated Ependymoma Discovered to Harbor an NTRK2 Fusion: The Impact of Integrated Genomic Profiling. JCO Precis. Oncol. 2021, 5, 1221–1227. [Google Scholar] [CrossRef]
- Waters, T.W.; Moore, S.A.; Sato, Y.; Dlouhy, B.J.; Sato, M. Refractory infantile high-grade glioma containing TRK-fusion responds to larotrectinib. Pediatr. Blood Cancer 2021, 68, e28868. [Google Scholar] [CrossRef]
- Barritault, M.; Poncet, D.; Meyronet, D.; Vasiljevic, A.; Lopez, J.; Descotes, F.; Mottolese, C.; Basle, A.; Benoit-Janin, M.; Pissaloux, D.; et al. NTRK2 gene fusion and resistance mutation: Seventeen-year course of a paediatric glioma. Pediatr. Blood Cancer 2021, 68, e29114. [Google Scholar] [CrossRef]
- Lamoureux, A.-A.; Fisher, M.J.; Lemelle, L.; Pfaff, E.; Amir-Yazdani, P.; Kramm, C.; De Wilde, B.; Kazanowska, B.; Hutter, C.; Pfister, S.M.; et al. Clinical Characteristics and Outcomes of Central Nervous System Tumors Harboring NTRK Gene Fusions. Clin. Cancer Res. 2024, 31, 561–572. [Google Scholar] [CrossRef] [PubMed]
- König, D.; Hench, J.; Frank, S.; Dima, L.; Hench, I.B.; Läubli, H. Larotrectinib Response in NTRK3 Fusion-Driven Diffuse High-Grade Glioma. Pharmacology 2022, 107, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Mançano, B.M.; dos Reis, M.B.; Moreno, D.A.; de Paula, F.E.; Junior, C.R.d.A.; Cavalcante, C.E.B.; Zanon, M.F.; Santana, I.V.V.; Matsushita, M.d.M.; Reis, R.M. A Unique Case Report of Infant-Type Hemispheric Glioma (Gliosarcoma Subtype) with TPR-NTRK1 Fusion Treated with Larotrectinib. Pathobiology 2022, 89, 178–185. [Google Scholar] [CrossRef]
- Carter-Febres, M.; Schneller, N.; Fair, D.; Solomon, D.; Perry, A.; Roy, A.; Linscott, L.; Alashari, M.; Kestle, J.R.; Bruggers, C.S. Adjuvant Maintenance Larotrectinib Therapy in 2 Children with NTRK Fusion-positive High-grade Cancers. J. Pediatr. Hematol. 2020, 43, e987–e990. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.; Khabra, K.; Nanji, H.; Stone, J.; Powell, K.; Martin, D.; Zebian, B.; Hettige, S.; Reisz, Z.; Bodi, I.; et al. High grade gliomas in young children: The South Thames Neuro-Oncology unit experience and recent advances in molecular biology and targeted therapies. Pediatr. Hematol. Oncol. 2021, 38, 707–721. [Google Scholar] [CrossRef]
- Di Ruscio, V.; Carai, A.; Del Baldo, G.; Vinci, M.; Cacchione, A.; Miele, E.; Rossi, S.; Antonelli, M.; Barresi, S.; Caulo, M.; et al. Molecular Landscape in Infant High-Grade Gliomas: A Single Center Experience. Diagnostics 2022, 12, 372. [Google Scholar] [CrossRef]
- Keddy, C.; Neff, T.; Huan, J.; Nickerson, J.P.; Beach, C.Z.; Akkari, Y.; Ji, J.; Moore, S.; Nazemi, K.J.; Corless, C.L.; et al. Mechanisms of targeted therapy resistance in a pediatric glioma driven by ETV6-NTRK3 fusion. Mol. Case Stud. 2021, 7, a006109. [Google Scholar] [CrossRef]
- Schwartzberg, L.; Kim, E.S.; Liu, D.; Schrag, D. Precision Oncology: Who, How, What, When, and When Not? Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet. 2017, 37, 160–169. [Google Scholar] [CrossRef]
- Mellinghoff, I.K.; Bent, M.J.v.D.; Blumenthal, D.T.; Touat, M.; Peters, K.B.; Clarke, J.; Mendez, J.; Yust-Katz, S.; Welsh, L.; Mason, W.P.; et al. Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N. Engl. J. Med. 2023, 389, 589–601. [Google Scholar] [CrossRef]
- Aulakh, S.; Xiu, J.; Hinton, A.; Darabi, S.; Demeure, M.J.; Sengupta, S.; Kesari, S.; Ashley, D.M.; Sumrall, A.L.; Glantz, M.J.; et al. Biological and prognostic relevance of epigenetic regulatory genes in high-grade gliomas. Neuro-Oncol. Adv. 2024, 6, vdae169. [Google Scholar] [CrossRef] [PubMed]
- Stitzlein, L.M.; Adams, J.T.; Stitzlein, E.N.; Dudley, R.W.; Chandra, J. Current and future therapeutic strategies for high-grade gliomas leveraging the interplay between epigenetic regulators and kinase signaling networks. J. Exp. Clin. Cancer Res. 2024, 43, 12. [Google Scholar] [CrossRef]
- Detti, B.; Scoccianti, S.; Teriaca, M.A.; Maragna, V.; Lorenzetti, V.; Lucidi, S.; Bellini, C.; Greto, D.; Desideri, I.; Livi, L. Bevacizumab in recurrent high-grade glioma: A single institution retrospective analysis on 92 patients. La Radiol. Medica 2021, 126, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; De Salvo, G.L.; Brandes, A.A.; Eoli, M.; Rudà, R.; Faedi, M.; Lolli, I.; Pace, A.; Daniele, B.; Pasqualetti, F.; et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019, 20, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, A.; Zhang, W.; Strauss, U.P.; Fellous, M.; Korei, M.; Keating, K. A systematic review and meta-analysis of neurotrophic tyrosine receptor kinase gene fusion frequencies in solid tumors. Ther. Adv. Med. Oncol. 2020, 12, 1758835920975613. [Google Scholar] [CrossRef]
- Kummar, S.; Lassen, U.N. TRK Inhibition: A New Tumor-Agnostic Treatment Strategy. Target. Oncol. 2018, 13, 545–556. [Google Scholar] [CrossRef]
- Singh, N.; Miner, A.; Hennis, L.; Mittal, S. Mechanisms of temozolomide resistance in glioblastoma—A comprehensive review. Cancer Drug Resist. 2020, 4, 17–43. [Google Scholar] [CrossRef]
- Bazhenova, L.; Lokker, A.; Snider, J.; Castellanos, E.; Fisher, V.; Fellous, M.; Nanda, S.; Zong, J.; Keating, K.; Jiao, X. TRK Fusion Cancer: Patient Characteristics and Survival Analysis in the Real-World Setting. Target. Oncol. 2021, 16, 389–399. [Google Scholar] [CrossRef]
- Bridgewater, J.; Jiao, X.; Parimi, M.; Flach, C.; Stratford, J.; Kamburov, A.; Schmitz, A.; Zong, J.; Reeves, J.A.; Keating, K.; et al. Abstract 394: Prognosis and molecular characteristics of patients with TRK fusion cancer in the 100,000 Genomes Project. Cancer Res. 2021, 81, 394. [Google Scholar] [CrossRef]
- Sabnis, A.J.; Bivona, T.G. Principles of Resistance to Targeted Cancer Therapy: Lessons from Basic and Translational Cancer Biology. Trends Mol. Med. 2019, 25, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, K.T.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; O’Dwyer, P.J.; Lee, R.J.; Grippo, J.F.; Nolop, K.; et al. Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.V.; Bergers, G. Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol. 2012, 2, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Kotch, C.; Fox, E.; Surrey, L.F.; Wertheim, G.B.; Baloch, Z.W.; Lin, F.; Pillai, V.; Luo, M.; Kreiger, P.A.; et al. NTRK Fusions Identified in Pediatric Tumors: The Frequency, Fusion Partners, and Clinical Outcome. JCO Precis. Oncol. 2021, 5, 204–214. [Google Scholar] [CrossRef]
- Wang, T.; Yu, D.; Lamb, M.L. Trk kinase inhibitors as new treatments for cancer and pain. Expert Opin. Ther. Patents 2009, 19, 305–319. [Google Scholar] [CrossRef]
- Wang, Y.; Long, P.; Wang, Y.; Ma, W. NTRK Fusions and TRK Inhibitors: Potential Targeted Therapies for Adult Glioblastoma. Front. Oncol. 2020, 10, 593578. [Google Scholar] [CrossRef]
- Lang, S.-S.; Beslow, L.A.; Gabel, B.; Judkins, A.R.; Fisher, M.J.; Sutton, L.N.; Storm, P.B.; Heuer, G.G. Surgical Treatment of Brain Tumors in Infants Younger than Six Months of Age and Review of the Literature. World Neurosurg. 2011, 78, 137–144. [Google Scholar] [CrossRef]
- Kummar, S.; Italiano, A.; Brose, M.; Carlson, J.; Sullivan, S.; Lassen, U.; Federman, N. Diagnosis and management of TRK fusion cancer. Am. J. Manag. Care 2022, 28, S15–S25. [Google Scholar] [CrossRef]
- Vaishnavi, A.; Le, A.T.; Doebele, R.C. TRKing Down an Old Oncogene in a New Era of Targeted Therapy. Cancer Discov. 2015, 5, 25–34. [Google Scholar] [CrossRef]
- Thiele, C.J.; Li, Z.; McKee, A.E. On Trk—The TrkB Signal Transduction Pathway Is an Increasingly Important Target in Cancer Biology. Clin. Cancer Res. 2009, 15, 5962–5967. [Google Scholar] [CrossRef]
- Crotty, E.E.; Sato, A.A.; Abdelbaki, M.S. Integrating MAPK pathway inhibition into standard-of-care therapy for pediatric low-grade glioma. Front. Oncol. 2025, 15, 1520316. [Google Scholar] [CrossRef] [PubMed]
- Ater, J.L.; Zhou, T.; Holmes, E.; Mazewski, C.M.; Booth, T.N.; Freyer, D.R.; Lazarus, K.H.; Packer, R.J.; Prados, M.; Sposto, R.; et al. Randomized Study of Two Chemotherapy Regimens for Treatment of Low-Grade Glioma in Young Children: A Report from the Children’s Oncology Group. J. Clin. Oncol. 2012, 30, 2641–2647. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.P.Y.; Hastings, C.; Wu, S.; Bass, J.K.; Heitzer, A.M.; Ashford, J.; Vestal, R.; Hoehn, M.E.; Ghazwani, Y.; Acharya, S.; et al. Treatment burden and long-term health deficits of patients with low-grade gliomas or glioneuronal tumors diagnosed during the first year of life. Cancer 2019, 125, 1163–1175. [Google Scholar] [CrossRef] [PubMed]
- Martineau, C.; Turcotte, M.-K.; Otis, N.; Provost, F.; Themens, L.; Guay, M.-P.; Letarte, N.; Adam, J.-P. Management of adverse events related to first-generation tyrosine receptor kinase inhibitors in adults: A narrative review. Support. Care Cancer 2022, 30, 10471–10482. [Google Scholar] [CrossRef]
- Guerreiro Stucklin, A.S.; Ryall, S.; Fukuoka, K.; Zapotocky, M.; Lassaletta, A.; Li, C.; Bridge, T.; Kim, B.; Arnoldo, A.; Kowalski, P.E.; et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat. Commun. 2019, 10, 4343. [Google Scholar] [CrossRef]
Study | Sample | Age (y/o) | Therapeutic Lines Before TRK Inhibitor (Patients) | PFS from Drug Introduction (Months) | Risk of Bias (JBI) |
---|---|---|---|---|---|
Doz et al. [28] | A: 6 | 50 * | 3 (2) 4 or more (4) | 7 * | Low (8%) |
P: 12 | 6 * | 1 (1) 2 (4) 3 (2) 4 or more (5) | 12 * | ||
Kim et al. [29] | A: 1 | 67 | 3 | 6 | Low (11%) |
P: 1 | 2 | 3 | 36 | ||
Ziegler et al. [30] | P: 1 | 3 | 3 | 9 | Low (25%) |
Simoneau et al. [31] | P: 1 | 11 months | 0 | 36 | Low (12%) |
Alharbi et al. [32] | P: 1 | 18 months | 1 | 8 | Low (12%) |
Mangum et al. [33] | P: 1 | 6 | 2 | 10 | Low (12%) |
Waters et al. [34] | P: 1 | 8 months | 2 | 12 | Low (12%) |
Barritault et al. [35] | P: 1 | 1 | 4 | 8 | Low (12%) |
Lamoureux et al. [36] | A: 11 P: 12 | 50 * 4.5 * | 3 (4) 4 or more (7) 1 (7) 2 (1) 3 (1) 4 or more (3) | 8 * 19.5 * | Low (8%) |
König et al. [37] | A: 1 | 80 | 1 | 3 | Low (0%) |
Mançano et al. [38] | P: 1 | 9 months | 2 | 8 | Low (25%) |
Carter-Febres et al. [39] | P: 1 | / | 2 | 15 | Low (25%) |
Pearce et al. [40] | P: 1 | <5 | 2 | 45 | Low (12%) |
Di Ruscio et al. [41] | P: 1 | <1 | 3 | 47 | Low (0%) |
Keddy et al. [42] | P: 1 | 3 | 2 | 6 | Low (0%) |
aHGG | pHGG | p-Value | |
---|---|---|---|
Mean PFS from drug introduction (months) | 8.5 (±3.5) | 17 (±10.5) | <0.001 |
Mean tumor volume reduction from drug introduction | 0.07 (±0.36) | 0.52 (±0.4) | 0.018 |
Mean PFS for patients with 24-week disease control (months) | 8 (±3) | 18.6 (±10) | 0.005 |
Twenty-four-week disease control rate | 83% | 88% | |
Patients with complete or partial response at first MRI follow-up (RANO) | 57% | 94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzaro, M.D.; Fanizzi, C.; Fiore, G.; Remore, L.G.; Ampollini, A.M.; Pluderi, M.; Caroli, M.; Locatelli, M. TRK Inhibitors in Adult and Pediatric High-Grade Gliomas: A Systematic Review and Individual Participant Data Meta-Analysis. Cancers 2025, 17, 2089. https://doi.org/10.3390/cancers17132089
Rizzaro MD, Fanizzi C, Fiore G, Remore LG, Ampollini AM, Pluderi M, Caroli M, Locatelli M. TRK Inhibitors in Adult and Pediatric High-Grade Gliomas: A Systematic Review and Individual Participant Data Meta-Analysis. Cancers. 2025; 17(13):2089. https://doi.org/10.3390/cancers17132089
Chicago/Turabian StyleRizzaro, Massimiliano Domenico, Claudia Fanizzi, Giorgio Fiore, Luigi Gianmaria Remore, Antonella Maria Ampollini, Mauro Pluderi, Manuela Caroli, and Marco Locatelli. 2025. "TRK Inhibitors in Adult and Pediatric High-Grade Gliomas: A Systematic Review and Individual Participant Data Meta-Analysis" Cancers 17, no. 13: 2089. https://doi.org/10.3390/cancers17132089
APA StyleRizzaro, M. D., Fanizzi, C., Fiore, G., Remore, L. G., Ampollini, A. M., Pluderi, M., Caroli, M., & Locatelli, M. (2025). TRK Inhibitors in Adult and Pediatric High-Grade Gliomas: A Systematic Review and Individual Participant Data Meta-Analysis. Cancers, 17(13), 2089. https://doi.org/10.3390/cancers17132089