Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,365)

Search Parameters:
Keywords = TNFα

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8210 KiB  
Article
Effects of Forest Environments in Attenuating D-Galactose-Induced Immunosenescence: Insights from a Murine Model
by Yanling Li and Xiaocong Li
Biology 2025, 14(8), 998; https://doi.org/10.3390/biology14080998 (registering DOI) - 5 Aug 2025
Abstract
With the global aging population on the rise, identifying environmental factors that modulate immunosenescence is critical for health interventions. While urban green spaces are known to confer health benefits, the long-term effects of forest exposure on immunosenescence remain unclear. This study investigated the [...] Read more.
With the global aging population on the rise, identifying environmental factors that modulate immunosenescence is critical for health interventions. While urban green spaces are known to confer health benefits, the long-term effects of forest exposure on immunosenescence remain unclear. This study investigated the differential impacts of urban forest versus urban environments on immunosenescence using a D-galactose-induced murine model. Mice were assigned to urban or forest environments for 8 weeks, with serum cytokines (IL-2, IL-6, TNF-α, IFN-γ), T-cell subsets, and organ indices analyzed. Forest environments exhibited significantly higher humidity and negative air ion concentrations alongside lower noise levels compared to urban settings. Aged forest-exposed mice showed attenuated immunosenescence markers, including significantly lower IL-6 levels (p < 0.01) and improved thymic indices, suggesting urban forest environments may mitigate immune decline. These findings highlight the potential of urban forests in promoting healthy aging, advocating for their integration into urban planning. Further human studies are warranted to translate these findings into public health strategies. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

18 pages, 3120 KiB  
Article
Měnglà Virus VP40 Localizes to the Nucleus and Impedes the RIG-I Signaling Pathway
by Joyce Sweeney Gibbons, Naveen Thakur, Emma Komers, Olivia A. Vogel, Poushali Chakraborty, JoAnn M. Tufariello and Christopher F. Basler
Viruses 2025, 17(8), 1082; https://doi.org/10.3390/v17081082 - 5 Aug 2025
Abstract
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair [...] Read more.
Měnglà virus (MLAV) is a member of the genus Dianlovirus in the family Filoviridae, which also includes Ebola virus (EBOV) and Marburg virus (MARV). Whether MLAV poses a threat to human health is uncertain. However, the MLAV VP35 and VP40 proteins can impair IFNα/β gene expression and block IFNα/β-induced Jak-STAT signaling, respectively, suggesting the capacity to counteract human innate immune defenses. In this study, MLAV VP40 is demonstrated to impair the Sendai virus (SeV)-induced activation of the IFNβ promoter. Inhibition is independent of the MLAV VP40 PPPY late-domain motif that interacts with host proteins possessing WW-domains to promote viral budding. Similar IFNβ promoter inhibition was not detected for EBOV or MARV VP40. MLAV VP40 exhibited lesser capacity to inhibit TNFα activation of an NF-κB reporter gene. MLAV VP40 impaired IFNβ promoter activation by an over-expressed, constitutively active form of RIG-I and by the over-expressed IRF3 kinases TBK1 and IKKε. However, MLAV VP40 did not inhibit IFNβ promoter activation by constitutively active IRF3 5D. Consistent with these findings, MLAV VP40 inhibited SeV-induced IRF3 phosphorylation. Although IRF3 phosphorylation occurs in the cytoplasm, MLAV VP40 exhibits substantial nuclear localization, accumulating in foci in HeLa cell nuclei. In contrast, the VP40 of EBOV and MARV exhibited lower degrees of nuclear localization and did not accumulate in foci. MLAV VP40 interacts with importin alpha-1 (IMPα1), suggesting entry via the IMPα/IMPβ nuclear import pathway. Cumulatively, these data identify novel features that distinguish MLAV VP40 from its homologues in EBOV and MARV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 1181 KiB  
Article
Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats
by John Nicholas Jackowetz, Carly S. Hanson, Minto Michael, Kiriako Tsoukalas, Cassandra Villanueva and Peter A. Kozak
Nanomaterials 2025, 15(15), 1193; https://doi.org/10.3390/nano15151193 - 5 Aug 2025
Abstract
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase [...] Read more.
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase design, UFB concentration was increased from 1.7 × 106 to 6.5 × 109 UFBs/mL at week 7 to assess dose-dependent effects. Administration of UFBs in drinking water induced significant shifts in gut microbiome populations, characterized by increased Bacteroidetes (+122% weeks 8–12) and decreased Firmicutes (−43% weeks 8–12) compared to controls. These microbial shifts coincided with enhanced short-chain fatty acid production (butyrate +56.0%, p ≤ 0.001; valerate +63.1%, p ≤ 0.01) and reduced inflammatory markers (TNF-α −84.0%, p ≤ 0.05; IL-1β −41.0%, p ≤ 0.05; IL-10 −69.8%, p ≤ 0.05). UFB effects demonstrated systematic concentration-dependent threshold responses, with 85.7% of parameters exhibiting directional reversals between low (1.7 × 106 UFBs/mL) and high (6.5 × 109 UFBs/mL) concentration phases rather than linear dose–response relationships. The systematic nature of these threshold effects, with 71.4% of parameters achieving statistical significance (p ≤ 0.05), indicates concentration-dependent biological mechanisms rather than random effects on gut biology. Despite current metagenomic techniques identifying only 25% of the total gut microbiome, the observed changes in characterized species and metabolites demonstrate UFB technology’s therapeutic potential for conditions requiring microbiome modulation, providing new insights into UFB influence on complex biological systems. Full article
(This article belongs to the Special Issue Nanobubbles and Nanodroplets: Current State-of-the-Art)
Show Figures

Figure 1

14 pages, 2266 KiB  
Article
PCV2 Infection Upregulates SOCS3 Expression to Facilitate Viral Replication in PK-15 Cells
by Yiting Li, Hongmei Liu, Yi Wu, Xiaomei Zhang, Juan Geng, Xin Wu, Wengui Li, Zhenxing Zhang, Jianling Song, Yifang Zhang and Jun Chai
Viruses 2025, 17(8), 1081; https://doi.org/10.3390/v17081081 - 5 Aug 2025
Abstract
Porcine circovirus type 2 (PCV2) is a globally prevalent swine pathogen that induces immunosuppression, predisposing pigs to subclinical infections. In intensive farming systems, PCV2 persistently impairs growth performance and vaccine efficacy, leading to substantial economic losses in the swine industry. Emerging evidence suggests [...] Read more.
Porcine circovirus type 2 (PCV2) is a globally prevalent swine pathogen that induces immunosuppression, predisposing pigs to subclinical infections. In intensive farming systems, PCV2 persistently impairs growth performance and vaccine efficacy, leading to substantial economic losses in the swine industry. Emerging evidence suggests that certain viruses exploit Suppressor of Cytokine Signaling 3 (SOCS3), a key immune checkpoint protein, to subvert host innate immunity by suppressing cytokine signaling. While SOCS3 has been implicated in various viral infections, its regulatory role in PCV2 replication remains undefined. This study aims to elucidate the mechanisms underlying the interplay between SOCS3 and PCV2 during viral pathogenesis. Porcine SOCS3 was amplified using RT-PCR and stably overexpressed in PK-15 cells through lentiviral delivery. Bioinformatics analysis facilitated the design of three siRNA candidates targeting SOCS3. We systematically investigated the effects of SOCS3 overexpression and knockdown on PCV2 replication kinetics and host antiviral responses by quantifying the viral DNA load and the mRNA levels of cytokines. PCV2 infection upregulated SOCS3 expression at both transcriptional and translational levels in PK-15 cells. Functional studies revealed that SOCS3 overexpression markedly enhanced viral replication, whereas its knockdown suppressed viral proliferation. Intriguingly, SOCS3-mediated immune modulation exhibited a divergent regulation of antiviral cytokines: PCV2-infected SOCS3-overexpressing cells showed elevated IFN-β but suppressed TNF-α expressions, whereas SOCS3 silencing conversely downregulated IFN-β while amplifying TNF-α responses. This study unveils a dual role of SOCS3 during subclinical porcine circovirus type 2 (PCV2) infection: it functions as a host-derived pro-viral factor that facilitates viral replication while simultaneously reshaping the cytokine milieu to suppress overt inflammatory responses. These findings provide novel insights into the mechanisms underlying PCV2 immune evasion and persistence and establish a theoretical framework for the development of host-targeted control strategies. Although our results identify SOCS3 as a key host determinant of PCV2 persistence, the precise molecular pathways involved require rigorous experimental validation. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

25 pages, 1238 KiB  
Article
Myokine Circulating Levels in Postmenopausal Women with Overweight or Obesity: Effects of Resistance Training and/or DHA-Rich n-3 PUFA Supplementation
by Alejandro Martínez-Gayo, Elisa Félix-Soriano, Javier Ibáñez-Santos, Marisol García-Unciti, Pedro González-Muniesa, María J. Moreno-Aliaga and on behalf of OBELEX Project
Nutrients 2025, 17(15), 2553; https://doi.org/10.3390/nu17152553 - 5 Aug 2025
Abstract
Background: Menopause increases the risk of cardiovascular diseases (CVD) accompanied by a decline in muscle function. Myokines, released by skeletal muscle, could play a significant role in cardiovascular health. Objectives and Methods: This study aimed to investigate the changes induced by a 16-week [...] Read more.
Background: Menopause increases the risk of cardiovascular diseases (CVD) accompanied by a decline in muscle function. Myokines, released by skeletal muscle, could play a significant role in cardiovascular health. Objectives and Methods: This study aimed to investigate the changes induced by a 16-week resistance training (RT) program and/or the docosahexaenoic acid (DHA)-rich n-3 PUFA supplementation on myokine and cytokine circulating levels and to study their associations with parameters of body composition, muscle function, and glucose and lipid serum markers in postmenopausal women with overweight/obesity. Results: At baseline, interleukin-6 (IL-6) levels were positively correlated with body fat and with tumor necrosis factor-alpha (TNF-α) levels and negatively associated with meterorin-like (METRNL) levels. Moreover, METRNL was inversely associated with insulin levels and with HOMA-IR. After the intervention, muscle quality improved with either treatment but more notably in response to RT. N-3 supplementation caused significant improvements in cardiometabolic health markers. TNF-α decreased in all experimental groups. Myostatin levels decreased in the RT and in the n-3 groups, and IL-6 increased in the n-3+RT group. Lastly, no interactions between treatments were observed. Conclusions: In postmenopausal women with overweight or obesity, RT could help improve skeletal muscle function, while DHA-rich n-3 supplementation might decrease CVD risk and might potentially improve muscle function. The modulation of myokine levels could be underlying some of the effects of DHA or RT; however, further research is necessary. Full article
Show Figures

Figure 1

19 pages, 1348 KiB  
Review
Immune Dysregulation Connecting Type 2 Diabetes and Cardiovascular Complications
by Katherine Deck, Christoph Mora, Shuoqiu Deng, Pamela Rogers, Tonya Rafferty, Philip T. Palade, Shengyu Mu and Yunmeng Liu
Life 2025, 15(8), 1241; https://doi.org/10.3390/life15081241 - 5 Aug 2025
Abstract
Type 2 diabetes (T2D) is a prevalent metabolic disorder characterized by persistent hyperglycemia, hyperinsulinemia, and long-term cardiovascular complications. Another hallmark of T2D is disrupted hormonal homeostasis—marked by elevated levels of insulin and leptin and reduced adiponectin—which plays a crucial role in modulating immune [...] Read more.
Type 2 diabetes (T2D) is a prevalent metabolic disorder characterized by persistent hyperglycemia, hyperinsulinemia, and long-term cardiovascular complications. Another hallmark of T2D is disrupted hormonal homeostasis—marked by elevated levels of insulin and leptin and reduced adiponectin—which plays a crucial role in modulating immune cell function. Individuals with T2D exhibit a skewed immune profile, with an elevated secretion of pro-inflammatory cytokines such as IFN-γ, TNF-α, IL17, and IL6, which are well-established drivers of vascular inflammation and dysfunction. Moreover, dysregulated metabolic hormones in T2D promote the acquisition of a pro-inflammatory phenotype in immune cells, suggesting that these hormones not only regulate energy balance but also serve as potent immune activators. Their dysregulation likely plays a significant—and perhaps underappreciated—role in the onset and progression of diabetic cardiovascular complications. Full article
Show Figures

Figure 1

19 pages, 2795 KiB  
Article
Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury?
by Noemí Del Toro-Cisneros, José C. Páez-Franco, Miguel A. Martínez-Rojas, Isaac González-Soria, Juan Antonio Ortega-Trejo, Hilda Sánchez-Vidal, Norma A. Bobadilla, Alfredo Ulloa-Aguirre and Olynka Vega-Vega
Diagnostics 2025, 15(15), 1960; https://doi.org/10.3390/diagnostics15151960 - 5 Aug 2025
Abstract
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at [...] Read more.
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at 90 days, and the mortality in patients with critical COVID-19 and AKI requiring kidney replacement therapy (KRT). Methods: The study included patients with critical COVID-19 on invasive mechanical ventilation (IMV) requiring KRT. Blood and urine samples were obtained when KRT was initiated (day zero), and thereafter on days 1, 3, 7, and 14 post-replacement. uSerpinA3, kidney injury molecule-1 (uKIM-1), and neutrophil gelatinase-associated lipocalin (uNGAL) were measured in urine, and interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-α) in peripheral blood. In addition, metabolomics in sample days zero and 3, and in the survivors on sample day 90 was performed by employing gas chromatography coupled with mass spectrometry. Results: A total of 60 patients were recruited, of whom 29 (48%) survived hospitalization and recovered kidney function by day 90. In the survivors, 79% presented complete recovery (CRR) and the remaining (21%) recovered partially (PRR). In terms of uSerpinA3, levels on days 7 and 14 predicted CRR, with AUC values of 0.68 (p = 0.041) and 0.71 (p = 0.030), respectively, as well as mortality, with AUC values of 0.75 (p = 0.007) and 0.76 (p = 0.015), respectively. Among the other biomarkers, the excretion of uKIM-1 on day zero of KRT had a superior performance as a CRR predictor [(AUC, 0.71 (p = 0.017)], and as a mortality predictor [AUC, 0.68 (p = 0.028)]. In the metabolomics analysis, we identified four distinct profiles; the metabolite that maintained statistical significance in predicting mortality was p-cresol glucuronide. Conclusions: This study strongly suggests that uSerpinA3 and uKIM-1 can predict CRR and mortality in patients with critical COVID-19 and AKI requiring KRT. Metabolic analysis appears promising for identifying affected pathways and their clinical impact in this population. Full article
Show Figures

Figure 1

23 pages, 1757 KiB  
Article
Antifungal and Immunomodulatory Activities of Brazilian Savannah Solanum lypocarpum Tree-Associated Streptomyces Isolates
by Camila Bontempo Nunes, Kunal Ranjan, Fernando Pacheco Rodrigues, Marjorie de Carvalho Vieira Queiroz, Clara Luna Freitas Marina, Luis Alexandre Muehlmann, Anamélia Lorenzetti Bocca and Marcio José Poças-Fonseca
Pharmaceuticals 2025, 18(8), 1158; https://doi.org/10.3390/ph18081158 - 5 Aug 2025
Abstract
Background/Objectives: Actinobacteria are one of the largest bacterial phyla. These microbes produce bioactive compounds, such as antifungals, antibiotics, immunological modulators, and anti-tumor agents. Studies on actinobacteria isolated from the Brazilian Savannah biome (Cerrado) are scarce and mostly address metagenomics or the search for [...] Read more.
Background/Objectives: Actinobacteria are one of the largest bacterial phyla. These microbes produce bioactive compounds, such as antifungals, antibiotics, immunological modulators, and anti-tumor agents. Studies on actinobacteria isolated from the Brazilian Savannah biome (Cerrado) are scarce and mostly address metagenomics or the search for hydrolytic enzyme-producing microbes. Solanum lycocarpum (lobeira) is a tree widely employed in regional gastronomy and pharmacopeia in Central Brazil. Methods: In this work, 60 actinobacteria isolates were purified from the rhizosphere of S. lycocarpum. Eight Streptomyces spp. isolates were selected for in vitro antifungal activity against Cryptococcus neoformans H99, the C. neoformans 89-610 fluconazole-tolerant strain, C. gattii NIH198, Candida albicans, C. glabrata, and C. parapsilosis. The ability of the aqueous extracts of the isolates to induce the in vitro secretion of tumor necrosis factor (TNF-α), nitric oxide (NO), interleukin-6 (IL-6), and IL-10 by murine macrophages was also evaluated. Results: All extracts showed antifungal activity against at least two yeast species. Streptomyces spp. LAP11, LDB2, and LDB17 inhibited C. neoformans growth by 40–93%. Most extracts (except LAP2) also inhibited C. gattii. None inhibited C. albicans, but all inhibited C. glabrata (40–90%). Streptomyces sp. LAP8 extract increased nitric oxide production by approximately 347-fold in murine macrophages, while LDB11 extract suppressed LPS-induced TNF-α production by 70% and simultaneously increased IL-10 secretion, suggesting immunosuppressive potential. Conclusions: The results revealed that Cerrado actinobacteria-derived aqueous extracts are potential sources of antifungal and immunomodulatory biocompounds. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

14 pages, 507 KiB  
Article
The Cytotoxic Potential of Humanized γδ T Cells Against Human Cancer Cell Lines in In Vitro
by Husheem Michael, Abigail T. Lenihan, Mikaela M. Vallas, Gene W. Weng, Jonathan Barber, Wei He, Ellen Chen, Paul Sheiffele and Wei Weng
Cells 2025, 14(15), 1197; https://doi.org/10.3390/cells14151197 - 4 Aug 2025
Abstract
Cancer is a major global health issue, with rising incidence rates highlighting the urgent need for more effective treatments. Despite advances in cancer therapy, challenges such as adverse effects and limitations of existing treatments remain. Immunotherapy, which harnesses the body’s immune system to [...] Read more.
Cancer is a major global health issue, with rising incidence rates highlighting the urgent need for more effective treatments. Despite advances in cancer therapy, challenges such as adverse effects and limitations of existing treatments remain. Immunotherapy, which harnesses the body’s immune system to target cancer cells, offers promising solutions. Gamma delta (γδ) T cells are noteworthy due to their potent ability to kill various cancer cells without needing conventional antigen presentation. Recent studies have focused on the role of γδ T cells in α-galactosylceramide (α-GalCer)-mediated immunity, opening new possibilities for cancer immunotherapy. We engineered humanized T cell receptor (HuTCR)-T1 γδ mice by replacing mouse sequences with human counterparts. This study investigates the cytotoxic activity of humanized γδ T cells against several human cancer cell lines (A431, HT-29, K562, and Daudi) in vitro, aiming to elucidate mechanisms underlying their anticancer efficacy. Human cancer cells were co-cultured with humanized γδ T cells, with and without α-GalCer, for 24 h. The humanized γδ T cells showed enhanced cytotoxicity across all tested cancer cell lines compared to wild-type γδ T cells. Additionally, γδ T cells from HuTCR-T1 mice exhibited higher levels of anticancer cytokines (IFN-γ, TNF-α, and IL-17) and Granzyme B, indicating their potential as potent mediators of anticancer immune responses. Blocking γδ T cells’ cytotoxicity confirmed their γδ-mediated function. These findings represent a significant step in preclinical development of γδ T cell-based cancer immunotherapies, providing insights into their mechanisms of action, optimization of therapeutic strategies, and identification of predictive biomarkers for clinical application. Full article
(This article belongs to the Special Issue Unconventional T Cells in Health and Disease)
Show Figures

Figure 1

13 pages, 745 KiB  
Review
Salivary Biomarkers for Early Detection of Autism Spectrum Disorder: A Scoping Review
by Margherita Tumedei, Niccolò Cenzato, Sourav Panda, Funda Goker and Massimo Del Fabbro
Oral 2025, 5(3), 56; https://doi.org/10.3390/oral5030056 - 4 Aug 2025
Abstract
Background: Autism spectrum disorder (ASD) represents a neurobiological disorder with a high prevalence in the children’s population. The aim of the present review was to assess the current evidence on the use of salivary biomarkers for the early diagnosis of ASD. Materials and [...] Read more.
Background: Autism spectrum disorder (ASD) represents a neurobiological disorder with a high prevalence in the children’s population. The aim of the present review was to assess the current evidence on the use of salivary biomarkers for the early diagnosis of ASD. Materials and methods: A search was conducted on the electronic databases PUBMED/Medline, Google Scholar and Scopus for the retrieval of articles concerning the study topic. Results: A total of 22 studies have been included in the present review considering 21 articles identified from databases and 1 article included using a manual search. A wide range of biomarkers have been proposed for early detection of ASD diseases including nonspecific inflammation markers like interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor α (TNFα), oxidative stress markers like superoxide dismutase and glutathione peroxidase, hormones such as cortisol and oxytocin, various microRNAs including miR-21, miR-132 and miR-137, and exosomes. The techniques used for biomarke detection may vary according to molecule type and concentration. Conclusions: salivary biomarkers could represent a potential useful tool for the primary detection of several systemic diseases including ASD, taking advantage of non-invasiveness and cost-effective capability compared to other biofluid-based diagnostic techniques. Full article
Show Figures

Figure 1

27 pages, 3015 KiB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

28 pages, 1577 KiB  
Article
Prevalence of Anti-Anisakis simplex Antibodies in a Cohort of Patients with Inflammatory Bowel Disease in Norway
by María P. de la Hoz-Martín, Juan González-Fernández, Juan Carlos Andreu-Ballester, Marte L. Hoivik, Petr Ricanek, Torunn Bruland, Arne K. Sandvik, Carmen Cuéllar and Ignacio Catalán-Serra
Pathogens 2025, 14(8), 769; https://doi.org/10.3390/pathogens14080769 (registering DOI) - 4 Aug 2025
Abstract
This study assessed the seroprevalence of anti-Anisakis simplex antibodies in Norwegian patients with inflammatory bowel disease (IBD), specifically ulcerative colitis (UC) and Crohn’s disease (CD), compared with healthy controls. Associations between anti-A. simplex antibody positivity and clinical or laboratory parameters in [...] Read more.
This study assessed the seroprevalence of anti-Anisakis simplex antibodies in Norwegian patients with inflammatory bowel disease (IBD), specifically ulcerative colitis (UC) and Crohn’s disease (CD), compared with healthy controls. Associations between anti-A. simplex antibody positivity and clinical or laboratory parameters in IBD were also explored. A total of 86 UC patients, 68 CD patients, and 41 healthy controls were prospectively enrolled from four Norwegian hospitals (2013–2022). Diagnosis and disease activity were established using standard clinical, endoscopic, and biomarker criteria. Serum samples were analyzed for total Ig, IgG, IgM, IgA, and IgE antibodies against A. simplex and Pseudoterranova decipiens using ELISA. Anti-A. simplex IgG seroprevalence was 4.9% in controls and 3.2% in IBD (3.5% UC, 2.9% CD). IgM seroprevalence was 0% in all groups. IgA seroprevalence was higher in IBD (16.2%) than controls (4.9%), with 14.0% in UC and 19.1% in CD. IgE seroprevalence was low across all groups. Smoking correlated with lower antibody levels and higher surgery rates. In UC, higher anti-A. simplex IgG and IgE levels were associated with milder disease and better prognosis. Anti-TNFα and azathioprine treatments were linked to higher anti-A. simplex IgA. Norwegian UC and CD patients had significantly higher anti-A. simplex total Ig and IgA seroprevalence than healthy controls, indicating increased exposure or immune response. Anti-A. simplex IgG and IgE may serve as markers of clinical activity in UC. Further research is warranted to clarify the clinical significance of these findings. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Graphical abstract

17 pages, 3172 KiB  
Article
The Effect of Ketamine on the Immune System in Patients with Treatment-Resistant Depression
by Łukasz P. Szałach, Klaudia Ciesielska-Figlon, Agnieszka Daca, Wiesław J. Cubała and Katarzyna A. Lisowska
Int. J. Mol. Sci. 2025, 26(15), 7500; https://doi.org/10.3390/ijms26157500 (registering DOI) - 3 Aug 2025
Viewed by 60
Abstract
Treatment-resistant depression (TRD) is associated with immune dysregulation. Ketamine, a rapid-acting antidepressant, may exert effects via immunomodulation. The aim was to examine ketamine’s impact on immune markers in TRD, including T-cell subsets, cytokines, and in vitro T-cell responses. Eighteen TRD inpatients received 0.5 [...] Read more.
Treatment-resistant depression (TRD) is associated with immune dysregulation. Ketamine, a rapid-acting antidepressant, may exert effects via immunomodulation. The aim was to examine ketamine’s impact on immune markers in TRD, including T-cell subsets, cytokines, and in vitro T-cell responses. Eighteen TRD inpatients received 0.5 mg/kg iv ketamine. Blood was sampled at baseline, 4 h, and 24 h to analyze T-cell phenotypes (CD28, CD69, CD25, CD95, HLA-DR) and serum cytokines (IL-6, IL-8, IL-10, TNF-α, IL-1β, IL-12p70). In vitro, PBMCs from TRD patients and controls were exposed to low (185 ng/mL) and high (300 ng/mL) ketamine doses. Ketamine induced a transient increase in total T cells and CD4+CD25+ and CD4+CD28+ subsets at 4 h, followed by a reduction in CD4+ and an increase in CD8+ T cells at 24 h, decreasing the CD4+/CD8+ ratio. Activation markers (CD4+CD69+, CD4+HLA-DR+, CD8+CD25+, CD8+HLA-DR+) declined at 24 h. Serum IL-10 increased, IL-6 decreased, and IL-8 levels—initially elevated—showed a sustained reduction. In vitro, high-dose ketamine enhanced the proliferation of TRD CD4+ T cells and dose-dependent IL-8 and IL-6 secretion from activated cells. Ketamine induces rapid, transient immune changes in TRD, including reduced T-cell activation and cytokine modulation. A sustained IL-8 decrease suggests anti-inflammatory effects and potential as a treatment-response biomarker. Full article
Show Figures

Figure 1

18 pages, 2123 KiB  
Article
Neuroprotective Effect Against Ischemic Stroke of the Novel Functional Drink Containing Anthocyanin and Dietary Fiber Enriched-Functional Ingredient from the Mixture of Banana and Germinated Jasmine Rice
by Mubarak Muhammad, Jintanaporn Wattanathorn, Wipawee Thukham-mee, Sophida Phuthong and Supaporn Muchimapura
Life 2025, 15(8), 1222; https://doi.org/10.3390/life15081222 - 2 Aug 2025
Viewed by 92
Abstract
Due to the stroke-protective effects of dietary fiber and anthocyanin together with the synergistic interaction, we hypothesized that the functional drink containing the anthocyanins and dietary fiber-enriched functional ingredient from banana and germinated black Jasmine rice (BR) should protect against ischemic stroke. [...] Read more.
Due to the stroke-protective effects of dietary fiber and anthocyanin together with the synergistic interaction, we hypothesized that the functional drink containing the anthocyanins and dietary fiber-enriched functional ingredient from banana and germinated black Jasmine rice (BR) should protect against ischemic stroke. BR at doses of 300, 600, and 900 mg/kg body weight (BW) was orally given to male Wistar rats weighing 290–350 g once daily for 21 days, and they were subjected to ischemic reperfusion injury induced by temporary occlusion of the middle cerebral artery (MCAO/IR) for 90 min. The treatment was prolonged for 21 days after MCAO/IR. They were assessed for brain infarction volume, neuron density, Nrf2, MDA, and catalase in the cortex together with serum TNF-α and IL-6. Lactobacillus and Bifidobacterium spp. in feces were also assessed. Our results showed that BR improved the increase in brain infarcted volume, MDA, TNF-α, and IL-6 and the decrease in neuron density, Nrf2, catalase, and both bacteria spp. induced by MCAO/IR. These data suggest the stroke-protective effect of the novel functional drink, and the action may involve the improvement of Nrf2, oxidative stress, inflammation, and the amount of Lactobacillus and Bifidobacterium spp. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
10 pages, 503 KiB  
Brief Report
RAGE Knockout Mitigates Diet-Induced Obesity and Metabolic Disruption
by Isabelle L. Palmer, Genevieve Parker, Alden T. Chiu, Colson G. Beus, Ethan P. Evans, Jack H. Radford, Cameron R. Braithwaite, Ryan D. van Slooten, Elijah T. Cooper-Leavitt, Zachary E. Moore, Derek M. Clarke, R. Ryley Parrish, Juan A. Arroyo, Paul R. Reynolds and Benjamin T. Bikman
Metabolites 2025, 15(8), 524; https://doi.org/10.3390/metabo15080524 - 2 Aug 2025
Viewed by 153
Abstract
Background/Objectives: The receptor for advanced glycation end products (RAGEs) has been implicated in obesity and metabolic dysfunction. However, its precise role in diet-induced obesity remains unclear. Methods: In this study, we investigated the metabolic consequences of RAGE knockout (RAGE KO) in mice subjected [...] Read more.
Background/Objectives: The receptor for advanced glycation end products (RAGEs) has been implicated in obesity and metabolic dysfunction. However, its precise role in diet-induced obesity remains unclear. Methods: In this study, we investigated the metabolic consequences of RAGE knockout (RAGE KO) in mice subjected to a Western diet (WD). Results: Our findings demonstrate that RAGE KO mice remained significantly leaner than their wild-type (WT) counterparts when fed a WD, exhibiting reduced body weight gain and smaller adipocyte size. Indirect calorimetry revealed that RAGE KO mice had increased oxygen consumption and locomotor activity compared to WT mice, indicating enhanced energy expenditure. Mitochondrial respiration assays indicated significantly greater oxygen consumption in RAGE KO animals. Additionally, systemic inflammation markers, such as TNF-α, were significantly lower in RAGE KO mice when fed a WD, indicating a reduction in diet-induced inflammatory responses. Conclusions: These findings suggest that RAGE plays a key role in metabolic homeostasis, and its deletion confers resistance to obesity and metabolic disruption induced by a Western diet. Targeting RAGE may provide a novel therapeutic approach for combating obesity and related metabolic disorders. Full article
(This article belongs to the Special Issue Fat and Glucose Metabolism)
Show Figures

Figure 1

Back to TopTop