Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = THC/THC-COOH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5236 KB  
Article
Are Δ9-Tetrahydrocannabinol and Its Major Metabolites Substrates or Inhibitors of Placental or Human Hepatic Drug Solute-Carrier Transporters?
by Xin Chen, Zsuzsanna Gáborik, Qingcheng Mao and Jashvant D. Unadkat
Int. J. Mol. Sci. 2024, 25(22), 12036; https://doi.org/10.3390/ijms252212036 - 9 Nov 2024
Cited by 1 | Viewed by 1561
Abstract
Δ9-Tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis which is being increasingly consumed by pregnant people. In humans, THC is sequentially metabolized in the liver to its circulating metabolites 11-hydroxy-THC (11-OH-THC, psychoactive) and 11-nor-9-carboxy-THC (THC-COOH, non-psychoactive). Human and [...] Read more.
Δ9-Tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis which is being increasingly consumed by pregnant people. In humans, THC is sequentially metabolized in the liver to its circulating metabolites 11-hydroxy-THC (11-OH-THC, psychoactive) and 11-nor-9-carboxy-THC (THC-COOH, non-psychoactive). Human and macaque data show that fetal exposure to THC is considerably lower than the corresponding maternal exposure. Through perfused human placenta studies, we showed that this is due to the active efflux of THC (fetal-to-maternal) by a placental transporter(s) other than P-glycoprotein or breast cancer resistance protein. The identity of this placental transporter(s) as well as whether THC or its metabolites are substrates or inhibitors of hepatic solute carrier transporters is unknown. Therefore, we investigated whether 5 μM THC, 0.3 μM 11-OH-THC, and 2.5 μM THC-COOH are substrates and/or inhibitors of placental or hepatic solute carrier transporters at their pharmacologically relevant concentrations. Using HEK cells overexpressing human OATP1B1, OATP1B3, OATP2B1, OCT1, OCT3, OAT2, OAT4, or NTCP, and prototypic substrates/inhibitors of these transporters, we found that THC and THC-COOH were substrates but not inhibitors of OCT1. THC-COOH was a weak substrate of OCT3 and a weak inhibitor of OAT4. THC, 11-OH-THC, and THC-COOH were found not to be substrates/inhibitors of the remaining transporters investigated. Full article
(This article belongs to the Special Issue Transporters in Health and Disease)
Show Figures

Figure 1

14 pages, 1303 KB  
Article
Cannabinoid-Induced Inhibition of Morphine Glucuronidation and the Potential for In Vivo Drug–Drug Interactions
by Shelby Coates, Keti Bardhi and Philip Lazarus
Pharmaceutics 2024, 16(3), 418; https://doi.org/10.3390/pharmaceutics16030418 - 18 Mar 2024
Cited by 7 | Viewed by 4332
Abstract
Opioids are commonly prescribed for the treatment of chronic pain. Approximately 50% of adults who are prescribed opioids for pain co-use cannabis with their opioid treatment. Morphine is primarily metabolized by UDP-glucuronosyltransferase (UGT) 2B7 to an inactive metabolite, morphine-3-glucuronide (M3G), and an active [...] Read more.
Opioids are commonly prescribed for the treatment of chronic pain. Approximately 50% of adults who are prescribed opioids for pain co-use cannabis with their opioid treatment. Morphine is primarily metabolized by UDP-glucuronosyltransferase (UGT) 2B7 to an inactive metabolite, morphine-3-glucuronide (M3G), and an active metabolite, morphine-6-glucuronide (M6G). Previous studies have shown that major cannabis constituents including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) inhibit major UGT enzymes. To examine whether cannabinoids or their major metabolites inhibit morphine glucuronidation by UGT2B7, in vitro assays and mechanistic static modeling were performed with these cannabinoids and their major metabolites including 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC), 7-hydroxy-cannabidiol (7-OH-CBD), and 7-carboxy-cannabidiol (7-COOH-CBD). In vitro assays with rUGT-overexpressing microsomes and human liver microsomes showed that THC and CBD and their metabolites inhibited UGT2B7-mediated morphine metabolism, with CBD and THC exhibiting the most potent Ki,u values (0.16 µM and 0.37 µM, respectively). Only 7-COOH-CBD exhibited no inhibitory activity against UGT2B7-mediated morphine metabolism. Static mechanistic modeling predicted an in vivo drug–drug interaction between morphine and THC after inhaled cannabis, and between THC, CBD, and 7-OH-CBD after oral consumption of cannabis. These data suggest that the co-use of these agents may lead to adverse drug events in humans. Full article
Show Figures

Figure 1

17 pages, 1881 KB  
Article
Cannabinoid-Induced Stereoselective Inhibition of R-S-Oxazepam Glucuronidation: Cannabinoid–Oxazepam Drug Interactions
by Keti Bardhi, Shelby Coates, Gang Chen and Philip Lazarus
Pharmaceutics 2024, 16(2), 243; https://doi.org/10.3390/pharmaceutics16020243 - 7 Feb 2024
Cited by 5 | Viewed by 3296
Abstract
Benzodiazepines (BZDs) such as oxazepam are commonly prescribed depressant drugs known for their anxiolytic, hypnotic, muscle relaxant, and anticonvulsant effects and are frequently used in conjunction with other illicit drugs including cannabis. Oxazepam is metabolized in an enantiomeric-specific manner by glucuronidation, with S-oxazepam [...] Read more.
Benzodiazepines (BZDs) such as oxazepam are commonly prescribed depressant drugs known for their anxiolytic, hypnotic, muscle relaxant, and anticonvulsant effects and are frequently used in conjunction with other illicit drugs including cannabis. Oxazepam is metabolized in an enantiomeric-specific manner by glucuronidation, with S-oxazepam metabolized primarily by UGT2B15 and R-oxazepam glucuronidation mediated by both UGT 1A9 and 2B7. The goal of the present study was to evaluate the potential inhibitory effects of major cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and major THC metabolites, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC), on the UGT-mediated metabolism of R- and S-oxazepam. The cannabinoids and metabolites were screened as inhibitors of R- and S-oxazepam glucuronidation in microsomes isolated from HEK293 cells overexpressing individual UGT enzymes (rUGTs). The IC50 values were determined in human liver microsomes (HLM), human kidney microsomes (HKM), and rUGTs and utilized to estimate the nonspecific, binding-corrected Ki (Ki,u) values and predict the area under the concentration–time curve ratio (AUCR). The estimated Ki,u values observed in HLM for S- and R-oxazepam glucuronidation by CBD, 11-OH-THC, and THC were in the micromolar range (0.82 to 3.7 µM), with the Ki,u values observed for R-oxazepam glucuronidation approximately 2- to 5-fold lower as compared to those observed for S-oxazepam glucuronidation. The mechanistic static modeling predicted a potential clinically significant interaction between oral THC and CBD with oxazepam, with the AUCR values ranging from 1.25 to 3.45. These data suggest a pharmacokinetic drug–drug interaction when major cannabinoids like CBD or THC and oxazepam are concurrently administered. Full article
Show Figures

Figure 1

13 pages, 2498 KB  
Article
Evidence of 11-Hydroxy-hexahydrocannabinol and 11-Nor-9-carboxy-hexahydrocannabinol as Novel Human Metabolites of Δ9-Tetrahydrocannabinol
by Christian Falck Jørgensen, Brian Schou Rasmussen, Kristian Linnet and Ragnar Thomsen
Metabolites 2023, 13(12), 1169; https://doi.org/10.3390/metabo13121169 - 23 Nov 2023
Cited by 10 | Viewed by 7016
Abstract
(−)-trans9-tetrahydrocannabinol (Δ9-THC) is the primary psychoactive compound in the Cannabis sativa plant. Δ9-THC undergoes extensive metabolism, with the main human phase I metabolites being 11-hydroxy-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH). Early animal studies have indicated that [...] Read more.
(−)-trans9-tetrahydrocannabinol (Δ9-THC) is the primary psychoactive compound in the Cannabis sativa plant. Δ9-THC undergoes extensive metabolism, with the main human phase I metabolites being 11-hydroxy-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH). Early animal studies have indicated that the 9-10 double bond may be reduced in vivo to yield 11-hydroxy-hexahydrocannabinol (11-OH-HHC) and 11-nor-9-carboxy-hexahydrocannabinol (HHC-COOH). These metabolites have not been confirmed in humans. In this study, we aimed to investigate whether this metabolic transformation occurs in humans. A range of cannabinoids and metabolites, including 11-OH-HHC and HHC-COOH, were measured in whole blood from 308 authentic forensic traffic cases, of which 222 were positive for Δ9-THC. HHC-COOH and 11-OH-HHC were detected in 84% and 15% of the Δ9-THC positive cases, respectively, and the estimated median concentration of HHC-COOH was 7%, relative to that of THC-COOH. To corroborate the in vivo findings, Δ9-THC and its metabolites 11-OH-THC and THC-COOH were incubated with pooled human liver microsomes. HHC-COOH was detected in both the Δ9-THC and 11-OH-THC incubations, while 11-OH-HHC was only detectable in the 11-OH-THC incubation. Hexahydrocannabinol was not detected in any of the incubations, indicating that it is 11-OH-THC or the corresponding aldehyde that undergoes double bond reduction with subsequent oxidation of the aliphatic alcohol to HHC-COOH. In summary, the presented data provide the first evidence of HHC-COOH and 11-OH-HHC being human phase I metabolites of Δ9-THC. These findings have implications for interpretation of analytical results from subjects exposed to Δ9-THC or HHC. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

19 pages, 3822 KB  
Article
Phytocannabinoids Reduce Inflammation of Primed Macrophages and Enteric Glial Cells: An In Vitro Study
by Gal Cohen, Ofer Gover and Betty Schwartz
Int. J. Mol. Sci. 2023, 24(19), 14628; https://doi.org/10.3390/ijms241914628 - 27 Sep 2023
Cited by 6 | Viewed by 2831
Abstract
Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved [...] Read more.
Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein. We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Treatment of Inflammatory Bowel Disease)
Show Figures

Figure 1

15 pages, 901 KB  
Article
11-Nor-9-Carboxy Tetrahydrocannabinol Distribution in Fluid from the Chest Cavity in Cannabis-Related Post-Mortem Cases
by Torki A. Zughaibi, Hassan Alharbi, Adel Al-Saadi, Abdulnasser E. Alzahrani and Ahmed I. Al-Asmari
Toxics 2023, 11(9), 740; https://doi.org/10.3390/toxics11090740 - 29 Aug 2023
Cited by 4 | Viewed by 3250
Abstract
In this study, the presence of 11-nor-Δ9-carboxy tetrahydrocannabinol (THC-COOH) in postmortem fluid obtained from the chest cavity (FCC) of postmortem cases collected from drug-related fatalities or criminal-related deaths in Jeddah, Saudi Arabia, was investigated to evaluate its suitability for use as [...] Read more.
In this study, the presence of 11-nor-Δ9-carboxy tetrahydrocannabinol (THC-COOH) in postmortem fluid obtained from the chest cavity (FCC) of postmortem cases collected from drug-related fatalities or criminal-related deaths in Jeddah, Saudi Arabia, was investigated to evaluate its suitability for use as a complementary specimen to blood and biological specimens in cases where no bodily fluids are available or suitable for analysis. The relationships between THC-COOH concentrations in the FCC samples and age, body mass index (BMI), polydrug intoxication, manner, and cause of death were investigated. Methods: Fifteen postmortem cases of FCC were analyzed using fully validated liquid chromatography-positive-electrospray ionization tandem mass spectrometry (LC-MS/MS). Results: FCC samples were collected from 15 postmortem cases; only THC-COOH tested positive, with a median concentration of 480 ng/mL (range = 80–3010 ng/mL). THC-COOH in FCC were higher than THC-COOH in all tested specimens with exception to bile, the median ratio FCC/blood with sodium fluoride, FCC/urine, FCC/gastric content, FCC/bile, FCC/liver, FCC/kidney, FCC/brain, FCC/stomach wall, FCC/lung, and FCC/intestine tissue were 48, 2, 0.2, 6, 4, 6, 102, 11, 5 and 10-fold, respectively. Conclusion: This is the first postmortem report of THC-COOH in the FCC using cannabinoid-related analysis. The FCC samples were liquid, easy to manipulate, and extracted using the same procedure as the blood samples. The source of THC-COOH detected in FCC could be derived from the surrounding organs due to postmortem redistribution or contamination due to postmortem changes after death. THC-COOH, which is stored in adipose tissues, could be a major source of THC-COOH found in the FCC. Full article
(This article belongs to the Special Issue Clinical and Post-Mortem Toxicology)
Show Figures

Figure 1

15 pages, 857 KB  
Article
Comparison between Blood, Non-Blood Fluids and Tissue Specimens for the Analysis of Cannabinoid Metabolites in Cannabis-Related Post-Mortem Cases
by Torki A. Zughaibi, Latifa Al-Qumsani, Ahmed A. Mirza, Amal Almostady, Jude Basrawi, Shams Tabrez, Faiz Alsolami, Rami Al-Makki, Sami Al-Ghamdi, Abdullah Al-Ghamdi, Abdulnasser E. Alzahrani, Majda Altowairqi, Hassan Alharbi, Michelle R. Peace, Majed A. Halwani and Ahmed I. Al-Asmari
Forensic Sci. 2023, 3(2), 330-344; https://doi.org/10.3390/forensicsci3020025 - 24 May 2023
Cited by 6 | Viewed by 5767
Abstract
Cannabis use is widespread and is one of the most common drugs encountered in forensic-related analysis (antemortem and postmortem cases). However, the correlation between illicit cannabis use and death is rarely investigated, even while taking into consideration its role in the central nervous [...] Read more.
Cannabis use is widespread and is one of the most common drugs encountered in forensic-related analysis (antemortem and postmortem cases). However, the correlation between illicit cannabis use and death is rarely investigated, even while taking into consideration its role in the central nervous system depression and cardiovascular disorders. Few studies have discussed other non-blood specimens; this has brought a special interest in analyzing THC and its metabolites in different body parts in order to make precise forensic decisions. Herein, we are investigating the presence of Δ9-tetrahydrocannabinol (THC) and its metabolites:(11-hydroxy-Δ9-tetrahydrocannabinol (THC-OH) and 11-nor-Δ9- tetrahydrocannabinol-9-carboxy (THC-COOH)) in different postmortem specimens. Forty-three cases of bodily fluids and tissue post-mortem samples, previously found to be cannabinoid-positive were analyzed in the current investigation using alkaline hydrolysis followed by solid phase extraction and LC-MS/MS for THC and its metabolites concentration. In the current study, the highest median THC-COOH and THC-OH concentrations were detected in bile samples (1380 ng/mL and 8 ng/mL, respectively), while the highest THC median concentration was detected in gastric contents (48 ng/mL). This can be explained due to the postmortem distribution of blood to other bodily fluids and tissues and the accumulation in bile following multiple doses. Furthermore, high THC levels in gastric contents can be explained by the undergoing cycles of entero-hepatic circulation which resulted in a significant increase in THC in gastric contents. THC-COOH can be the best indicator to detect cannabinoids in toxicology studies, thus the inclusion of active THC metabolites is essential in death investigations. Additionally, THC-OH concentrations in postmortem cases could be influenced by body mass index. In this study, all types were specimens found to be suitable for testing cannabinoid metabolites, except for vitreous humor which showed low rates of detectability for cannabinoid metabolites. Full article
Show Figures

Figure 1

13 pages, 1635 KB  
Article
Simple Method for the Determination of THC and THC-COOH in Human Postmortem Blood Samples by Gas Chromatography—Mass Spectrometry
by Ivan Álvarez-Freire, Anxa Valeiras-Fernández, Pamela Cabarcos-Fernández, Ana María Bermejo-Barrera and María Jesús Tabernero-Duque
Molecules 2023, 28(8), 3586; https://doi.org/10.3390/molecules28083586 - 20 Apr 2023
Cited by 6 | Viewed by 4811
Abstract
A simple and sensitive analytical method was developed for qualitative and quantitative analysis of Δ9-tetrahydrocannabinol (Δ9-THC) and its metabolite 11-nor-Δ9-tetrahydrocannabinol-carboxylic acid (Δ9-THC-COOH) in human postmortem blood using gas chromatography/mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. The method involved a liquid-liquid extraction [...] Read more.
A simple and sensitive analytical method was developed for qualitative and quantitative analysis of Δ9-tetrahydrocannabinol (Δ9-THC) and its metabolite 11-nor-Δ9-tetrahydrocannabinol-carboxylic acid (Δ9-THC-COOH) in human postmortem blood using gas chromatography/mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. The method involved a liquid-liquid extraction in two steps, one for Δ9-THC and a second one for Δ9-THC-COOH. The first extract was analyzed using Δ9-THC-D3 as internal standard. The second extract was derivatized and analyzed using Δ9-THC-COOH-D3 as internal standard. The method was shown to be very simple, rapid, and sensitive. The method was validated for the two compounds, including linearity (range 0.05–1.5 µg/mL for Δ9-THC and 0.08–1.5 µg/mL for Δ9-THC-COOH), and the main precision parameters. It was linear for both analytes, with quadratic regression of calibration curves always higher than 0.99. The coefficients of variation were less than 15%. Extraction recoveries were superior to 80% for both compounds. The developed method was used to analyze 41 real plasma samples obtained from the Forensic Toxicology Service of the Institute of Forensic Sciences of Santiago de Compostela (Spain) from cases in which the use of cannabis was involved, demonstrating the usefulness of the proposed method. Full article
(This article belongs to the Special Issue Forensic Analysis in Chemistry)
Show Figures

Figure 1

11 pages, 917 KB  
Article
Association between ABCB1 rs2235048 Polymorphism and THC Pharmacokinetics and Subjective Effects following Smoked Cannabis in Young Adults
by Justin Matheson, Yollanda J. Zhang, Bruna Brands, Christine M. Wickens, Arun K. Tiwari, Clement C. Zai, James L. Kennedy and Bernard Le Foll
Brain Sci. 2022, 12(9), 1189; https://doi.org/10.3390/brainsci12091189 - 3 Sep 2022
Cited by 3 | Viewed by 2806
Abstract
Genetic influences on acute responses to psychoactive drugs may contribute to individual variability in addiction risk. ABCB1 is a human gene that encodes P-glycoprotein, an ATP-dependent efflux pump that may influence the pharmacokinetics of delta-9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. Using [...] Read more.
Genetic influences on acute responses to psychoactive drugs may contribute to individual variability in addiction risk. ABCB1 is a human gene that encodes P-glycoprotein, an ATP-dependent efflux pump that may influence the pharmacokinetics of delta-9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. Using data from 48 young adults (aged 19–25 years) reporting 1–4 days of cannabis use per week who completed a placebo-controlled human laboratory experiment, we tested the hypothesis that the rs2235048 polymorphism of ABCB1 would influence acute responses to smoked cannabis. C-allele carriers reported on average greater frequency of weekly cannabis use compared to the TT genotype carriers (TC/CC mean ± SEM = 2.74 ± 0.14, TT = 1.85 ± 0.24, p = 0.004). After smoking a single cannabis cigarette to their desired high, C-allele carriers had higher area-under-the-curve (AUC) of both THC metabolites (11-OH-THC TC/CC = 7.18 ± 9.64, TT = 3.28 ± 3.40, p = 0.05; THC-COOH TC/CC = 95.21 ± 116.12, TT = 45.92 ± 42.38, p = 0.043), and these results were impact by self-reported ethnicity. There were no significant differences in self-reported subjective drug effects except for a greater AUC of visual analogue scale rating of drug liking (TC/CC = 35,398.33 ± 37,233.72, TT = 15,895.56 ± 13,200.68, p = 0.017). Our preliminary findings suggest that further work in a larger sample should investigate whether human ABCB1 influences cannabis-related phenotypes and plays a role in the risk of developing a cannabis use disorder. Full article
(This article belongs to the Special Issue Cannabis and the Brain: Novel Perspectives and Understandings)
Show Figures

Figure 1

21 pages, 7222 KB  
Article
The Determination of Cannabinoids in Urine Samples Using Microextraction by Packed Sorbent and Gas Chromatography-Mass Spectrometry
by Luana M. Rosendo, Tiago Rosado, Patrik Oliveira, Ana Y. Simão, Cláudia Margalho, Suzel Costa, Luís A. Passarinha, Mário Barroso and Eugenia Gallardo
Molecules 2022, 27(17), 5503; https://doi.org/10.3390/molecules27175503 - 27 Aug 2022
Cited by 15 | Viewed by 4127
Abstract
Cannabis is the most consumed illicit drug worldwide, and its legal status is a source of concern. This study proposes a rapid procedure for the simultaneous quantification of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), cannabidiol (CBD), and [...] Read more.
Cannabis is the most consumed illicit drug worldwide, and its legal status is a source of concern. This study proposes a rapid procedure for the simultaneous quantification of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), cannabidiol (CBD), and cannabinol (CBN) in urine samples. Microextraction by packed sorbent (MEPS) was used to pre-concentrate the analytes, which were detected by gas chromatography–mass spectrometry. The procedure was previously optimized, and the final conditions were: conditioning with 50 µL methanol and 50 µL of water, sample load with two draw–eject cycles, and washing with 310 µL of 0.1% formic acid in water with 5% isopropanol; the elution was made with 35 µL of 0.1% ammonium hydroxide in methanol. This fast extraction procedure allowed quantification in the ranges of 1–400 ng/mL for THC and CBD, 5–400 ng/mL for CBN and 11-OH-THC, and 10–400 ng/mL for THC-COOH with coefficients of determination higher than 0.99. The limits of quantification and detection were between 1 and 10 ng/mL using 0.25 mL of sample. The extraction efficiencies varied between 26 and 85%. This analytical method is the first allowing the for determination of cannabinoids in urine samples using MEPS, a fast, simple, and low-cost alternative to conventional techniques. Full article
Show Figures

Figure 1

9 pages, 884 KB  
Article
Correlation of Nabiximols Dose to Steady-State Concentrations of Cannabinoids in Urine Samples from Patients with Multiple Sclerosis
by Rüdiger Birke, Stefanie Meister, Alexander Winkelmann, Burkhard Hinz and Udo I. Walther
J. Clin. Med. 2022, 11(13), 3717; https://doi.org/10.3390/jcm11133717 - 27 Jun 2022
Cited by 2 | Viewed by 1975
Abstract
Therapeutic drug monitoring of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is based on a complex procedure and is therefore not possible in most laboratories, especially in emergency cases. This work addresses the question of whether therapeutic drug monitoring of nabiximols can be [...] Read more.
Therapeutic drug monitoring of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is based on a complex procedure and is therefore not possible in most laboratories, especially in emergency cases. This work addresses the question of whether therapeutic drug monitoring of nabiximols can be performed using an immunological urine-based test system for cannabinoid abuse. Seventeen patients with multiple sclerosis were included in this study. Administered doses of nabiximols were correlated with immunologically determined urine concentrations of cannabinoids using the DRITM Cannabinoid (THC) Assay. Significant correlations with the administered nabiximols doses were found for creatinine-normalized urine concentrations of cannabinoids without (r = 0.675; p = 0.0015) and after (r = 0.650; p = 0.0044) hydrolysis, as well as for gas-chromatography-coupled mass spectrometry (GC/MS)-measured concentrations of the THC metabolite 11-nor-9-carboxy-Δ9-THC (THC-COOH) in urine samples (r = 0.571; p = 0.0084) by Pearson’s correlation. In addition, doses were significantly correlated with plasma THC-COOH concentrations (r = 0.667; p = 0.0017) measured by GC/MS. Simple immunological cannabinoid measurements in urine samples could provide an estimate of nabiximols dosage, although the correlations obtained here were weak because of the small number of patients observed. Longitudinal monitoring of individual patients is expected to exhibit good results of therapeutic drug monitoring of nabiximols. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

19 pages, 2983 KB  
Article
Automation System for the Flexible Sample Preparation for Quantification of Δ9-THC-D3, THC-OH and THC-COOH from Serum, Saliva and Urine
by Anna Bach, Heidi Fleischer, Bhagya Wijayawardena and Kerstin Thurow
Appl. Sci. 2022, 12(6), 2838; https://doi.org/10.3390/app12062838 - 10 Mar 2022
Cited by 10 | Viewed by 4379
Abstract
In the life sciences, automation solutions are primarily established in the field of drug discovery. However, there is also an increasing need for automated solutions in the field of medical diagnostics, e.g., for the determination of vitamins, medication or drug abuse. While the [...] Read more.
In the life sciences, automation solutions are primarily established in the field of drug discovery. However, there is also an increasing need for automated solutions in the field of medical diagnostics, e.g., for the determination of vitamins, medication or drug abuse. While the actual metrological determination is highly automated today, the necessary sample preparation processes are still mainly carried out manually. In the laboratory, flexible solutions are required that can be used to determine different target substances in different matrices. A suitable system based on an automated liquid handler was implemented. It has been tested and validated for the determination of three cannabinoid metabolites in blood, urine and saliva. To extract Δ9-tetrahydrocannabinol-D3 (Δ9-THC-D3), 11-hydroxy-Δ9-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) from serum, urine and saliva both rapidly and cost-effectively, three sample preparation methods automated with a liquid handling robot are presented in this article, the basic framework of which is an identical SPE method so that they can be quickly exchanged against each other when the matrix is changed. If necessary, the three matrices could also be prepared in parallel. For the sensitive detection of analytes, protein precipitation is used when preparing serum before SPE and basic hydrolysis is used for urine to cleave the glucuronide conjugate. Recoveries of developed methods are >77%. Coefficients of variation are <4%. LODs are below 1 ng/mL and a comparison with the manual process shows a significant cost reduction. Full article
(This article belongs to the Special Issue Robotics in Life Science Automation)
Show Figures

Figure 1

16 pages, 1360 KB  
Article
Detection of Eight Cannabinoids and One Tracer in Wastewater and River Water by SPE-UPLC–ESI-MS/MS
by Simone Milan, Filomena Lelario, Laura Scrano, Chiara Ottati, Sabino Aurelio Bufo and Maria de Fátima Alpendurada
Water 2022, 14(4), 588; https://doi.org/10.3390/w14040588 - 15 Feb 2022
Cited by 8 | Viewed by 7520
Abstract
The consumption of illicit drugs represents a global social and economic problem. Using suitable analytical methods, monitoring, and detection of different illegal drugs residues and their metabolites in wastewater samples can help combat this problem. Our article defines a method to develop, validate, [...] Read more.
The consumption of illicit drugs represents a global social and economic problem. Using suitable analytical methods, monitoring, and detection of different illegal drugs residues and their metabolites in wastewater samples can help combat this problem. Our article defines a method to develop, validate, and practically applicate a rapid and robust analytical process for the evaluation of six naturally occurring cannabinoids (CBG, CBD, CBDV, CBN, THC, THCV), two cannabinoids in acidic form (CBDA, THCA-A), and the major cannabis-related human metabolite (THC-COOH). After SPE offline enrichment, we used a UPLC–ESI-MS/MS system, which permitted the determination of several by-products. Studied matrices were samples of different origins: (i) effluent water from a wastewater treatment plant in the Porto urban area; (ii) environmental water from Febros River, the last left-bank tributary of the Douro River. The multi-residue approach was substantiated and successfully employed to analyze the water samples collected in the above locations. The rapid and precise quantification of nine different cannabinoids in different water samples occurred within nine minutes at the ng L−1 level. The appearance of dozens of ng L−1 of some cannabis secondary metabolites, such as CBD, CBDA, CBN, THCA-A, indicates this plant species’ widespread usage among the general population in the considered area. Full article
Show Figures

Figure 1

21 pages, 4956 KB  
Article
Metabolites of Cannabis Induce Cardiac Toxicity and Morphological Alterations in Cardiac Myocytes
by Ayse Orme Merve, Pola Sobiecka, Vytautas Remeškevičius, Luke Taylor, Lili Saskoy, Scott Lawton, Ben P. Jones, Ahmed Elwakeel, Francesca E. Mackenzie, Elena Polycarpou, Jason Bennett and Brian Rooney
Int. J. Mol. Sci. 2022, 23(3), 1401; https://doi.org/10.3390/ijms23031401 - 26 Jan 2022
Cited by 6 | Viewed by 6330
Abstract
Cannabis is one of the most commonly used recreational drugs worldwide. Rrecent epidemiology studies have linked increased cardiac complications to cannabis use. However, this literature is predominantly based on case incidents and post-mortem investigations. This study elucidates the molecular mechanism of Δ9-tetrahydrocannabinol (THC), [...] Read more.
Cannabis is one of the most commonly used recreational drugs worldwide. Rrecent epidemiology studies have linked increased cardiac complications to cannabis use. However, this literature is predominantly based on case incidents and post-mortem investigations. This study elucidates the molecular mechanism of Δ9-tetrahydrocannabinol (THC), and its primary metabolites 11-Hydroxy-Δ9-THC (THC-OH) and 11-nor-9-carboxy-Δ⁹-tetrahydrocannabinol (THC-COOH). Treatment of cardiac myocytes with THC-OH and THC-COOH increased cell migration and proliferation (p < 0.05), with no effect on cell adhesion, with higher doses (250–100 ng/mL) resulting in increased cell death and significant deterioration in cellular architecture. Conversely, no changes in cell morphology or viability were observed in response to THC. Expression of key ECM proteins α-SMA and collagen were up-regulated in response to THC-OH and THC-COOH treatments with concomitant modulation of PI3K and MAPK signalling. Investigations in the planarian animal model Polycelis nigra demonstrated that treatments with cannabinoid metabolites resulted in increased protein deposition at transection sites while higher doses resulted in significant lethality and decline in regeneration. These results highlight that the key metabolites of cannabis elicit toxic effects independent of the parent and psychoactive compound, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

11 pages, 1278 KB  
Article
Determination of Prenatal Substance Exposure Using Meconium and Orbitrap Mass Spectrometry
by Atakan Hernandez, Valerie Lacroze, Natalia Doudka, Jenny Becam, Carole Pourriere-Fabiani, Bruno Lacarelle, Caroline Solas and Nicolas Fabresse
Toxics 2022, 10(2), 55; https://doi.org/10.3390/toxics10020055 - 26 Jan 2022
Cited by 14 | Viewed by 5951
Abstract
The aim of this study was to develop and to validate a toxicological untargeted screening relying on LC-HRMS in meconium including the detection of the four main classes of drugs of abuse (DoA; amphetamines, cannabinoids, opioids and cocaine). The method was then applied [...] Read more.
The aim of this study was to develop and to validate a toxicological untargeted screening relying on LC-HRMS in meconium including the detection of the four main classes of drugs of abuse (DoA; amphetamines, cannabinoids, opioids and cocaine). The method was then applied to 29 real samples. Analyses were performed with a liquid chromatography system coupled to a benchtop Orbitrap operating in a data-dependent analysis. The sample amount was 300 mg of meconium extracted twice by solid phase extraction following two distinct procedures. Raw data were processed using the Compound Discoverer 3.2 software (Thermo). The method was evaluated and validated on 15 compounds (6-MAM, morphine, buprenorphine, norbuprenorphine, methadone, EDDP, amphetamine, MDA, MDMA, methamphetamine, cocaine, benzoylecgonine, THC, 11-OH-THC, THC-COOH). Limits of detection were between 0.5 and 5 pg/mg and limits of identification between 5 and 50 pg/mg. Mean matrix effect was between −79 and −19% (n = 6) and mean overall recovery between 18 and 73% (n = 6) at 100 pg/mg. The application allows the detection of 88 substances, including 47 pharmaceuticals and 15 pharmaceutical metabolites, cocaine and its metabolites, THC and its metabolites, and natural (morphine, codeine) and synthetic (methadone, buprenorphine, tramadol, norfentanyl) opioids. This method is now used routinely for toxicological screening in high-risk pregnancies Full article
(This article belongs to the Special Issue The Identification of Drug Abuse)
Show Figures

Figure 1

Back to TopTop