Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = StarJet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 858 KiB  
Article
Optical Photometric Monitoring of the Blazar OT 355 and Local Standard Stars’ Calibration
by R. Bachev, Tushar Tripathi, Alok C. Gupta, A. Kurtenkov, Y. Nikolov, A. Strigachev, S. Boeva, G. Latev, B. Spassov, M. Minev, E. Ovcharov, W.-X. Yang, Yi Liu and J.-H. Fan
Universe 2025, 11(6), 171; https://doi.org/10.3390/universe11060171 - 27 May 2025
Viewed by 621
Abstract
OT 355 (4FGL J1734.3 + 3858) is a relatively rarely studied but highly variable, moderate-redshift (z = 0.975) flat-spectrum radio quasar (blazar). With this work, we aim to study its optical variability on different timescales, which can help us to better understand the [...] Read more.
OT 355 (4FGL J1734.3 + 3858) is a relatively rarely studied but highly variable, moderate-redshift (z = 0.975) flat-spectrum radio quasar (blazar). With this work, we aim to study its optical variability on different timescales, which can help us to better understand the physical processes in relativistic jets operating in blazar-type active galactic nuclei. OT 355 was observed in four colors (BVRI) during 41 nights between 2017 and 2023 using three 1 and 2 m class telescopes. The object was also monitored on intra-night timescales, for about 100 h in total. In addition, secondary standard stars in the field of OT 355 were calibrated in order to facilitate future photometric studies. We detected significant intra-night and night-to-night variations of up to 0.5 mag. Variability characteristics, color changes, and a possible “rms-flux” relation were studied and discussed. Using simple arguments, we show that a negative “rms-flux” relation should be expected if many independent processes/regions drive the short-term variability via Doppler factor changes, which is not observed in this and other cases. This finding raises arguments for the idea that more complex multiplicative processes are responsible for blazar variability. Studying blazar variability, especially on the shortest possible timescales, can help to estimate the strength and geometry of their magnetic fields, the linear sizes of the emitting regions, and other aspects, which may be of importance for constraining and modeling blazars’ emitting mechanisms. Full article
(This article belongs to the Special Issue Multi-wavelength Properties of Active Galactic Nuclei)
Show Figures

Figure 1

21 pages, 11237 KiB  
Article
Investigation of Heat Transfer Enhancement Mechanisms in Elastic Tube Bundles Subjected to Exogenous Self-Excited Fluid Oscillation
by Jing Hu, Lei Guo and Shusheng Zhang
Fluids 2025, 10(5), 122; https://doi.org/10.3390/fluids10050122 - 8 May 2025
Viewed by 427
Abstract
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This [...] Read more.
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This study proposes a novel passive heat transfer enhancement paradigm for elastic tube bundles based on externally induced self-excited oscillations of fluid. By constructing a non-contact energy transfer system, the external oscillation energy is directed into the elastic tube bundle heat exchanger, achieving dynamic stress buffering and breaking through the steady-state flow heat transfer boundary layer. A three-dimensional fluid–structure interaction numerical model is established using Star CCM+2021.3 (16.06.008) to conduct a comparative analysis of the flow characteristics and heat transfer performance between the original structure without an oscillator and the improved structure equipped with a fluid oscillator. The results indicate that the improved structure, through the periodic unsteady jet induced by the fluid oscillator, significantly enhances the turbulence intensity of the shell-side fluid, with the turbulent kinetic energy increasing by over 50%. The radial flow area is notably expanded, thereby reducing the thermal resistance of the boundary layer. At cooling fluid velocities of 6 to 9 m/s, the heat transfer capability of the improved structure is enhanced by more than 50%. Compared with the original structure, the new structure, due to the loading of an external oscillation structure, causes the cold air to present a periodic up and down jet phenomenon. This jet phenomenon, on the one hand, increases the heat exchange area between the cold air and the outer surface of the tube bundle, thereby enhancing the heat exchange capacity. On the other hand, the large-area impact of the fluid reduces the thickness of the boundary layer, lowers the thermal resistance and thereby enhances the heat exchange capacity. Furthermore, this improved structure buffers the mechanical vibrations through self-excited oscillations of the fluid medium, ensuring that the stress levels in the tube bundle remain below the fatigue threshold, effectively mitigating the failure risks associated with traditional active vibration strategies. Full article
Show Figures

Figure 1

10 pages, 1540 KiB  
Article
Why Jet Power and Star Formation Are Uncorrelated in Active Galaxies
by David Garofalo, Brent McDaniel and Max North
Galaxies 2025, 13(2), 35; https://doi.org/10.3390/galaxies13020035 - 3 Apr 2025
Viewed by 896
Abstract
Jet luminosity from active galaxies and the rate of star formation have recently been found to be uncorrelated observationally. We show how to understand this in the context of a model in which powerful AGN jets enhance star formation for up to hundreds [...] Read more.
Jet luminosity from active galaxies and the rate of star formation have recently been found to be uncorrelated observationally. We show how to understand this in the context of a model in which powerful AGN jets enhance star formation for up to hundreds of millions of years while jet power decreases in time, followed by a longer phase in which star formation is suppressed but coupled to jet power increasing with time. We also highlight characteristic differences, depending on environment richness in a way that is compatible with the observed SEDs of high redshift radio galaxies. While the absence of a direct correlation between jet power and star formation rate emerges naturally, our framework allows us to also predict the environment richness, range of excitation, and redshift values of radio AGN in the jet power-star formation rate plane. Full article
Show Figures

Figure 1

10 pages, 775 KiB  
Communication
Identifying a Point-Symmetrical Morphology in the Core-Collapse Supernova Remnant W44
by Noam Soker
Universe 2025, 11(1), 4; https://doi.org/10.3390/universe11010004 - 26 Dec 2024
Cited by 4 | Viewed by 861
Abstract
I identify a point-symmetrical morphology in the core-collapse supernova remnant (CCSNR) W44 compatible with shaping by three or more pairs of jets in the jittering jets explosion mechanism (JJEM). Motivated by recent identifications of point-symmetrical morphologies in CCSNRs and their match to the [...] Read more.
I identify a point-symmetrical morphology in the core-collapse supernova remnant (CCSNR) W44 compatible with shaping by three or more pairs of jets in the jittering jets explosion mechanism (JJEM). Motivated by recent identifications of point-symmetrical morphologies in CCSNRs and their match to the JJEM, I revisit the morphological classification of CCSNR W44. I examine a radio map of W44 and find the outer bright rim of the radio map to possess a point-symmetric structure compatible with shaping by two energetic pairs of opposite jets rather than an S-shaped morphology shaped by a precessing pair of jets. An inner pair of filaments might hint at a third powerful pair of jets. More pairs of jets were involved in the explosion process. This study adds to the growing evidence that the JJEM is the primary explosion mechanism of core-collapse supernovae. Full article
Show Figures

Figure 1

17 pages, 15567 KiB  
Article
Numerical Simulation of the Hydrodynamic Behavior of an Offshore Platform Supported by a Jacket Structure in Waves
by Chongzhong Wu, Xianlin Jia, Tiaojian Xu and Wo Zhang
Water 2024, 16(24), 3707; https://doi.org/10.3390/w16243707 - 22 Dec 2024
Cited by 2 | Viewed by 1141
Abstract
The offshore jacket structure has the advantages of suitable stiffness, convenient construction, anti-collision, and strong fatigue resistance, and it is the main structural form of offshore converter station. By constructing a numerical wave tank for the hydrodynamic response analysis of the offshore jacket [...] Read more.
The offshore jacket structure has the advantages of suitable stiffness, convenient construction, anti-collision, and strong fatigue resistance, and it is the main structural form of offshore converter station. By constructing a numerical wave tank for the hydrodynamic response analysis of the offshore jacket structure, the wave field distribution around and the wave slamming load on the offshore jacket structure for the converter station under the action of waves are analyzed based on the Star CCM+ software 2206. In addition, the effects of wave height and wave period on its hydrodynamic loads are discussed. The results indicated that: (1) A thin jet layer can be formed on the wave-facing side of the square box when the waves attack the box, and the height of the jet is not the maximum when the horizontal load generated by the jet at the front of the box reaches the maximum value. (2) The pressure distribution on the wave-facing side of the square box for the converter station is relatively discrete, with the pressure in the middle part being slightly larger than that on both sides. At the bottom of the box, the pressure in the middle and back part is significantly larger than that in the front part. (3) When the waves attack the box for the converter station, it caused significant energy dissipation, and the horizontal load on the offshore jacket is less than that when no wave slamming occurs. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

13 pages, 419 KiB  
Article
The Two Alternative Explosion Mechanisms of Core-Collapse Supernovae: 2024 Status Report
by Noam Soker
Universe 2024, 10(12), 458; https://doi.org/10.3390/universe10120458 - 16 Dec 2024
Cited by 7 | Viewed by 1257
Abstract
In comparing the two alternative explosion mechanisms of core-collapse supernovae (CCSNe), I examine recent three-dimensional (3D) hydrodynamical simulations of CCSNe in the frame of the delayed neutrino explosion mechanism (neutrino mechanism) and argue that these valuable simulations show that neutrino heating can supply [...] Read more.
In comparing the two alternative explosion mechanisms of core-collapse supernovae (CCSNe), I examine recent three-dimensional (3D) hydrodynamical simulations of CCSNe in the frame of the delayed neutrino explosion mechanism (neutrino mechanism) and argue that these valuable simulations show that neutrino heating can supply a non-negligible fraction of the explosion energy but not the observed energies, and hence cannot be the primary explosion mechanism. In addition to the energy crisis, the neutrino mechanism predicts many failed supernovae that are not observed. The most challenging issue of the neutrino mechanism is that it cannot account for point-symmetric morphologies of CCSN remnants, many of which were identified in 2024. These contradictions with observations imply that the neutrino mechanism cannot be the primary explosion mechanism of CCSNe. The alternative jittering jets explosion mechanism (JJEM) seems to be the primary explosion mechanism of CCSNe; neutrino heating boosts the energy of the jittering jets. Even if some simulations show explosions of stellar models (but usually with energies below that observed), it does not mean that the neutrino mechanism is the explosion mechanism. Jittering jets, which simulations do not include, can explode the core before the neutrino heating process does. Morphological signatures of jets in many CCSN remnants suggest that jittering jets are the primary driving mechanism, as expected by the JJEM. Full article
(This article belongs to the Special Issue A Multiwavelength View of Supernovae)
Show Figures

Figure 1

18 pages, 4878 KiB  
Article
Intracore Natural Circulation Study in the High Temperature Test Facility
by Izabela Gutowska, Robert Kile, Brian G. Woods and Nicholas R. Brown
J. Nucl. Eng. 2024, 5(4), 500-517; https://doi.org/10.3390/jne5040031 - 14 Nov 2024
Viewed by 1233
Abstract
The development of the Modular High-Temperature Gas-Cooled Reactor is a significant milestone in advanced nuclear reactor technology. One of the concerns for the reactor’s safe operation is the effects of a loss-of-flow accident (LOFA) where the coolant circulators are tripped, and forced coolant [...] Read more.
The development of the Modular High-Temperature Gas-Cooled Reactor is a significant milestone in advanced nuclear reactor technology. One of the concerns for the reactor’s safe operation is the effects of a loss-of-flow accident (LOFA) where the coolant circulators are tripped, and forced coolant flow through the core is lost. Depending on the steam generator placement, loop or intracore natural circulation develops to help transfer heat from the core to the reactor cavity, cooling system. This paper investigates the fundamental physical phenomena associated with intracore coolant natural circulation flow in a one-sixth Computational Fluid Dynamics (CFD) model of the Oregon State University High Temperature Test Facility (OSU HTTF) following a loss-of-flow accident transient. This study employs conjugate heat transfer and steady-state flow along with an SST k-ω turbulence model to characterize the phenomenon of core channel-to-channel natural convection. Previous studies have revealed the importance of complex flow distribution in the inlet and outlet plenums with the potential to generate hot coolant jets. For this reason, complete upper and lower plenum volumes are included in the analyzed computational domain. CFD results also include parametric studies performed for a mesh sensitivity analysis, generated using the STAR-CCM+ software. The resulting channel axial velocities and flow directions support the test facility scaling analysis and similarity group distortions calculation. Full article
Show Figures

Figure 1

15 pages, 3604 KiB  
Article
Off-Axis Color Characteristics of Binary Neutron Star Merger Events: Applications for Space Multi-Band Variable Object Monitor and James Webb Space Telescope
by Hongyu Gong, Daming Wei and Zhiping Jin
Universe 2024, 10(10), 403; https://doi.org/10.3390/universe10100403 - 19 Oct 2024
Viewed by 1127
Abstract
With advancements in gravitational wave detection technology, an increasing number of binary neutron star (BNS) merger events are expected to be detected. Due to the narrow opening angle of jet cores, many BNS merger events occur off-axis, resulting in numerous gamma-ray bursts (GRBs) [...] Read more.
With advancements in gravitational wave detection technology, an increasing number of binary neutron star (BNS) merger events are expected to be detected. Due to the narrow opening angle of jet cores, many BNS merger events occur off-axis, resulting in numerous gamma-ray bursts (GRBs) going undetected. Models suggest that kilonovae, which can be observed off-axis, offer more opportunities to be detected in the optical/near-infrared band as electromagnetic counterparts of BNS merger events. In this study, we calculate kilonova emission using a three-dimensional semi-analytical code and model the GRB afterglow emission with the open-source Python package afterglowpy at various inclination angles. Our results show that it is possible to identify the kilonova signal from the observed color evolution of BNS merger events. We also deduce the optimal observing window for SVOM/VT and JWST/NIRCam, which depends on the viewing angle, jet opening angle, and circumburst density. These parameters can be cross-checked with the multi-band afterglow fitting. We suggest that kilonovae are more likely to be identified at larger inclination angles, which can also help determine whether the observed signals without accompanying GRBs originate from BNS mergers. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

11 pages, 3346 KiB  
Article
Exploring the Ionized Core of the Proto-Planetary Nebula CRL 618 and Its Vicinity with ALMA
by José Pablo Fonfría, Carmen Sánchez Contreras, Daniel Tafoya, Patricia Fernández-Ruiz, Arancha Castro-Carrizo, Javier Alcolea and Valentín Bujarrabal
Galaxies 2024, 12(5), 62; https://doi.org/10.3390/galaxies12050062 - 10 Oct 2024
Viewed by 983
Abstract
Proto- and young planetary nebulae comprise dense circumstellar envelopes made of molecular gas and dust, some of which hide compact ionized cores that host stellar systems with hot objects, and show high-velocity bipolar outflows launched from inside their cores by means of still [...] Read more.
Proto- and young planetary nebulae comprise dense circumstellar envelopes made of molecular gas and dust, some of which hide compact ionized cores that host stellar systems with hot objects, and show high-velocity bipolar outflows launched from inside their cores by means of still unknown mechanisms. We present high-angular-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations (HPBW ≃ 30–50 mas) of CRL 618 at 1.35 mm covering the H30α recombination line as well as ≃150 molecular lines. The ionized core is resolved, showing a size of ≃0.8×0.5 and is elongated along the east–west direction. This region exhibits a remarkable incomplete ring-like structure with two bright spots to the north and south that are separated by ≃0.2 and shows deprojected velocity gradients ranging from 0.2 to 0.6 km s1au1. The 1 mm wavelength continuum emission is mostly produced by free–free emission with a small contribution from dust with an average spectral index of 0.28 (Sννα). The ionized core can roughly be modeled as a tilted hollow cylinder with a denser, incomplete equatorial band lacking its back side. Molecular emission traces the neutral component of the same structures enclosing the ionized matter. Full article
Show Figures

Figure 1

32 pages, 8140 KiB  
Article
Constraining the Initial Mass Function via Stellar Transients
by Francesco Gabrielli, Lumen Boco, Giancarlo Ghirlanda, Om Sharan Salafia, Ruben Salvaterra, Mario Spera and Andrea Lapi
Universe 2024, 10(10), 383; https://doi.org/10.3390/universe10100383 - 29 Sep 2024
Cited by 1 | Viewed by 2505
Abstract
The stellar initial mass function (IMF) represents a fundamental quantity in astrophysics and cosmology describing the mass distribution of stars from low mass all the way up to massive and very massive stars. It is intimately linked to a wide variety of topics, [...] Read more.
The stellar initial mass function (IMF) represents a fundamental quantity in astrophysics and cosmology describing the mass distribution of stars from low mass all the way up to massive and very massive stars. It is intimately linked to a wide variety of topics, including stellar and binary evolution, galaxy evolution, chemical enrichment, and cosmological reionization. Nonetheless, the IMF still remains highly uncertain. In this work, we aim to determine the IMF with a novel approach based on the observed rates of transients of stellar origin. We parametrize the IMF with a simple but flexible Larson shape, and insert it into a parametric model for the cosmic UV luminosity density, local stellar mass density, type Ia supernova (SN Ia), core-collapse supernova (CCSN), and long gamma-ray burst (LGRB) rates as a function of redshift. We constrain our free parameters by matching the model predictions to a set of empirical determinations for the corresponding quantities via a Bayesian Markov Chain Monte Carlo method. Remarkably, we are able to provide an independent IMF determination with a characteristic mass mc=0.100.08+0.24M and high-mass slope ξ=2.530.27+0.24 that are in accordance with the widely used IMF parameterizations (e.g., Salpeter, Kroupa, Chabrier). Moreover, the adoption of an up-to-date recipe for the cosmic metallicity evolution allows us to constrain the maximum metallicity of LGRB progenitors to Zmax=0.120.05+0.29Z. We also find which progenitor fraction actually leads to SN Ia or LGRB emission (e.g., due to binary interaction or jet-launching conditions), put constraints on the CCSN and LGRB progenitor mass ranges, and test the IMF universality. These results show the potential of this kind of approach for studying the IMF, its putative evolution with the galactic environment and cosmic history, and the properties of SN Ia, CCSN, and LGRB progenitors, especially considering the wealth of data incoming in the future. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

16 pages, 900 KiB  
Article
Black Hole’s Spin-Dependence of γ-Ray and Neutrino Emissions from MAXI J1820+070, XTE J1550-564, and XTE J1859+226
by Dimitrios Rarras, Odysseas Kosmas, Theodora Papavasileiou and Theocharis Kosmas
Particles 2024, 7(3), 818-833; https://doi.org/10.3390/particles7030049 - 12 Sep 2024
Cited by 2 | Viewed by 1383
Abstract
A black hole’s spin effects on the jet emissions of high-energy neutrinos and γ-rays from black hole X-ray binary systems (BHXRBs) are investigated. The BHXRBs consist of a stellar black hole, a companion (donor) star, a BH accretion disk, a BH corona, [...] Read more.
A black hole’s spin effects on the jet emissions of high-energy neutrinos and γ-rays from black hole X-ray binary systems (BHXRBs) are investigated. The BHXRBs consist of a stellar black hole, a companion (donor) star, a BH accretion disk, a BH corona, and two jets emitted from the black hole perpendicular to the accretion disk. For their description, properties of the accretion disk, specifically the accretion disk’s inner radius Rin and the accretion disk’s temperature profile T(R), play key roles since they depend on the black hole’s dimensionless spin parameter α. In this work, we focus on the main reaction mechanisms taking place inside jets from which high-energy γ-rays and neutrinos are created. The intensities and integral fluxes of neutrinos and γ-rays are obtained by integrating the respective source functions. Lastly, the γ-ray absorption due to e-e+ pair production is considered, particularly absorption from the accretion disk. For concrete applications, we have chosen the BHXRB systems MAXI J1820+070, XTE J1550-564, and XTE J1859+226. Full article
Show Figures

Figure 1

14 pages, 919 KiB  
Article
More Luminous Red Novae That Require Jets
by Noam Soker
Galaxies 2024, 12(4), 33; https://doi.org/10.3390/galaxies12040033 - 26 Jun 2024
Cited by 3 | Viewed by 1635
Abstract
In this paper, I study two intermediate luminosity optical transients (ILOTs), classified as luminous red novae (LRNe), and argue that their modeling with a common envelope evolution (CEE) without jets encounters challenges. LRNe are ILOTs powered by violent binary interaction. Although in the [...] Read more.
In this paper, I study two intermediate luminosity optical transients (ILOTs), classified as luminous red novae (LRNe), and argue that their modeling with a common envelope evolution (CEE) without jets encounters challenges. LRNe are ILOTs powered by violent binary interaction. Although in the literature it is popular to assume a CEE is the cause of LRNe, I here repeat an old claim that many LRNe are powered by grazing envelope evolution (GEE) events; the GEE might end in a CEE or a detached binary system. I find that the LRN AT 2021biy might have continued to experience mass ejection episodes after its eruption and, therefore, might not have suffered a full CEE during the outburst. This adds to an earlier finding that a jetless model does not account for some of its properties. I find that a suggested jetless CEE model for the LRN AT 2019zhd does not reproduce its photosphere radius evolution. These results that challenge jetless models of two LRNe strengthen a previous claim that jets play major roles in powering ILOTs and shaping their ejecta and that, in many LRNe, the more compact companion launches the jets during a GEE. Full article
Show Figures

Figure 1

27 pages, 2355 KiB  
Article
The Evolution of Galaxies and Clusters at High Spatial Resolution with Advanced X-ray Imaging Satellite (AXIS)
by Helen R. Russell, Laura A. Lopez, Steven W. Allen, George Chartas, Prakriti Pal Choudhury, Renato A. Dupke, Andrew C. Fabian, Anthony M. Flores, Kristen Garofali, Edmund Hodges-Kluck, Michael J. Koss, Lauranne Lanz, Bret D. Lehmer, Jiang-Tao Li, W. Peter Maksym, Adam B. Mantz, Michael McDonald, Eric D. Miller, Richard F. Mushotzky, Yu Qiu, Christopher S. Reynolds, Francesco Tombesi, Paolo Tozzi, Anna Trindade-Falcão, Stephen A. Walker, Ka-Wah Wong, Mihoko Yukita and Congyao Zhangadd Show full author list remove Hide full author list
Universe 2024, 10(7), 273; https://doi.org/10.3390/universe10070273 - 25 Jun 2024
Cited by 2 | Viewed by 1764
Abstract
Stellar and black hole feedback heat and disperse surrounding cold gas clouds, launching gas flows off circumnuclear and galactic disks, producing a dynamic interstellar medium. On large scales bordering the cosmic web, feedback drives enriched gas out of galaxies and groups, seeding the [...] Read more.
Stellar and black hole feedback heat and disperse surrounding cold gas clouds, launching gas flows off circumnuclear and galactic disks, producing a dynamic interstellar medium. On large scales bordering the cosmic web, feedback drives enriched gas out of galaxies and groups, seeding the intergalactic medium with heavy elements. In this way, feedback shapes galaxy evolution by shutting down star formation and ultimately curtailing the growth of structure after the peak at redshift 2–3. To understand the complex interplay between gravity and feedback, we must resolve both the key physics within galaxies and map the impact of these processes over large scales, out into the cosmic web. The Advanced X-ray Imaging Satellite (AXIS) is a proposed X-ray probe mission for the 2030s with arcsecond spatial resolution, large effective area, and low background. AXIS will untangle the interactions of winds, radiation, jets, and supernovae with the surrounding interstellar medium across the wide range of mass scales and large volumes driving galaxy evolution and trace the establishment of feedback back to the main event at cosmic noon. This white paper is part of a series commissioned for the AXIS Probe mission concept; additional AXIS white papers can be found at the AXIS website. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

18 pages, 9323 KiB  
Article
Bulge-Free and Homogeneous Metal Line Jet Printing with StarJet Technology
by Dániel Straubinger, Peter Koltay, Roland Zengerle, Sabrina Kartmann and Zhe Shu
Micromachines 2024, 15(6), 743; https://doi.org/10.3390/mi15060743 - 31 May 2024
Cited by 4 | Viewed by 4022
Abstract
The technology to jet print metal lines with precise shape fidelity on diverse substrates is gaining higher interest across multiple research fields. It finds applications in additively manufactured flexible electronics, environmentally friendly and sustainable electronics, sensor devices for medical applications, and fabricating electrodes [...] Read more.
The technology to jet print metal lines with precise shape fidelity on diverse substrates is gaining higher interest across multiple research fields. It finds applications in additively manufactured flexible electronics, environmentally friendly and sustainable electronics, sensor devices for medical applications, and fabricating electrodes for solar cells. This paper provides an experimental investigation to deepen insights into the non-contact printing of solder lines using StarJet technology, eliminating the need for surface activation, substrate heating, curing, or post-processing. Moreover, it employs bulk metal instead of conventional inks or pastes, leading to cost-effective production and enhanced conductivity. The effect of molten metal temperature, substrate temperature, standoff distance, and printing velocity was investigated on polymer foils (i.e., PET sheets). Robust printing parameters were derived to print uniform, bulge-free, bulk metal lines suitable for additive manufacturing applications. The applicability of the derived parameters was extended to 3D-printed PLA, TPU, PA-GF, and PETG substrates having a much higher surface roughness. Additionally, a high aspect ratio of approx. 16:1 wall structure has been demonstrated by printing multiple metal lines on top of each other. While challenges persist, this study contributes to advancing additively manufactured electronic devices, highlighting the capabilities of StarJet metal jet-printing technology. Full article
Show Figures

Figure 1

15 pages, 2560 KiB  
Review
AGN Feedback Signatures in UV Emission
by K. Rubinur
Galaxies 2024, 12(2), 15; https://doi.org/10.3390/galaxies12020015 - 4 Apr 2024
Cited by 2 | Viewed by 2295
Abstract
Supermassive black holes (SMBH) are believed to influence galaxy evolution through AGN (active galactic nuclei) feedback. Galaxy mergers are key processes of galaxy formation that lead to AGN activity and star formation. The relative contribution of AGN feedback and mergers to star formation [...] Read more.
Supermassive black holes (SMBH) are believed to influence galaxy evolution through AGN (active galactic nuclei) feedback. Galaxy mergers are key processes of galaxy formation that lead to AGN activity and star formation. The relative contribution of AGN feedback and mergers to star formation is not yet well understood. In radio-loud objects, AGN outflows are dominated by large jets. However, in radio-quiet objects, outflows are more complex and involve jet, wind, and radiation. In this review, we discuss the signatures of AGN feedback through the alignment of radio and UV emissions. Current research on AGN feedback is discussed, along with a few examples of studies such as the galaxy merger system MRK 212, the radio-quiet AGN NGC 2639, and the radio-loud system Centaurus A. Multi-frequency observations of MRK 212 indicate the presence of dual AGN, as well as feedback-induced star-forming UV clumps. The fourth episode of AGN activity was detected in radio observations of the Seyfert galaxy NGC 2639, which also showed a central cavity of 6 kpc radius in CO and UV maps. This indicates that multi-epoch jets of radio-quiet AGN can blow out cold molecular gas, which can further reduce star formation in the center of the galaxies. Recent UV observations of Cen A have revealed two sets of stellar population in the northern star-forming region, which may have two different origins. Recent studies have shown that there is evidence that both positive and negative feedback can be present in galaxies at different scales and times. High-resolution, multi-band observations of large samples of different types of AGN and their host galaxies are important for understanding the two types of AGN feedback and their effect on the host galaxies. Future instruments like INSIST and UVEX will be able to help achieve some of these goals. Full article
(This article belongs to the Special Issue Multi-Phase Fueling and Feedback Processes in Jetted AGN)
Show Figures

Figure 1

Back to TopTop