The Evolution of Galaxies and Clusters at High Spatial Resolution with Advanced X-ray Imaging Satellite (AXIS)
Abstract
:1. Introduction
- How do star-forming structures shape the ISM? What are the conditions for breakout or outflow?
- How do AGN winds and jets inject energy and drive outflows in individual galaxies?
- How and when did AGN feedback begin to shape the evolution of galaxy clusters and groups?
- How and when did the hot and diffuse universe become enriched with heavy elements?
2. Stellar Feedback in Nearby Galaxies
3. Black Hole Feedback: Quasar Mode
3.1. Quasar-Mode Feedback in Nearby Galaxies
3.2. Quasar Feedback at High Cosmological Redshifts
4. Black Hole Feedback: Radio Mode
4.1. Radio-Mode Feedback in Galaxies
4.2. Feedback in Galaxy Clusters
4.3. Hidden Cooling Flows in Clusters
4.4. Inverse Compton Ghosts in the Deep X-ray Sky
5. The Integrated History of Feedback with High-z Clusters
5.1. Radio-Mode Feedback in High-z Clusters
5.2. Metallicity Evolution
6. The Circumgalactic Medium and Connections to the Cosmic Web
6.1. Connections to the Cosmic Web
6.2. Inflows and Outflows from Galaxy Clusters
6.3. Microphysics of the Intracluster and Circumgalactic Medium
7. Formation and Evolution of Large-Scale Structure
7.1. IGM Heating by Early X-ray Sources
7.2. Protocluster Structure
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wechsler, R.H.; Tinker, J.L. The Connection Between Galaxies and Their Dark Matter Halos. Annu. Rev. Astron. Astrophys. 2018, 56, 435–487. [Google Scholar] [CrossRef]
- Veilleux, S.; Cecil, G.; Bland-Hawthorn, J. Galactic Winds. Annu. Rev. Astron. Astrophys. 2005, 43, 769–826. [Google Scholar] [CrossRef]
- Heckman, T.M.; Thompson, T.A. Galactic Winds and the Role Played by Massive Stars. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; p. 2431. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Kara, E.A.; Mushotzky, R.F.; Ptak, A.; Koss, M.J.; Williams, B.J.; Allen, S.W.; Bauer, F.E.; Bautz, M.; Bodaghee, A.; et al. Overview of the Advanced X-ray Imaging Satellite (AXIS). SPIE 2023, 12678, 12678E. [Google Scholar] [CrossRef]
- Walker, S.; Nagai, D.; Simionescu, A.; Markevitch, M.; Akamatsu, H.; Arnaud, M.; Avestruz, C.; Bautz, M.; Biffi, V.; Borgani, S.; et al. Unveiling the Galaxy Cluster - Cosmic Web Connection with X-ray observations in the Next Decade. Bull. Am. Astron. Soc. 2019, 51, 218. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Kereš, D.; Oñorbe, J.; Faucher-Giguère, C.A.; Quataert, E.; Murray, N.; Bullock, J.S. Galaxies on FIRE (Feedback In Realistic Environments): Stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 2014, 445, 581–603. [Google Scholar] [CrossRef]
- Chevance, M.; Kruijssen, J.M.D.; Hygate, A.P.S.; Schruba, A.; Longmore, S.N.; Groves, B.; Henshaw, J.D.; Herrera, C.N.; Hughes, A.; Jeffreson, S.M.R.; et al. The lifecycle of molecular clouds in nearby star-forming disc galaxies. Mon. Not. R. Astron. Soc. 2020, 493, 2872–2909. [Google Scholar] [CrossRef]
- Krumholz, M.R.; McKee, C.F.; Bland-Hawthorn, J. Star Clusters Across Cosmic Time. Annu. Rev. Astron. Astrophys. 2019, 57, 227–303. [Google Scholar] [CrossRef]
- Dobbs, C.L.; Krumholz, M.R.; Ballesteros-Paredes, J.; Bolatto, A.D.; Fukui, Y.; Heyer, M.; Low, M.M.M.; Ostriker, E.C.; Vázquez-Semadeni, E. Formation of Molecular Clouds and Global Conditions for Star Formation. Protostars Planets VI 2014, 1312, 3–26. [Google Scholar] [CrossRef]
- Rosen, A.L.; Lopez, L.A.; Krumholz, M.R.; Ramirez-Ruiz, E. Gone with the wind: Where is the missing stellar wind energy from massive star clusters? Mon. Not. R. Astron. Soc. 2014, 442, 2701–2716. [Google Scholar] [CrossRef]
- Lancaster, L.; Ostriker, E.C.; Kim, J.G.; Kim, C.G. Efficiently Cooled Stellar Wind Bubbles in Turbulent Clouds. I. Fractal Theory and Application to Star-forming Clouds. Astrophys. J. 2021, 914, 89. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 2012, 14, 055023. [Google Scholar] [CrossRef]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. Astrophys. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef]
- Bower, R.G.; Benson, A.J.; Malbon, R.; Helly, J.C.; Frenk, C.S.; Baugh, C.M.; Cole, S.; Lacey, C.G. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 2006, 370, 645–655. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef]
- Silk, J.; Rees, M.J. Quasars and galaxy formation. Astron. Astrophys. 1998, 331, L1–L4. [Google Scholar] [CrossRef]
- Fabian, A.C. The obscured growth of massive black holes. Mon. Not. R. Astron. Soc. 1999, 308, L39–L43. [Google Scholar] [CrossRef]
- King, A. Black Holes, Galaxy Formation, and the MBH-σ Relation. Astrophys. J. 2003, 596, L27–L29. [Google Scholar] [CrossRef]
- Murray, N.; Quataert, E.; Thompson, T.A. On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds. Astrophys. J. 2005, 618, 569–585. [Google Scholar] [CrossRef]
- Fabbiano, G.; Paggi, A.; Karovska, M.; Elvis, M.; Maksym, W.P.; Risaliti, G.; Wang, J. Deep Chandra Observations of ESO 428-G014. II. Spectral Properties and Morphology of the Large-scale Extended X-ray Emission. Astrophys. J. 2018, 855, 131. [Google Scholar] [CrossRef]
- Maksym, W.P.; Fabbiano, G.; Elvis, M.; Karovska, M.; Paggi, A.; Raymond, J.; Wang, J.; Storchi-Bergmann, T.; Risaliti, G. CHEERS Results from NGC 3393. III. Chandra X-Ray Spectroscopy of the Narrow Line Region. Astrophys. J. 2019, 872, 94. [Google Scholar] [CrossRef]
- Trindade Falcao, A.; Fabbiano, G.; Elvis, M.; Paggi, A.; Maksym, W.P. Deep Chandra Observations of NGC 5728: Morphology and Spectral Properties of the Extended X-Ray Emission. Astrophys. J. 2023, 950, 143. [Google Scholar] [CrossRef]
- Fornasini, F.M.; Elvis, M.; Maksym, W.P.; Fabbiano, G.; Bergmann, T.S.; Gandhi, P.; Whittle, M. Termination Shocks and the Extended X-Ray Emission in Mrk 78. Astrophys. J. 2022, 931, 65. [Google Scholar] [CrossRef]
- King, A.; Pounds, K. Powerful Outflows and Feedback from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 115–154. [Google Scholar] [CrossRef]
- Paggi, A.; Wang, J.; Fabbiano, G.; Elvis, M.; Karovska, M. CHEERS Results on Mrk 573: A Study of Deep Chandra Observations. Astrophys. J. 2012, 756, 39. [Google Scholar] [CrossRef]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef]
- Faucher-Giguère, C.A.; Quataert, E. The physics of galactic winds driven by active galactic nuclei. Mon. Not. R. Astron. Soc. 2012, 425, 605–622. [Google Scholar] [CrossRef]
- Zubovas, K.; King, A. Clearing Out a Galaxy. Astrophys. J. 2012, 745, L34. [Google Scholar] [CrossRef]
- Kochanek, C.S.; Keeton, C.R.; McLeod, B.A. The Importance of Einstein Rings. Astrophys. J. 2001, 547, 50–59. [Google Scholar] [CrossRef]
- Chartas, G.; Cappi, M.; Vignali, C.; Dadina, M.; James, V.; Lanzuisi, G.; Giustini, M.; Gaspari, M.; Strickland, S.; Bertola, E. Multiphase Powerful Outflows Detected in High-z Quasars. Astrophys. J. 2021, 920, 24. [Google Scholar] [CrossRef]
- Chartas, G.; Cappi, M.; Vignali, C.; Dadina, M.; Giustini, M.; Lanzuisi, G.; Gaspari, M.; Bertola, E. Quasar Winds and their Interaction with the ISM at High-z. Bull. Am. Astron. Soc. 2023, 55, 300.01. [Google Scholar]
- Oguri, M. The image separation distribution of strong lenses: Halo versus subhalo populations. Mon. Not. R. Astron. Soc. 2006, 367, 1241–1250. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Heating Hot Atmospheres with Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2007, 45, 117–175. [Google Scholar] [CrossRef]
- Ogle, P.M.; Lanz, L.; Appleton, P.N. Jet-shocked H2 and CO in the Anomalous Arms of Molecular Hydrogen Emission Galaxy NGC 4258. Astrophys. J. 2014, 788, L33. [Google Scholar] [CrossRef]
- Lanz, L.; Ogle, P.M.; Evans, D.; Appleton, P.N.; Guillard, P.; Emonts, B. Jet-ISM Interaction in the Radio Galaxy 3C 293: Jet-driven Shocks Heat ISM to Power X-Ray and Molecular H2 Emission. Astrophys. J. 2015, 801, 17. [Google Scholar] [CrossRef]
- Werner, N.; McNamara, B.R.; Churazov, E.; Scannapieco, E. Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: A Topical Perspective. Space Sci. Rew. 2019, 215, 5. [Google Scholar] [CrossRef]
- McNamara, B.R.; Wise, M.; Nulsen, P.E.J.; David, L.P.; Sarazin, C.L.; Bautz, M.; Markevitch, M.; Vikhlinin, A.; Forman, W.R.; Jones, C.; et al. Chandra X-Ray Observations of the Hydra A Cluster: An Interaction between the Radio Source and the X-Ray-emitting Gas. Astrophys. J. 2000, 534, L135–L138. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Ettori, S.; Taylor, G.B.; Allen, S.W.; Crawford, C.S.; Iwasawa, K.; Johnstone, R.M.; Ogle, P.M. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 2000, 318, L65–L68. [Google Scholar] [CrossRef]
- Churazov, E.; Brüggen, M.; Kaiser, C.R.; Böhringer, H.; Forman, W. Evolution of Buoyant Bubbles in M87. Astrophys. J. 2001, 554, 261–273. [Google Scholar] [CrossRef]
- Forman, W.; Jones, C.; Churazov, E.; Markevitch, M.; Nulsen, P.; Vikhlinin, A.; Begelman, M.; Böhringer, H.; Eilek, J.; Heinz, S.; et al. Filaments, Bubbles, and Weak Shocks in the Gaseous Atmosphere of M87. Astrophys. J. 2007, 665, 1057–1066. [Google Scholar] [CrossRef]
- Sanders, J.S.; Fabian, A.C.; Taylor, G.B.; Russell, H.R.; Blundell, K.M.; Canning, R.E.A.; Hlavacek-Larrondo, J.; Walker, S.A.; Grimes, C.K. A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 2016, 457, 82–109. [Google Scholar] [CrossRef]
- Blanton, E.L.; Randall, S.W.; Douglass, E.M.; Sarazin, C.L.; Clarke, T.E.; McNamara, B.R. Shocks and Bubbles in a Deep Chandra Observation of the Cooling Flow Cluster Abell 2052. Astrophys. J. 2009, 697, L95–L98. [Google Scholar] [CrossRef]
- Nulsen, P.; Jones, C.; Forman, W.; Churazov, E.; McNamara, B.; David, L.; Murray, S. Radio Mode Outbursts in Giant Elliptical Galaxies. In The Monster’s Fiery Breath: Feedback in Galaxies, Groups, and Clusters; Heinz, S., Wilcots, E., Eds.; American Institute of Physics Conference Series; American Institute of Physics: College Park, MD, USA, 2009; Volume 1201, pp. 198–201. [Google Scholar] [CrossRef]
- Shin, J.; Woo, J.H.; Mulchaey, J.S. A Systematic Search for X-Ray Cavities in Galaxy Clusters, Groups, and Elliptical Galaxies. Astrophys. J. Suppl. Ser. 2016, 227, 31. [Google Scholar] [CrossRef]
- Kim, D.W.; Fabbiano, G. X-Ray Scaling Relations of ’Core’ and ’Coreless’ E and S0 Galaxies. Astrophys. J. 2015, 812, 127. [Google Scholar] [CrossRef]
- Cappellari, M.; Emsellem, E.; Krajnović, D.; McDermid, R.M.; Scott, N.; Verdoes Kleijn, G.A.; Young, L.M.; Alatalo, K.; Bacon, R.; Blitz, L.; et al. The ATLAS3D project - I. A volume-limited sample of 260 nearby early-type galaxies: Science goals and selection criteria. Mon. Not. R. Astron. Soc. 2011, 413, 813–836. [Google Scholar] [CrossRef]
- Nyland, K.; Young, L.M.; Wrobel, J.M.; Sarzi, M.; Morganti, R.; Alatalo, K.; Blitz, L.; Bournaud, F.; Bureau, M.; Cappellari, M.; et al. The ATLAS3D Project - XXXI. Nuclear radio emission in nearby early-type galaxies. Mon. Not. R. Astron. Soc. 2016, 458, 2221–2268. [Google Scholar] [CrossRef]
- Das, S.; Mathur, S.; Gupta, A.; Nicastro, F.; Krongold, Y. Multiple Temperature Components of the Hot Circumgalactic Medium of the Milky Way. Astrophys. J. 2019, 887, 257. [Google Scholar] [CrossRef]
- Sanders, J.S. Contour binning: A new technique for spatially resolved X-ray spectroscopy applied to Cassiopeia A. Mon. Not. R. Astron. Soc. 2006, 371, 829–842. [Google Scholar] [CrossRef]
- Randall, S.W.; Forman, W.R.; Giacintucci, S.; Nulsen, P.E.J.; Sun, M.; Jones, C.; Churazov, E.; David, L.P.; Kraft, R.; Donahue, M.; et al. Shocks and Cavities from Multiple Outbursts in the Galaxy Group NGC 5813: A Window to Active Galactic Nucleus Feedback. Astrophys. J. 2011, 726, 86. [Google Scholar] [CrossRef]
- Randall, S.W.; Nulsen, P.E.J.; Jones, C.; Forman, W.R.; Bulbul, E.; Clarke, T.E.; Kraft, R.; Blanton, E.L.; David, L.; Werner, N.; et al. A Very Deep Chandra Observation of the Galaxy Group NGC 5813: AGN Shocks, Feedback, and Outburst History. Astrophys. J. 2015, 805, 112. [Google Scholar] [CrossRef]
- Bîrzan, L.; Rafferty, D.A.; McNamara, B.R.; Wise, M.W.; Nulsen, P.E.J. A Systematic Study of Radio-induced X-Ray Cavities in Clusters, Groups, and Galaxies. Astrophys. J. 2004, 607, 800–809. [Google Scholar] [CrossRef]
- Li, Y.; Bryan, G.L.; Ruszkowski, M.; Voit, G.M.; O’Shea, B.W.; Donahue, M. Cooling, AGN Feedback, and Star Formation in Simulated Cool-core Galaxy Clusters. Astrophys. J. 2015, 811, 73. [Google Scholar] [CrossRef]
- Qiu, Y.; Bogdanović, T.; Li, Y.; McDonald, M. Using Hα Filaments to Probe Active Galactic Nuclei Feedback in Galaxy Clusters. Astrophys. J. Lett. 2019, 872, L11. [Google Scholar] [CrossRef]
- Pizzolato, F.; Soker, N. On the Nature of Feedback Heating in Cooling Flow Clusters. Astrophys. J. 2005, 632, 821–830. [Google Scholar] [CrossRef]
- Gaspari, M.; Ruszkowski, M.; Sharma, P. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets. Astrophys. J. 2012, 746, 94. [Google Scholar] [CrossRef]
- Li, Y.; Bryan, G.L. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Formation of Cold Clumps. Astrophys. J. 2014, 789, 153. [Google Scholar] [CrossRef]
- McNamara, B.R.; Russell, H.R.; Nulsen, P.E.J.; Hogan, M.T.; Fabian, A.C.; Pulido, F.; Edge, A.C. A Mechanism for Stimulating AGN Feedback by Lifting Gas in Massive Galaxies. Astrophys. J. 2016, 830, 79. [Google Scholar] [CrossRef]
- Voit, G.M.; Meece, G.; Li, Y.; O’Shea, B.W.; Bryan, G.L.; Donahue, M. A Global Model for Circumgalactic and Cluster-core Precipitation. Astrophys. J. 2017, 845, 80. [Google Scholar] [CrossRef]
- Qiu, Y.; Bogdanović, T.; Li, Y.; McDonald, M.; McNamara, B.R. The formation of dusty cold gas filaments from galaxy cluster simulations. Nat. Astron. 2020, 4, 900–906. [Google Scholar] [CrossRef]
- Li, Y.; Gendron-Marsolais, M.L.; Zhuravleva, I.; Xu, S.; Simionescu, A.; Tremblay, G.R.; Lochhaas, C.; Bryan, G.L.; Quataert, E.; Murray, N.W.; et al. Direct Detection of Black Hole-driven Turbulence in the Centers of Galaxy Clusters. Astrophys. J. Lett. 2020, 889, L1. [Google Scholar] [CrossRef]
- Zhang, C.; Zhuravleva, I.; Gendron-Marsolais, M.L.; Churazov, E.; Schekochihin, A.A.; Forman, W.R. Bubble-driven gas uplift in galaxy clusters and its velocity features. Mon. Not. R. Astron. Soc. 2022, 517, 616–631. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Williams, R.J.R.; Lazarian, A.; Ferland, G.J.; Johnstone, R.M. The energy source of the filaments around the giant galaxy NGC 1275. Mon. Not. R. Astron. Soc. 2011, 417, 172–177. [Google Scholar] [CrossRef]
- Voit, G.M.; Kay, S.T.; Bryan, G.L. The baseline intracluster entropy profile from gravitational structure formation. Mon. Not. R. Astron. Soc. 2005, 364, 909–916. [Google Scholar] [CrossRef]
- Zhuravleva, I.; Churazov, E.; Schekochihin, A.A.; Allen, S.W.; Arévalo, P.; Fabian, A.C.; Forman, W.R.; Sanders, J.S.; Simionescu, A.; Sunyaev, R.; et al. Turbulent heating in galaxy clusters brightest in X-rays. Nature 2014, 515, 85–87. [Google Scholar] [CrossRef]
- Peterson, J.R.; Paerels, F.B.S.; Kaastra, J.S.; Arnaud, M.; Reiprich, T.H.; Fabian, A.C.; Mushotzky, R.F.; Jernigan, J.G.; Sakelliou, I. X-ray imaging-spectroscopy of Abell 1835. Astron. Astrophys. 2001, 365, L104–L109. [Google Scholar] [CrossRef]
- Kaastra, J.S.; Ferrigno, C.; Tamura, T.; Paerels, F.B.S.; Peterson, J.R.; Mittaz, J.P.D. XMM-Newton observations of the cluster of galaxies Sérsic 159-03. Astron. Astrophys. 2001, 365, L99–L103. [Google Scholar] [CrossRef]
- Sanders, J.S.; Fabian, A.C.; Allen, S.W.; Morris, R.G.; Graham, J.; Johnstone, R.M. Cool X-ray emitting gas in the core of the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 2008, 385, 1186–1200. [Google Scholar] [CrossRef]
- Fabian, A.C.; Ferland, G.J.; Sanders, J.S.; McNamara, B.R.; Pinto, C.; Walker, S.A. Hidden cooling flows in clusters of galaxies. Mon. Not. R. Astron. Soc. 2022, 515, 3336–3345. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Ferland, G.J.; McNamara, B.R.; Pinto, C.; Walker, S.A. Hidden Cooling Flows in Clusters of Galaxies III: Accretion onto the Central Black Hole. Mon. Not. R. Astron. Soc. 2023, 524, 716–730. [Google Scholar] [CrossRef]
- Fabian, A.C.; Walker, S.A.; Russell, H.R.; Pinto, C.; Canning, R.E.A.; Salome, P.; Sanders, J.S.; Taylor, G.B.; Zweibel, E.G.; Conselice, C.J.; et al. HST imaging of the dusty filaments and nucleus swirl in NGC4696 at the centre of the Centaurus Cluster. Mon. Not. R. Astron. Soc. 2016, 461, 922–928. [Google Scholar] [CrossRef]
- Fabian, A.C.; Chapman, S.; Casey, C.M.; Bauer, F.; Blundell, K.M. The extended X-ray emission around HDF130 at z = 1.99: An inverse Compton ghost of a giant radio source in the Chandra Deep Field-North. Mon. Not. R. Astron. Soc. 2009, 395, L67–L70. [Google Scholar] [CrossRef]
- Mocz, P.; Fabian, A.C.; Blundell, K.M. Inverse-Compton ghosts and double-lobed radio sources in the X-ray sky. Mon. Not. R. Astron. Soc. 2011, 413, 1107–1120. [Google Scholar] [CrossRef]
- Allen, S.W.; Evrard, A.E.; Mantz, A.B. Cosmological Parameters from Observations of Galaxy Clusters. Annu. Rev. Astron. Astrophys. 2011, 49, 409–470. [Google Scholar] [CrossRef]
- Kravtsov, A.V.; Borgani, S. Formation of Galaxy Clusters. Annu. Rev. Astron. Astrophys. 2012, 50, 353–409. [Google Scholar] [CrossRef]
- McDonald, M.; Allen, S.W.; Bayliss, M.; Benson, B.A.; Bleem, L.E.; Brodwin, M.; Bulbul, E.; Carlstrom, J.E.; Forman, W.R.; Hlavacek-Larrondo, J.; et al. The Remarkable Similarity of Massive Galaxy Clusters from z ∼ 0 to z ∼ 1.9. Astrophys. J. 2017, 843, 28. [Google Scholar] [CrossRef]
- Sanders, J.S.; Fabian, A.C.; Russell, H.R.; Walker, S.A. Hydrostatic Chandra X-ray analysis of SPT-selected galaxy clusters - I. Evolution of profiles and core properties. Mon. Not. R. Astron. Soc. 2018, 474, 1065–1098. [Google Scholar] [CrossRef]
- Ghirardini, V.; Bulbul, E.; Kraft, R.; Bayliss, M.; Benson, B.; Bleem, L.; Bocquet, S.; Calzadilla, M.; Eckert, D.; Forman, W.; et al. Evolution of the Thermodynamic Properties of Clusters of Galaxies out to Redshift of 1.8. Astrophys. J. 2021, 910, 14. [Google Scholar] [CrossRef]
- Mantz, A.; Allen, S.W.; Battaglia, N.; Benson, B.; Canning, R.; Ettori, S.; Evrard, A.; von der Linden, A.; McDonald, M.; Abidi, M.; et al. The Future Landscape of High-Redshift Galaxy Cluster Science. Bull. Am. Astron. Soc. 2019, 51, 279. [Google Scholar] [CrossRef]
- Ubertosi, F.; Gitti, M.; Brighenti, F.; Brunetti, G.; McDonald, M.; Nulsen, P.; McNamara, B.; Randall, S.; Forman, W.; Donahue, M.; et al. The Deepest Chandra View of RBS 797: Evidence for Two Pairs of Equidistant X-ray Cavities. Astrophys. J. Lett. 2021, 923, L25. [Google Scholar] [CrossRef]
- de Grandi, S.; Molendi, S. Metal abundances in the cool cores of galaxy clusters. Astron. Astrophys. 2009, 508, 565–574. [Google Scholar] [CrossRef]
- Werner, N.; Urban, O.; Simionescu, A.; Allen, S.W. A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies. Nature 2013, 502, 656–658. [Google Scholar] [CrossRef] [PubMed]
- Urban, O.; Werner, N.; Allen, S.W.; Simionescu, A.; Mantz, A. A uniform metallicity in the outskirts of massive, nearby galaxy clusters. Mon. Not. R. Astron. Soc. 2017, 470, 4583–4599. [Google Scholar] [CrossRef]
- Flores, A.M.; Mantz, A.B.; Allen, S.W.; Morris, R.G.; Canning, R.E.A.; Bleem, L.E.; Calzadilla, M.S.; Floyd, B.T.; McDonald, M.; Ruppin, F. The history of metal enrichment traced by X-ray observations of high-redshift galaxy clusters. Mon. Not. R. Astron. Soc. 2021, 507, 5195–5204. [Google Scholar] [CrossRef]
- Biffi, V.; Planelles, S.; Borgani, S.; Fabjan, D.; Rasia, E.; Murante, G.; Tornatore, L.; Dolag, K.; Granato, G.L.; Gaspari, M.; et al. The history of chemical enrichment in the intracluster medium from cosmological simulations. Mon. Not. R. Astron. Soc. 2017, 468, 531–548. [Google Scholar] [CrossRef]
- Biffi, V.; Planelles, S.; Borgani, S.; Rasia, E.; Murante, G.; Fabjan, D.; Gaspari, M. The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. 2018, 476, 2689–2703. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Marinacci, F.; Torrey, P.; Genel, S.; Springel, V.; Weinberger, R.; Pakmor, R.; Hernquist, L.; Naiman, J.; Pillepich, A.; et al. The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 2018, 474, 2073–2093. [Google Scholar] [CrossRef]
- Willis, J.P.; Canning, R.E.A.; Noordeh, E.S.; Allen, S.W.; King, A.L.; Mantz, A.; Morris, R.G.; Stanford, S.A.; Brammer, G. Spectroscopic confirmation of a mature galaxy cluster at a redshift of 2. Nature 2020, 577, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Tacchella, S.; Eisenstein, D.J.; Hainline, K.; Johnson, B.D.; Baker, W.M.; Helton, J.M.; Robertson, B.; Suess, K.A.; Chen, Z.; Nelson, E.; et al. JADES Imaging of GN-z11: Revealing the Morphology and Environment of a Luminous Galaxy 430 Myr after the Big Bang. Astrophys. J. 2023, 952, 74. [Google Scholar] [CrossRef]
- Reiprich, T.H.; Basu, K.; Ettori, S.; Israel, H.; Lovisari, L.; Molendi, S.; Pointecouteau, E.; Roncarelli, M. Outskirts of Galaxy Clusters. Space Sci. Rev. 2013, 177, 195–245. [Google Scholar] [CrossRef]
- Walker, S.; Simionescu, A.; Nagai, D.; Okabe, N.; Eckert, D.; Mroczkowski, T.; Akamatsu, H.; Ettori, S.; Ghirardini, V. The Physics of Galaxy Cluster Outskirts. Space Sci. Rev. 2019, 215, 7. [Google Scholar] [CrossRef]
- Richter, P.; Paerels, F.B.S.; Kaastra, J.S. FUV and X-Ray Absorption in the Warm-Hot Intergalactic Medium. Space Sci. Rev. 2008, 134, 25–49. [Google Scholar] [CrossRef]
- Dolag, K.; Meneghetti, M.; Moscardini, L.; Rasia, E.; Bonaldi, A. Simulating the physical properties of dark matter and gas inside the cosmic web. Mon. Not. R. Astron. Soc. 2006, 370, 656–672. [Google Scholar] [CrossRef]
- Tremmel, M.; Quinn, T.R.; Ricarte, A.; Babul, A.; Chadayammuri, U.; Natarajan, P.; Nagai, D.; Pontzen, A.; Volonteri, M. Introducing ROMULUSC: A cosmological simulation of a galaxy cluster with an unprecedented resolution. Mon. Not. R. Astron. Soc. 2019, 483, 3336–3362. [Google Scholar] [CrossRef]
- Nagai, D.; Lau, E.T. Gas Clumping in the Outskirts of ΛCDM Clusters. Astrophys. J. Lett. 2011, 731, L10. [Google Scholar] [CrossRef]
- Roncarelli, M.; Ettori, S.; Borgani, S.; Dolag, K.; Fabjan, D.; Moscardini, L. Large-scale inhomogeneities of the intracluster medium: Improving mass estimates using the observed azimuthal scatter. Mon. Not. R. Astron. Soc. 2013, 432, 3030–3046. [Google Scholar] [CrossRef]
- Vazza, F.; Eckert, D.; Simionescu, A.; Brüggen, M.; Ettori, S. Properties of gas clumps and gas clumping factor in the intra-cluster medium. Mon. Not. R. Astron. Soc. 2013, 429, 799–814. [Google Scholar] [CrossRef]
- Simionescu, A.; Allen, S.W.; Mantz, A.; Werner, N.; Takei, Y.; Morris, R.G.; Fabian, A.C.; Sanders, J.S.; Nulsen, P.E.J.; George, M.R.; et al. Baryons at the Edge of the X-ray-Brightest Galaxy Cluster. Science 2011, 331, 1576. [Google Scholar] [CrossRef] [PubMed]
- Towler, I.; Kay, S.T.; Altamura, E. Gas clumping and its effect on hydrostatic bias in the MACSIS simulations. Mon. Not. R. Astron. Soc. 2023, 520, 5845–5857. [Google Scholar] [CrossRef]
- Cen, R.; Pop, A.R.; Bahcall, N.A. Gas loss in simulated galaxies as they fall into clusters. Proc. Natl. Acad. Sci. USA 2014, 111, 7914–7919. [Google Scholar] [CrossRef]
- Wong, K.W.; Sarazin, C.L. Effects of the Non-Equipartition of Electrons and Ions in the Outskirts of Relaxed Galaxy Clusters. Astrophys. J. 2009, 707, 1141–1159. [Google Scholar] [CrossRef]
- Wong, K.W.; Sarazin, C.L.; Ji, L. X-ray Signatures of Non-equilibrium Ionization Effects in Galaxy Cluster Accretion Shock Regions. Astrophys. J. 2011, 727, 126. [Google Scholar] [CrossRef]
- Avestruz, C.; Nagai, D.; Lau, E.T.; Nelson, K. Non-equilibrium Electrons in the Outskirts of Galaxy Clusters. Astrophys. J. 2015, 808, 176. [Google Scholar] [CrossRef]
- Andreon, S.; Moretti, A.; Böhringer, H.; Castagna, F. The flat entropy profile at the outskirts of the Abell 2244 galaxy cluster. Mon. Not. R. Astron. Soc. 2023, 519, 2366–2374. [Google Scholar] [CrossRef]
- Vikhlinin, A.A.; Kravtsov, A.V.; Markevich, M.L.; Sunyaev, R.A.; Churazov, E.M. Clusters of galaxies. Phys. Uspekhi 2014, 57, 317–341. [Google Scholar] [CrossRef]
- Bertschinger, E. Self-similar secondary infall and accretion in an Einstein-de Sitter universe. Astrophys. J. Suppl. Ser. 1985, 58, 39–65. [Google Scholar] [CrossRef]
- Markevitch, M.; Vikhlinin, A. Shocks and cold fronts in galaxy clusters. Phys. Rep. 2007, 443, 1–53. [Google Scholar] [CrossRef]
- Zhang, C.; Churazov, E.; Dolag, K.; Forman, W.R.; Zhuravleva, I. Encounters of merger and accretion shocks in galaxy clusters and their effects on intracluster medium. Mon. Not. R. Astron. Soc. 2020, 494, 4539–4547. [Google Scholar] [CrossRef]
- Zhang, C.; Churazov, E.; Dolag, K.; Forman, W.R.; Zhuravleva, I. Collision of merger and accretion shocks: Formation of Mpc-scale contact discontinuity in the Perseus cluster. Mon. Not. R. Astron. Soc. 2020, 498, L130–L134. [Google Scholar] [CrossRef]
- Zhang, C.; Churazov, E.; Forman, W.R.; Lyskova, N. Runaway merger shocks in galaxy cluster outskirts and radio relics. Mon. Not. R. Astron. Soc. 2019, 488, 5259–5266. [Google Scholar] [CrossRef]
- Fakhouri, O.; Ma, C.P.; Boylan-Kolchin, M. The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations. Mon. Not. R. Astron. Soc. 2010, 406, 2267–2278. [Google Scholar] [CrossRef]
- Bykov, A.M.; Vazza, F.; Kropotina, J.A.; Levenfish, K.P.; Paerels, F.B.S. Shocks and Non-thermal Particles in Clusters of Galaxies. Space Sci. Rev. 2019, 215, 14. [Google Scholar] [CrossRef]
- van Weeren, R.J.; de Gasperin, F.; Akamatsu, H.; Brüggen, M.; Feretti, L.; Kang, H.; Stroe, A.; Zandanel, F. Diffuse Radio Emission from Galaxy Clusters. Space Sci. Rev. 2019, 215, 16. [Google Scholar] [CrossRef]
- Lau, E.T.; Nagai, D.; Avestruz, C.; Nelson, K.; Vikhlinin, A. Mass Accretion and its Effects on the Self-similarity of Gas Profiles in the Outskirts of Galaxy Clusters. Astrophys. J. 2015, 806, 68. [Google Scholar] [CrossRef]
- Aung, H.; Nagai, D.; Lau, E.T. Shock and splash: Gas and dark matter halo boundaries around ΛCDM galaxy clusters. Mon. Not. R. Astron. Soc. 2021, 508, 2071–2078. [Google Scholar] [CrossRef]
- Walker, S.A.; Mirakhor, M.S.; ZuHone, J.; Sanders, J.S.; Fabian, A.C.; Diwanji, P. Is There an Enormous Cold Front at the Virial Radius of the Perseus Cluster? Astrophys. J. 2022, 929, 37. [Google Scholar] [CrossRef]
- Vurm, I.; Nevalainen, J.; Hong, S.E.; Bahé, Y.M.; Dalla Vecchia, C.; Heinämäki, P. Cosmic gas highways in C-EAGLE simulations. Astron. Astrophys. 2023, 673, A62. [Google Scholar] [CrossRef]
- Zinger, E.; Dekel, A.; Birnboim, Y.; Kravtsov, A.; Nagai, D. The role of penetrating gas streams in setting the dynamical state of galaxy clusters. Mon. Not. R. Astron. Soc. 2016, 461, 412–432. [Google Scholar] [CrossRef]
- Helander, P.; Sigmar, D.J. Collisional Transport in Magnetized Plasmas; Cambridge University Press: Cambridge, UK, 2005; Volume 4. [Google Scholar]
- Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas. Astrophys. J. 2009, 182, 310–377. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Genel, S.; Sijacki, D.; Torrey, P.; Springel, V.; Hernquist, L. A model for cosmological simulations of galaxy formation physics. Mon. Not. R. Astron. Soc. 2013, 436, 3031–3067. [Google Scholar] [CrossRef]
- Crain, R.A.; Schaye, J.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE simulations of galaxy formation: Calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 2015, 450, 1937–1961. [Google Scholar] [CrossRef]
- Komarov, S.V.; Churazov, E.M.; Kunz, M.W.; Schekochihin, A.A. Thermal conduction in a mirror-unstable plasma. Mon. Not. R. Astron. Soc. 2016, 460, 467–477. [Google Scholar] [CrossRef]
- Drake, J.F.; Pfrommer, C.; Reynolds, C.S.; Ruszkowski, M.; Swisdak, M.; Einarsson, A.; Thomas, T.; Hassam, A.B.; Roberg-Clark, G.T. Whistler-regulated Magnetohydrodynamics: Transport Equations for Electron Thermal Conduction in the High-β Intracluster Medium of Galaxy Clusters. Astrophys. J. 2021, 923, 245. [Google Scholar] [CrossRef]
- Schekochihin, A.A.; Cowley, S.C.; Kulsrud, R.M.; Rosin, M.S.; Heinemann, T. Nonlinear Growth of Firehose and Mirror Fluctuations in Astrophysical Plasmas. Phys. Rev. Lett. 2008, 100, 081301. [Google Scholar] [CrossRef] [PubMed]
- Berlok, T.; Quataert, E.; Pessah, M.E.; Pfrommer, C. Suppressed heat conductivity in the intracluster medium: Implications for the magneto-thermal instability. Mon. Not. R. Astron. Soc. 2021, 504, 3435–3454. [Google Scholar] [CrossRef]
- Beckmann, R.S.; Dubois, Y.; Pellissier, A.; Polles, F.L.; Olivares, V. AGN jets do not prevent the suppression of conduction by the heat buoyancy instability in simulated galaxy clusters. Astron. Astrophys. 2022, 666, A71. [Google Scholar] [CrossRef]
- Russell, H.R.; Nulsen, P.E.J.; Caprioli, D.; Chadayammuri, U.; Fabian, A.C.; Kunz, M.W.; McNamara, B.R.; Sanders, J.S.; Richard-Laferrière, A.; Beleznay, M.; et al. The structure of cluster merger shocks: Turbulent width and the electron heating time-scale. Mon. Not. R. Astron. Soc. 2022, 514, 1477–1493. [Google Scholar] [CrossRef]
- Markevitch, M. Chandra Observation of the Most Interesting Cluster in the Universe. In The X-ray Universe 2005; Wilson, A., Ed.; ESA Special Publication: Paris, France, 2006; Volume 604, p. 723. [Google Scholar] [CrossRef]
- Wang, Q.H.S.; Giacintucci, S.; Markevitch, M. Bow Shock in Merging Cluster A520: The Edge of the Radio Halo and the Electron-Proton Equilibration Timescale. Astrophys. J. 2018, 856, 162. [Google Scholar] [CrossRef]
- Choudhury, P.P.; Reynolds, C.S. Acoustic waves and g-mode turbulence as energy carriers in a viscous intracluster medium. Mon. Not. R. Astron. Soc. 2022, 514, 3765–3788. [Google Scholar] [CrossRef]
- Ettori, S.; Fabian, A.C. Chandra constraints on the thermal conduction in the intracluster plasma of A2142. Mon. Not. R. Astron. Soc. 2000, 317, L57–L59. [Google Scholar] [CrossRef]
- Abdurashidova, Z.; Aguirre, J.E.; Alexander, P.; Ali, Z.S.; Balfour, Y.; Beardsley, A.P.; Bernardi, G.; Billings, T.S.; Bowman, J.D.; Bradley, R.F.; et al. First Results from HERA Phase I: Upper Limits on the Epoch of Reionization 21 cm Power Spectrum. Astrophys. J. 2022, 925, 221. [Google Scholar] [CrossRef]
- McQuinn, M. The Evolution of the Intergalactic Medium. Annu. Rev. Astron. Astrophys. 2016, 54, 313–362. [Google Scholar] [CrossRef]
- Mesinger, A.; Ferrara, A.; Spiegel, D.S. Signatures of X-rays in the early Universe. Mon. Not. R. Astron. Soc. 2013, 431, 621–637. [Google Scholar] [CrossRef]
- Fragos, T.; Lehmer, B.D.; Naoz, S.; Zezas, A.; Basu-Zych, A. Energy Feedback from X-Ray Binaries in the Early Universe. Astrophys. J. Lett. 2013, 776, L31. [Google Scholar] [CrossRef]
- Madau, P.; Fragos, T. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries. Astrophys. J. 2017, 840, 39. [Google Scholar] [CrossRef]
- Lehmer, B.D.; Basu-Zych, A.R.; Mineo, S.; Brandt, W.N.; Eufrasio, R.T.; Fragos, T.; Hornschemeier, A.E.; Luo, B.; Xue, Y.Q.; Bauer, F.E.; et al. The Evolution of Normal Galaxy X-Ray Emission through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South. Astrophys. J. 2016, 825, 7. [Google Scholar] [CrossRef]
- Overzier, R.A. The realm of the galaxy protoclusters. A review. Astron. Astrophys. Rev. 2016, 24, 14. [Google Scholar] [CrossRef]
- Chiang, Y.K.; Overzier, R.; Gebhardt, K. Ancient Light from Young Cosmic Cities: Physical and Observational Signatures of Galaxy Proto-clusters. Astrophys. J. 2013, 779, 127. [Google Scholar] [CrossRef]
- Tozzi, P.; Pentericci, L.; Gilli, R.; Pannella, M.; Fiore, F.; Miley, G.; Nonino, M.; Röttgering, H.J.A.; Strazzullo, V.; Anderson, C.S.; et al. The 700 ks Chandra Spiderweb Field. I. Evidence for widespread nuclear activity in the protocluster. Astron. Astrophys. 2022, 662, A54. [Google Scholar] [CrossRef]
- Vito, F.; Brandt, W.N.; Lehmer, B.D.; Vignali, C.; Zou, F.; Bauer, F.E.; Bremer, M.; Gilli, R.; Ivison, R.J.; Spingola, C. Chandra reveals a luminous Compton-thick QSO powering a Lyα blob in a z = 4 starbursting protocluster. Astron. Astrophys. 2020, 642, A149. [Google Scholar] [CrossRef]
- Polletta, M.; Soucail, G.; Dole, H.; Lehnert, M.D.; Pointecouteau, E.; Vietri, G.; Scodeggio, M.; Montier, L.; Koyama, Y.; Lagache, G.; et al. Spectroscopic observations of PHz G237.01+42.50: A galaxy protocluster at z = 2.16 in the Cosmos field. Astron. Astrophys. 2021, 654, A121. [Google Scholar] [CrossRef]
- Cantalupo, S.; Arrigoni-Battaia, F.; Prochaska, J.X.; Hennawi, J.F.; Madau, P. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar. Nature 2014, 506, 63–66. [Google Scholar] [CrossRef]
- Arrigoni Battaia, F.; Chen, C.C.; Fumagalli, M.; Cai, Z.; Calistro Rivera, G.; Xu, J.; Smail, I.; Prochaska, J.X.; Yang, Y.; De Breuck, C. Overdensity of submillimeter galaxies around the z ∼ 2.3 MAMMOTH-1 nebula. The environment and powering of an enormous Lyman-α nebula. Astron. Astrophys. 2018, 620, A202. [Google Scholar] [CrossRef]
- Tozzi, P.; Gilli, R.; Liu, A.; Borgani, S.; Lepore, M.; Di Mascolo, L.; Saro, A.; Pentericci, L.; Carilli, C.; Miley, G.; et al. The 700 ks Chandra Spiderweb Field. II. Evidence for inverse-Compton and thermal diffuse emission in the Spiderweb galaxy. Astron. Astrophys. 2022, 667, A134. [Google Scholar] [CrossRef]
- Carilli, C.L.; Anderson, C.S.; Tozzi, P.; Pannella, M.; Clarke, T.; Pentericci, L.; Liu, A.; Mroczkowski, T.; Miley, G.K.; Rottgering, H.J.; et al. X-Ray Emission from the Jets and Lobes of the Spiderweb. Astrophys. J. 2022, 928, 59. [Google Scholar] [CrossRef]
- Anderson, C.S.; Carilli, C.L.; Tozzi, P.; Miley, G.K.; Borgani, S.; Clarke, T.; Di Mascolo, L.; Liu, A.; Mroczkowski, T.; Pannella, M.; et al. The Spiderweb Protocluster is Being Magnetized by Its Central Radio Jet. Astrophys. J. 2022, 937, 45. [Google Scholar] [CrossRef]
- Chiang, Y.K.; Overzier, R.A.; Gebhardt, K.; Henriques, B. Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr. Astrophys. J. Lett. 2017, 844, L23. [Google Scholar] [CrossRef]
- Churazov, E.; Vikhlinin, A.; Sunyaev, R. (No) dimming of X-ray clusters beyond z ∼ 1 at fixed mass: Crude redshifts and masses from raw X-ray and SZ data. Mon. Not. R. Astron. Soc. 2015, 450, 1984–1989. [Google Scholar] [CrossRef]
- Di Mascolo, L.; Saro, A.; Mroczkowski, T.; Borgani, S.; Churazov, E.; Rasia, E.; Tozzi, P.; Dannerbauer, H.; Basu, K.; Carilli, C.L.; et al. Forming intracluster gas in a galaxy protocluster at a redshift of 2.16. Nature 2023, 615, 809–812. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russell, H.R.; Lopez, L.A.; Allen, S.W.; Chartas, G.; Choudhury, P.P.; Dupke, R.A.; Fabian, A.C.; Flores, A.M.; Garofali, K.; Hodges-Kluck, E.; et al. The Evolution of Galaxies and Clusters at High Spatial Resolution with Advanced X-ray Imaging Satellite (AXIS). Universe 2024, 10, 273. https://doi.org/10.3390/universe10070273
Russell HR, Lopez LA, Allen SW, Chartas G, Choudhury PP, Dupke RA, Fabian AC, Flores AM, Garofali K, Hodges-Kluck E, et al. The Evolution of Galaxies and Clusters at High Spatial Resolution with Advanced X-ray Imaging Satellite (AXIS). Universe. 2024; 10(7):273. https://doi.org/10.3390/universe10070273
Chicago/Turabian StyleRussell, Helen R., Laura A. Lopez, Steven W. Allen, George Chartas, Prakriti Pal Choudhury, Renato A. Dupke, Andrew C. Fabian, Anthony M. Flores, Kristen Garofali, Edmund Hodges-Kluck, and et al. 2024. "The Evolution of Galaxies and Clusters at High Spatial Resolution with Advanced X-ray Imaging Satellite (AXIS)" Universe 10, no. 7: 273. https://doi.org/10.3390/universe10070273
APA StyleRussell, H. R., Lopez, L. A., Allen, S. W., Chartas, G., Choudhury, P. P., Dupke, R. A., Fabian, A. C., Flores, A. M., Garofali, K., Hodges-Kluck, E., Koss, M. J., Lanz, L., Lehmer, B. D., Li, J. -T., Maksym, W. P., Mantz, A. B., McDonald, M., Miller, E. D., Mushotzky, R. F., ... Zhang, C. (2024). The Evolution of Galaxies and Clusters at High Spatial Resolution with Advanced X-ray Imaging Satellite (AXIS). Universe, 10(7), 273. https://doi.org/10.3390/universe10070273