More Luminous Red Novae That Require Jets
Abstract
:1. Introduction
2. Challenging a Jetless Model of AT 2019zhd
3. The Dips in the Lightcurve of AT 2021biy
4. The Multi-Axes Bipolar Morphology of Nova 1670 (CK Vulpeculae)
5. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berger, E.; Soderberg, A.M.; Chevalier, R.A.; Fransson, C.; Foley, R.J.; Leonard, D.C.; Debes, J.H.; Diamond-Stanic, A.M.; Dupree, A.K.; Ivans, I.I.; et al. An Intermediate Luminosity Transient in NGC 300: The Eruption of a Dust-Enshrouded Massive Star. Astrophys. J. 2009, 699, 1850. [Google Scholar] [CrossRef]
- Kashi, A.; Soker, N. Operation of the jet feedback mechanism (JFM) in intermediate luminosity optical transients (ILOTs). Res. Astron. Astrophys. 2016, 16, 99. [Google Scholar] [CrossRef]
- Muthukrishna, D.; Narayan, G.; Mandel, K.S.; Biswas, R.; Hložek, R. RAPID: Early Classification of Explosive Transients Using Deep Learning. Publ. Astron. Soc. Pac. 2019, 131, 118002. [Google Scholar] [CrossRef]
- Jencson, J.E.; Kasliwal, M.M.; Adams, S.M.; Bond, H.E.; De, K.; Johansson, J.; Karambelkar, V.; Lau, R.M.; Tinyanont, S.; Ryder, S.D.; et al. The SPIRITS Sample of Luminous Infrared Transients: Uncovering Hidden Supernovae and Dusty Stellar Outbursts in Nearby Galaxies. Astrophys. J. 2019, 886, 40. [Google Scholar] [CrossRef]
- Banerjee, D.P.K.; Geballe, T.R.; Evans, A.; Shahbandeh, M.; Woodward, C.E.; Gehrz, R.D.; Eyres, S.P.S.; Starrfield, S.; Zijlstra, A. Near-infrared Spectroscopy of CK Vulpeculae: Revealing a Remarkably Powerful Blast from the Past. Astrophys. J. 2020, 904, L23. [Google Scholar] [CrossRef]
- Blagorodnova, N.; Klencki, J.; Pejcha, O.; Vreeswijk, P.M.; Bond, H.E.; Burdge, K.B.; De, K.; Fremling, C.; Gehrz, R.D.; Jencson, J.E.; et al. The luminous red nova AT 2018bwo in NGC 45 and its binary yellow supergiant progenitor. Astron. Astrophys. 2021, 653, A134. [Google Scholar] [CrossRef]
- Boian, I.; Groh, J.H. Diversity of supernovae and impostors shortly after explosion. Astron. Astrophys. 2019, 621, A109. [Google Scholar] [CrossRef]
- Bond, H.E.; Jencson, J.E.; Whitelock, P.A.; Adams, S.M.; Bally, J.; Cody, A.M.; Gehrz, R.D.; Kasliwal, M.M.; Masci, F.J. Hubble Space Telescope Imaging of Luminous Extragalactic Infrared Transients and Variables from the Spitzer Infrared Intensive Transients Survey. Astrophys. J. 2022, 928, 158. [Google Scholar] [CrossRef]
- Cai, Y.-Z.; Pastorello, A.; Fraser, M.; Wang, X.-F.; Filippenko, A.V.; Reguitti, A.; Patra, K.C.; Goranskij, V.P.; Barsukova, E.A.; Brink, T.G.; et al. Forbidden hugs in pandemic times III. Observations of the luminous red nova AT 2021biy in the nearby galaxy NGC 4631. Astron. Astrophys. 2022, 667, A4. [Google Scholar] [CrossRef]
- Cai, Y.-Z.; Pastorello, A.; Fraser, M.; Prentice, S.J.; Reynolds, T.M.; Cappellaro, E.; Benetti, S.; Morales-Garoffolo, A.; Reguitti, A.; Elias-Rosa, N.; et al. The transitional gap transient AT 2018hso: New insights into the luminous red nova phenomenon. Astron. Astrophys. 2019, 632, L6. [Google Scholar] [CrossRef]
- Cai, Y.; Reguitti, A.; Valerin, G.; Wang, X. Gap Transients Interacting with Circumstellar Medium. Universe 2022, 8, 493. [Google Scholar] [CrossRef]
- Kamiński, T.; Steffen, W.; Tylenda, R.; Young, K.H.; Patel, N.A.; Menten, K.M. Submillimeter-wave emission of three Galactic red novae: Cool molecular outflows produced by stellar mergers. Astron. Astrophys. 2018, 617, A129. [Google Scholar] [CrossRef]
- Karambelkar, V.R.; Kasliwal, M.M.; Blagorodnova, N.; Sollerman, J.; Aloisi, R.; An, S.G.; Andreoni, I.; Brink, T.G.; Bruch, R.; Cook, D.; et al. Volumetric Rates of Luminous Red Novae and Intermediate-luminosity Red Transients with the Zwicky Transient Facility. Astrophys. J. 2023, 948, 137. [Google Scholar] [CrossRef]
- Kasliwal, M.M. Transients in the local Universe: Systematically bridging the gap between novae and supernovae. Bull. Astron. Soc. India 2011, 39, 375. [Google Scholar]
- Kasliwal, M.M. Systematically Bridging the Gap between Novae and Supernovae. Publ. Astron. Soc. Aust. 2013, 29, 482–488. [Google Scholar] [CrossRef]
- Mason, E.; Diaz, M.; Williams, R.E.; Preston, G.; Bensby, T. The peculiar nova V1309 Scorpii/nova Scorpii 2008. A candidate twin of V838 Monocerotis. Astron. Astrophys. 2010, 516, A108. [Google Scholar] [CrossRef]
- Mould, J.; Cohen, J.; Graham, J.R.; Hamilton, D.; Matthews, K.; Picard, A.; Reid, N.; Schmidt, M.; Soifer, T.; Wilson, C.; et al. A Nova-like Red Variable in M31. Astrophys. J. 1990, 353, L35. [Google Scholar] [CrossRef]
- Ofek, E.O.; Kulkarni, S.R.; Rau, A.; Cenko, S.B.; Peng, E.W.; Blakeslee, J.P.; Cote, P.; Ferrarese, L.; Jordan, A.; Mei, S.; et al. The Environment of M85 Optical Transient 2006-1: Constraints on the Progenitor Age and Mass. Astrophys. J. 2008, 674, 447. [Google Scholar] [CrossRef]
- Pastorello, A.; Kochanek, C.S.; Fraser, M.; Dong, S.; Elias-Rosa, N.; Filippenko, A.V.; Benetti, S.; Cappellaro, E.; Tomasella, L.; Drake, A.J.; et al. Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: Another piece of the puzzle. Mon. Not. R. Astron. Soc. 2018, 474, 197–218. [Google Scholar] [CrossRef]
- Pastorello, A.; Mason, E.; Taubenberger, S.; Fraser, M.; Cortini, G.; Tomasella, L.; Botticella, M.T.; Elias-Rosa, N.; Kotak, R.; Smartt, S.J.; et al. Luminous red novae: Stellar mergers or giant eruptions? Astron. Astrophys. 2019, 630, A75. [Google Scholar] [CrossRef]
- Pastorello, A.; Valerin, G.; Fraser, M.; Elias-Rosa, N.; Valenti, S.; Reguitti, A.; Mazzali, P.A.; Amaro, R.C.; Andrews, J.E.; Dong, Y.; et al. Forbidden hugs in pandemic times II. The luminous red nova variety: AT 2020hat and AT 2020kog. Astron. Astrophys. 2021, 647, A93. [Google Scholar] [CrossRef]
- Pastorello, A.; Valerin, G.; Fraser, M.; Reguitti, A.; Elias-Rosa, N.; Filippenko, A.V.; Rojas-Bravo, C.; Tartaglia, L.; Reynolds, T.M.; Valenti, S.; et al. Panchromatic evolution of three luminous red novae: Forbidden hugs in pandemic times—IV. Astron. Astrophys. 2023, 671, A158. [Google Scholar] [CrossRef]
- Rau, A.; Kulkarni, S.R.; Ofek, E.O.; Yan, L. Spitzer Observations of the New Luminous Red Nova M85 OT2006-1. Astrophys. J. 2007, 659, 1536. [Google Scholar] [CrossRef]
- Stritzinger, M.D.; Taddia, F.; Fraser, M.; Tauris, T.M.; Contreras, C.; Drybye, S.; Galbany, L.; Holmbo, S.; Morrell, N.; Pastorello, A.; et al. The Carnegie Supernova Project II Observations of the luminous red nova AT 2014ej. Astron. Astrophys. 2020, 639, A104. [Google Scholar] [CrossRef]
- Tylenda, R.; Górny, S.K.; Kamiński, T.; Schmidt, M. VLT/UVES spectroscopy of V4332 Sagittarii in 2005: The best view on a decade-old stellar-merger remnant. Astron. Astrophys. 2015, 578, A75. [Google Scholar] [CrossRef]
- Tylenda, R.; Hajduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M.K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; et al. V1309 Scorpii: Merger of a contact binary. Astron. Astrophys. 2011, 528, A114. [Google Scholar] [CrossRef]
- Tylenda, R.; Kaminski, T.; Udalski, A.; Soszynski, I.; Poleski, R.; Szymanski, M.K.; Kubiak, M.; Pietrzynski, G.; Kozlowski, S.; Pietrukowicz, P.; et al. OGLE-2002-BLG-360: From a gravitational microlensing candidate to an overlooked red transient. Astron. Astrophys. 2013, 555, A16. [Google Scholar] [CrossRef]
- Wadhwa, S.S.; De Horta, A.; Filipović, M.D.; Tothill, N.F.H.; Arbutina, B.; Petrović, J.; Djurašević, G. Photometric Analysis of Three Potential Red Nova Progenitors. Res. Astron. Astrophys. 2022, 22, 105009. [Google Scholar] [CrossRef]
- Ivanova, N. Common Envelope: Progress and Transients; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Pastorello, A.; Fraser, M. Supernova impostors and other gap transients. Nat. Astron. 2019, 3, 676. [Google Scholar] [CrossRef]
- Soker, N. Intermediate luminosity optical transients during the grazing envelope evolution (GEE). New Astron. 2016, 47, 16–18. [Google Scholar] [CrossRef]
- Davidson, K.; Humphreys, R.M. Eta Carinae and Its Environment. Annu. Rev. Astron. Astrophys. 1997, 35, 1–32. [Google Scholar] [CrossRef]
- Kamiński, T.; Menten, K.M.; Tylenda, R.; Wong, K.T.; Belloche, A.; Mehner, A.; Schmidt, M.R.; Patel, N.A. Molecular remnant of Nova 1670 (CK Vulpeculae) I. Properties and enigmatic origin of the gas. Astron. Astrophys. 2020, 644, A59. [Google Scholar] [CrossRef]
- Kamiński, T.; Steffen, W.; Bujarrabal, V.; Tylenda, R.; Menten, K.M.; Hajduk, M. Molecular remnant of Nova 1670 (CK Vulpeculae) II. A three-dimensional view of the gas distribution and velocity field. Astron. Astrophys. 2021, 646, A1. [Google Scholar] [CrossRef]
- Shara, M.M.; Moffat, A.F.J.; Webbink, R.F. Unraveling the oldest and faintest recovered nova: CK Vulpeculae (1670). Astrophys. J. 1985, 294, 271. [Google Scholar] [CrossRef]
- Chesneau, O.; Millour, F.; De Marco, O.; Bright, S.N.; Spang, A.; Banerjee, D.P.K.; Ashok, N.M.; Kamiński, T.; Wisniewski, J.P.; Meilland, A.; et al. V838 Monocerotis: The central star and its environment a decade after outburst. Astron. Astrophys. 2014, 569, L3. [Google Scholar] [CrossRef]
- Kamiński, T.; Tylenda, R.; Kiljan, A.; Schmidt, M.; Lisiecki, K.; Melis, C.; Frankowski, A.; Joshi, V.; Menten, K.M. V838 Monocerotis as seen by ALMA: A remnant of a binary merger in a triple system. Astron. Astrophys. 2021, 655, A32. [Google Scholar] [CrossRef]
- Mobeen, M.Z.; Kamiński, T.; Matter, A.; Wittkowski, M.; Monnier, J.D.; Kraus, S.; Le Bouquin, J.B.; Anugu, N.; Ten Brummelaar, T.; Davies, C.L.; et al. Reconstructing the near-to mid-infrared environment in the stellar merger remnant V838 Monocerotis. Astron. Astrophys. 2024, 686, A260. [Google Scholar] [CrossRef]
- Mobeen, M.Z.; Kamiński, T.; Matter, A.; Wittkowski, M.; Paladini, C. The mid-infrared environment of the stellar merger remnant V838 Monocerotis. Astron. Astrophys. 2021, 655, A100. [Google Scholar] [CrossRef]
- Günther, H.M.; Hoadley, K.; Günther, M.N.; Metzger, B.D.; Schneider, P.C.; Shen, K.J. X-Ray Emission from Candidate Stellar Merger Remnant TYC 2597-735-1 and Its Blue Ring Nebula. Astron. J. 2022, 163, 173. [Google Scholar] [CrossRef]
- Hoadley, K.; Martin, D.C.; Metzger, B.D.; Seibert, M.; McWilliam, A.; Shen, K.J.; Neill, J.D.; Stefansson, G.; Monson, A.; Schaefer, B.E. A blue ring nebula from a stellar merger several thousand years ago. Nature 2020, 587, 387. [Google Scholar] [CrossRef]
- Steffen, W.; Teodoro, M.; Madura, T.I.; Groh, J.H.; Gull, T.R.; Mehner, A.; Corcoran, M.F.; Damineli, A.; Hamaguchi, K. The three-dimensional structure of the Eta Carinae Homunculus. Mon. Not. R. Astron. Soc. 2014, 442, 3316–3328. [Google Scholar] [CrossRef]
- Kamiński, T. Red novae, stellar mergers in binary and triple systems, and bipolar nebulae. arXiv 2024, arXiv:2401.03919. [Google Scholar]
- Kashi, A. Simulations and Modeling of Intermediate Luminosity Optical Transients and Supernova Impostors. Galaxies 2018, 6, 82. [Google Scholar] [CrossRef]
- Kashi, A.; Frankowski, A.; Soker, N. NGC 300 OT2008-1 as a Scaled-down Version of the Eta Carinae Great Eruption. Astrophys. J. 2010, 709, L11. [Google Scholar] [CrossRef]
- Soker, N. Efficiently Jet-powered Radiation in Intermediate-luminosity Optical Transients. Astrophys. J. 2020, 893, 20. [Google Scholar] [CrossRef]
- Soker, N.; Kashi, A. Explaining two recent intermediate-luminosity optical transients (ILOTs) by a binary interaction and jets. Mon. Not. R. Astron. Soc. 2016, 462, 217–222. [Google Scholar] [CrossRef]
- Hubová, D.; Pejcha, O. Kinematics of mass-loss from the outer Lagrange point L2. Mon. Not. R. Astron. Soc. 2019, 489, 891–899. [Google Scholar] [CrossRef]
- Pejcha, O.; Metzger, B.D.; Tyles, J.G.; Tomida, K. Pre-explosion Spiral Mass Loss of a Binary Star Merger. Astrophys. J. 2017, 850, 59. [Google Scholar] [CrossRef]
- Gilkis, A.; Soker, N.; Kashi, A. Common envelope jets supernova (CEJSN) impostors resulting from a neutron star companion. Mon. Not. R. Astron. Soc. 2019, 482, 4233–4242. [Google Scholar] [CrossRef]
- Grichener, A.; Soker, N. The Common Envelope Jet Supernova (CEJSN) r-process Scenario. Astrophys. J. 2019, 878, 24. [Google Scholar] [CrossRef]
- Schreier, R.; Hillel, S.; Shiber, S.; Soker, N. Simulating highly eccentric common envelope jet supernova impostors. Mon. Not. R. Astron. Soc. 2021, 508, 2386–2398. [Google Scholar] [CrossRef]
- Soker, N.; Gilkis, A. Explaining iPTF14hls as a common-envelope jets supernova. Mon. Not. R. Astron. Soc. 2018, 475, 1198–1202. [Google Scholar] [CrossRef]
- Yalinewich, A.; Matzner, C.D. Optical transient from an explosion close to the stellar surface. Mon. Not. R. Astron. Soc. 2019, 490, 312–318. [Google Scholar] [CrossRef]
- Soker, N. Supernovae in 2023 (review): Possible breakthroughs by late observations. Open J. Astrophys. 2024, 7, 31. [Google Scholar] [CrossRef]
- Addison, H.; Blagorodnova, N.; Groot, P.J.; Erasmus, N.; Jones, D.; Mogawana, O. Searching for the next Galactic Luminous red nova. Mon. Not. R. Astron. Soc. 2022, 517, 1884–1900. [Google Scholar] [CrossRef]
- Blagorodnova, N.; Kotak, R.; Polshaw, J.; Kasliwal, M.M.; Cao, Y.; Cody, A.M.; Doran, G.B.; Elias-Rosa, N.; Fraser, M.; Fremling, C.; et al. Common Envelope Ejection for a Luminous Red Nova in M101. Astrophys. J. 2017, 834, 107. [Google Scholar] [CrossRef]
- Howitt, G.; Stevenson, S.; Vigna-Gómez, A.; Justham, S.; Ivanova, N.; Woods, T.E.; Neijssel, C.J.; Mandel, I. Luminous Red Novae: Population models and future prospects. Mon. Not. R. Astron. Soc. 2020, 492, 3229–3240. [Google Scholar] [CrossRef]
- Ivanova, N.; Justham, S.; Avendano Nandez, J.L.; Lombardi, J.C. Identification of the Long-Sought Common-Envelope Events. Science 2013, 339, 433. [Google Scholar] [CrossRef]
- Kamiński, T.; Mason, E.; Tylenda, R.; Schmidt, M.R. Post-outburst spectra of a stellar-merger remnant of V1309 Scorpii: From a twin of V838 Monocerotis to a clone of V4332Sagittarii. Astron. Astrophys. 2015, 580, A34. [Google Scholar] [CrossRef]
- MacLeod, M.; Loeb, A. Pre-common-envelope Mass Loss from Coalescing Binary Systems. Astrophys. J. 2020, 895, 29. [Google Scholar] [CrossRef]
- MacLeod, M.; Macias, P.; Ramirez-Ruiz, E.; Grindlay, J.; Batta, A.; Montes, G. Lessons from the Onset of a Common Envelope Episode: The Remarkable M31 2015 Luminous Red Nova Outburst. Astrophys. J. 2017, 835, 282. [Google Scholar] [CrossRef]
- MacLeod, M.; Ostriker, E.C.; Stone, J.M. Bound Outflows, Unbound Ejecta, and the Shaping of Bipolar Remnants during Stellar Coalescence. Astrophys. J. 2018, 868, 136. [Google Scholar] [CrossRef]
- Matsumoto, T.; Metzger, B.D. Light-curve Model for Luminous Red Novae and Inferences about the Ejecta of Stellar Mergers. Astrophys. J. 2022, 938, 5. [Google Scholar] [CrossRef]
- Nandez, J.L.A.; Ivanova, N.; Lombardi, J.C. V1309 Sco—UNDERSTANDING A MERGER. Astrophys. J. 2014, 786, 39. [Google Scholar] [CrossRef]
- Pejcha, O.; Metzger, B.D.; Tomida, K. Cool and luminous transients from mass-losing binary stars. Mon. Not. R. Astron. Soc. 2016, 455, 4351–4372. [Google Scholar] [CrossRef]
- Pejcha, O.; Metzger, B.D.; Tomida, K. Binary stellar mergers with marginally bound ejecta: Excretion discs, inflated envelopes, outflows, and their luminous transients. Mon. Not. R. Astron. Soc. 2016, 461, 2527–2539. [Google Scholar] [CrossRef]
- Qian, S.-B.; Zhu, L.-Y.; Liu, L.; Zhang, X.-D.; Shi, X.-D.; He, J.-J.; Zhang, J. Contact binaries at different evolutionary stages. Res. Astron. Astrophys. 2020, 20, 163. [Google Scholar] [CrossRef]
- Schrøder, S.L.; MacLeod, M.; Loeb, A.; Vigna-Gómez, A.; Mandel, I. Explosions Driven by the Coalescence of a Compact Object with the Core of a Massive-star Companion inside a Common Envelope: Circumstellar Properties, Light Curves, and Population Statistics. Astrophys. J. 2020, 892, 13. [Google Scholar] [CrossRef]
- Segev, R.; Sabach, E.; Soker, N. Intermediate Luminosity Optical Transients (ILOTs) from Merging Giants. Astrophys. J. 2019, 884, 58. [Google Scholar] [CrossRef]
- Zhu, C.-H.; Lü, G.-L.; Lu, X.-Z.; He, J. Formation and Destiny of White Dwarf and Be Star Binaries. Res. Astron. Astrophys. 2023, 23, 025021. [Google Scholar] [CrossRef]
- De, K.; MacLeod, M.; Karambelkar, V.; Jencson, J.E.; Chakrabarty, D.; Conroy, C.; Dekany, R.; Eilers, A.; Graham, M.J.; Hillenbrand, L.A. et al. An infrared transient from a star engulfing a planet. Nature 2023, 617, 55. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, O.; Bear, E.; Soker, N. Faint intermediate luminosity optical transients (ILOTs) from engulfing exoplanets on the Hertzsprung gap. Mon. Not. R. Astron. Soc. 2022, 511, 1330–1335. [Google Scholar] [CrossRef]
- Kashi, A.; Michaelis, A.M.; Feigin, L. ASASSN-13db 2014–2017 Eruption as an Intermediate Luminosity Optical Transient. Galaxies 2019, 8, 2. [Google Scholar] [CrossRef]
- Metzger, B.D.; Giannios, D.; Spiegel, D.S. Optical and X-ray transients from planet-star mergers. Mon. Not. R. Astron. Soc. 2012, 425, 2778–2798. [Google Scholar] [CrossRef]
- O’Connor, C.E.; Bildsten, L.; Cantiello, M.; Lai, D. Giant Planet Engulfment by Evolved Giant Stars: Light Curves, Asteroseismology, and Survivability. Astrophys. J. 2023, 950, 128. [Google Scholar] [CrossRef]
- Retter, A.; Marom, A. A model of an expanding giant that swallowed planets for the eruption of V838 Monocerotis. Mon. Not. R. Astron. Soc. 2003, 345, L25–L28. [Google Scholar] [CrossRef]
- Retter, A.; Zhang, B.; Siess, L.; Levinson, A. The planets capture model of V838 Monocerotis: Conclusions for the penetration depth of the planet(s). Mon. Not. R. Astron. Soc. 2006, 370, 1573. [Google Scholar] [CrossRef]
- Soker, N. On the nature of the planet-powered transient event ZTF SLRN-2020. Mon. Not. R. Astron. Soc. 2023, 524, L94. [Google Scholar] [CrossRef]
- Yamazaki, R.; Hayasaki, K.; Loeb, A. Optical–infrared flares and radio afterglows by Jovian planets inspiraling into their host stars. Mon. Not. R. Astron. Soc. 2017, 466, 1421–1427. [Google Scholar] [CrossRef]
- Chen, Z.; Ivanova, N. Bridging the Gap between Luminous Red Novae and Common Envelope Evolution: The Role of Recombination Energy and Radiation Force. Astrophys. J. Lett. 2024, 963, L35. [Google Scholar] [CrossRef]
- Soker, N. Bright common envelope formation requires jets. Open J. Astrophys. 2023, 6, 32. [Google Scholar] [CrossRef]
- Andrews, J.E.; Smith, N. Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls. Mon. Not. R. Astron. Soc. 2018, 477, 74–79. [Google Scholar] [CrossRef]
- Kurfürst, P.; Krtička, J. Modeling of interactions between supernovae ejecta and aspherical circumstellar environments. Astron. Astrophys. 2019, 625, A24. [Google Scholar] [CrossRef]
- Metzger, B.D.; Pejcha, O. Shock-powered light curves of luminous red novae as signatures of pre-dynamical mass-loss in stellar mergers. Mon. Not. R. Astron. Soc. 2017, 471, 3200–3211. [Google Scholar] [CrossRef]
- Soker, N.; Kaplan, N. Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering. Res. Astron. Astrophys. 2021, 21, 090. [Google Scholar] [CrossRef]
- Stritzinger, M.D.; Taddia, F.; Fraser, M.; Tauris, T.M.; Suntzeff, N.B.; Contreras, C.; Drybye, S.; Galbany, L.; Holmbo, S.; Morrell, N.; et al. The Carnegie Supernova Project II Observations of the intermediate-luminosity red transient SNhunt120. Astron. Astrophys. 2020, 639, A103. [Google Scholar] [CrossRef]
- Pastorello, A.; Fraser, M.; Valerin, G.; Reguitti, A.; Itagaki, K.; Ochner, P.; Williams, S.C.; Jones, D.; Munday, J.; Smartt, S.J.; et al. Forbidden hugs in pandemic times I. Luminous red nova AT 2019zhd, a new merger in M 31. Astron. Astrophys. 2021, 646, A119. [Google Scholar] [CrossRef]
- Bryce, M.; López, J.A.; Holloway, A.J.; Meaburn, J. A Bipolar, Knotty Outflow with Velocities of 500 Kilometers per Second or above from the Engraved Hourglass Planetary Nebula MyCn 18. Astrophys. J. Lett. 1997, 487, L161. [Google Scholar] [CrossRef]
- O’Connor, J.A.; Redman, M.P.; Holloway, A.J.; Bryce, M.; López, J.A.; Meaburn, J. The Hypersonic, Bipolar, Knotty Outflow from the Engraved Hourglass Planetary Nebula MyCn 18. Astrophys. J. 2000, 531, 336. [Google Scholar] [CrossRef]
- Balick, B.; Borchert, L.; Kastner, J.H.; Frank, A.; Blackman, E.; Nordhaus, J.; Moraga Baez, P. NGC 6302: The Tempestuous Life of a Butterfly. Astrophys. J. 2023, 957, 54. [Google Scholar] [CrossRef]
- Moraga Baez, P.; Kastner, J.H.; Balick, B.; Montez, R.; Bublitz, J. Panchromatic HST/WFC3 Imaging Studies of Young, Rapidly Evolving Planetary Nebulae. II. NGC 7027. Astrophys. J. 2023, 942, 15. [Google Scholar] [CrossRef]
- Santamaría, E.; Toalá, J.A.; Liimets, T.; Guerrero, M.A.; Botello, M.K.; Sabin, L.; Ramos-Larios, G. Shaping the nebula around the symbiotic system R Aquarii. arXiv 2024, arXiv:2404.17710. [Google Scholar]
- Sahai, R. Observing Planetary and Pre-Planetary Nebulae with the James Webb Space Telescope. Galaxies 2020, 8, 61. [Google Scholar] [CrossRef]
- Alcolea, J.; Agúndez, M.; Bujarrabal, V.; Castro-Carrizo, A.; Desmurs, J.-F.; Martínez-Fernández, J.-E.; Sánchez Contreras, C.; Santander-García, M. M 1–92 Revisited: New Findings and Open Questions: New NOEMA Observations of Minkowski’s Footprint. Galaxies 2022, 10, 47. [Google Scholar] [CrossRef]
- Bollen, D.; Kamath, D.; Van Winckel, H.; De Marco, O.; Wardle, M. Jet parameters for a diverse sample of jet-launching post-AGB binaries. Mon. Not. R. Astron. Soc. 2021, 502, 445–462. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Davidson, K.; Smith, N. Eta Carinae’s Second Eruption and the Light Curves of the Eta Carinae Variables. Publ. Astron. Soc. Pac. 1999, 111, 1124. [Google Scholar] [CrossRef]
- Kashi, A.; Soker, N. Periastron Passage Triggering of the 19th Century Eruptions of Eta Carinae. Astrophys. J. 2010, 723, 602. [Google Scholar] [CrossRef]
- Soker, N. The departure of Eta Carinae from axisymmetry and the binary hypothesis. Mon. Not. R. Astron. Soc. 2011, 325, 584–588. [Google Scholar] [CrossRef]
- Soker, N. Comparing Eta Carinae with the Red Rectangle. Astrophys. J. 2007, 661, 490. [Google Scholar] [CrossRef]
- Hirai, R.; Podsiadlowski, P.; Owocki, S.P.; Schneider, F.R.N.; Smith, N. Simulating the formation of Eta Carinae’s surrounding nebula through unstable triple evolution and stellar merger-induced eruption. Mon. Not. R. Astron. Soc. 2021, 503, 4276–4296. [Google Scholar] [CrossRef]
- Livio, M.; Pringle, J.E. Can Eta Carinae be a triple system. Mon. Not. R. Astron. Soc. 1998, 295, L59–L60. [Google Scholar] [CrossRef]
- Portegies Zwart, S.F.; van den Heuvel, E.P.J. Was the nineteenth century giant eruption of Eta Carinae a merger event in a triple system? Mon. Not. R. Astron. Soc. 2016, 456, 3401. [Google Scholar] [CrossRef]
- Madura, T.I.; Gull, T.R.; Owocki, S.P.; Groh, J.H.; Okazaki, A.T.; Russell, C.M.P. Constraining the absolute orientation of Eta Carinae’s binary orbit: A 3D dynamical model for the broad [Fe III] emission. Mon. Not. R. Astron. Soc. 2012, 420, 2064–2086. [Google Scholar] [CrossRef]
- Soker, N. Shaping Planetary Nebulae with Jets and the Grazing Envelope Evolution. Galaxies 2020, 8, 26. [Google Scholar] [CrossRef]
- Ferguson, J.W.; Alexer, D.R.; Allard, F.; Barman, T.; Bodnarik, J.G.; Hauschildt, P.H.; Heffner-Wong, A.; Tamanai, A. Low-Temperature Opacities. Astrophys. J. 2005, 623, 585. [Google Scholar] [CrossRef]
- Ferguson, J.W.; Heffner-Wong, A.; Penley, J.J.; Barman, T.S.; Alexer, D.R. Grain Physics and Rosseland Mean Opacities. Astrophys. J. 2007, 666, 261. [Google Scholar] [CrossRef]
- Hajduk, M.; van Hoof, P.A.M.; Zijlstra, A.A. CK Vul: Evolving nebula and three curious background stars. Mon. Not. R. Astron. Soc. 2013, 432, 167–175. [Google Scholar] [CrossRef]
- Hajduk, M.; Zijlstra, A.A.; van Hoof, P.A.M.; Lopez, J.A.; Drew, J.E.; Evans, A.; Eyres, S.P.S.; Greimel, R.; Kerber, F.; Kimeswenger, S. The enigma of the oldest ‘nova’: The central star and nebula of CK Vul. Mon. Not. R. Astron. Soc. 2007, 378, 1298–1308. [Google Scholar] [CrossRef]
- Kamiński, T.; Menten, K.M.; Tylenda, R.; Hajduk, M.; Patel, N.A.; Kraus, A. Nuclear ashes and outflow in the eruptive star Nova Vul 1670. Nature 2015, 520, 322. [Google Scholar] [CrossRef]
- Kamiński, T.; Menten, K.M.; Tylenda, R.; Karakas, A.; Belloche, A.; Patel, N.A. Organic molecules, ions, and rare isotopologues in the remnant of the stellar-merger candidate, CK Vulpeculae (Nova 1670). Astron. Astrophys. 2017, 607, A78. [Google Scholar] [CrossRef]
- Shara, M.M.; Moffat, A.F.J. The recovery of CK VUL (NOVA 1670) the oldest “Old Nova”. Astrophys. J. Lett. 1982, 258, L41. [Google Scholar] [CrossRef]
- Tylenda, R.; Kamiński, T.; Mehner, A. Elemental abundances in the remnant of the ancient eruption of CK Vulpeculae. Astron. Astrophys. 2019, 628, A124. [Google Scholar] [CrossRef]
- Tylenda, R.; Kamiński, T.; Smolec, R. Nova 1670 (CK Vulpeculae) was a merger of a red giant with a helium white dwarf. Astron. Astrophys. 2024, 685, A49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soker, N. More Luminous Red Novae That Require Jets. Galaxies 2024, 12, 33. https://doi.org/10.3390/galaxies12040033
Soker N. More Luminous Red Novae That Require Jets. Galaxies. 2024; 12(4):33. https://doi.org/10.3390/galaxies12040033
Chicago/Turabian StyleSoker, Noam. 2024. "More Luminous Red Novae That Require Jets" Galaxies 12, no. 4: 33. https://doi.org/10.3390/galaxies12040033
APA StyleSoker, N. (2024). More Luminous Red Novae That Require Jets. Galaxies, 12(4), 33. https://doi.org/10.3390/galaxies12040033