Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,213)

Search Parameters:
Keywords = Soybean

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1416 KiB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

24 pages, 4382 KiB  
Article
MTL-PlotCounter: Multitask Driven Soybean Seedling Counting at the Plot Scale Based on UAV Imagery
by Xiaoqin Xue, Chenfei Li, Zonglin Liu, Yile Sun, Xuru Li and Haiyan Song
Remote Sens. 2025, 17(15), 2688; https://doi.org/10.3390/rs17152688 - 3 Aug 2025
Viewed by 48
Abstract
Accurate and timely estimation of soybean emergence at the plot scale using unmanned aerial vehicle (UAV) remote sensing imagery is essential for germplasm evaluation in breeding programs, where breeders prioritize overall plot-scale emergence rates over subimage-based counts. This study proposes PlotCounter, a deep [...] Read more.
Accurate and timely estimation of soybean emergence at the plot scale using unmanned aerial vehicle (UAV) remote sensing imagery is essential for germplasm evaluation in breeding programs, where breeders prioritize overall plot-scale emergence rates over subimage-based counts. This study proposes PlotCounter, a deep learning regression model based on the TasselNetV2++ architecture, designed for plot-scale soybean seedling counting. It employs a patch-based training strategy combined with full-plot validation to achieve reliable performance with limited breeding plot data. To incorporate additional agronomic information, PlotCounter is extended into a multitask learning framework (MTL-PlotCounter) that integrates sowing metadata such as variety, number of seeds per hole, and sowing density as auxiliary classification tasks. RGB images of 54 breeding plots were captured in 2023 using a DJI Mavic 2 Pro UAV and processed into an orthomosaic for model development and evaluation, showing effective performance. PlotCounter achieves a root mean square error (RMSE) of 6.98 and a relative RMSE (rRMSE) of 6.93%. The variety-integrated MTL-PlotCounter, V-MTL-PlotCounter, performs the best, with relative reductions of 8.74% in RMSE and 3.03% in rRMSE compared to PlotCounter, and outperforms representative YOLO-based models. Additionally, both PlotCounter and V-MTL-PlotCounter are deployed on a web-based platform, enabling users to upload images via an interactive interface, automatically count seedlings, and analyze plot-scale emergence, powered by a multimodal large language model. This study highlights the potential of integrating UAV remote sensing, agronomic metadata, specialized deep learning models, and multimodal large language models for advanced crop monitoring. Full article
(This article belongs to the Special Issue Recent Advances in Multimodal Hyperspectral Remote Sensing)
Show Figures

Figure 1

21 pages, 1458 KiB  
Article
Production of a Biosurfactant for Application in the Cosmetics Industry
by Ana Paula Barbosa Cavalcanti, Gleice Paula de Araújo, Káren Gercyane de Oliveira Bezerra, Fabíola Carolina Gomes de Almeida, Maria da Glória Conceição da Silva, Alessandra Sarubbo, Cláudio José Galdino da Silva Júnior, Rita de Cássia Freire Soares da Silva and Leonie Asfora Sarubbo
Fermentation 2025, 11(8), 451; https://doi.org/10.3390/fermentation11080451 - 2 Aug 2025
Viewed by 246
Abstract
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal [...] Read more.
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal risk to humans and the environment, which has attracted the interest of an emerging consumer market and, consequently, the cosmetics industry. The aim of the present study was to produce a biosurfactant from the yeast Starmerella bombicola ATCC 22214 cultivated in a mineral medium containing 10% soybean oil and 5% glucose. The biosurfactant reduced the surface tension of water from 72.0 ± 0.1 mN/m to 33.0 ± 0.3 mN/m after eight days of fermentation. The yield was 53.35 ± 0.39 g/L and the critical micelle concentration was 1000 mg/L. The biosurfactant proved to be a good emulsifier of oils used in cosmetic formulations, with emulsification indices ranging from 45.90 ± 1.69% to 68.50 ± 1.10%. The hydrophilic–lipophilic balance index demonstrated the wetting capacity of the biosurfactant and its tendency to form oil-in-water (O/W) emulsions, with 50.0 ± 0.20% foaming capacity. The biosurfactant did not exhibit cytotoxicity in the MTT assay or irritant potential. Additionally, an antioxidant activity of 58.25 ± 0.32% was observed at a concentration of 40 mg/mL. The compound also exhibited antimicrobial activity against various pathogenic microorganisms. The characterisation of the biosurfactant using magnetic nuclear resonance and Fourier transform infrared spectroscopy revealed that the biomolecule is a glycolipid with an anionic nature. The results demonstrate that biosurfactant produced in this work has potential as an active biotechnological ingredient for innovative, eco-friendly cosmetic formulations. Full article
(This article belongs to the Special Issue The Industrial Feasibility of Biosurfactants)
Show Figures

Figure 1

20 pages, 10391 KiB  
Article
Sustainable Substitution of Petroleum-Based Processing Oils with Soybean-Derived Alternatives in Styrene–Butadiene Rubber: Effects on Processing Behavior and Mechanical Properties
by Yang-Wei Lin, Tsung-Yi Chen, Chen-Yu Chueh, Yi-Ting Chen, Tsunghsueh Wu and Hsi-Ming Hsieh
Polymers 2025, 17(15), 2129; https://doi.org/10.3390/polym17152129 - 1 Aug 2025
Viewed by 242
Abstract
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) [...] Read more.
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) systems to assess processing characteristics, mechanical performance, and environmental durability. Among the alternatives, SBO demonstrated the best overall performance, improving processability and tensile strength by over 10%, while ESBO enhanced ozone resistance by 35% due to its epoxide functionality. Expired and recycled SBOs maintained essential mechanical properties within 90% of virgin SBO values. The full replacement of CH450 with SBO in tire prototypes resulted in burst strength exceeding 1000 kPa and stable appearance after 5000 km of road testing. To validate industrial relevance, the developed green tire was exhibited at the 2025 Taipei International Cycle Show, attracting interest from international buyers and stakeholders for its eco-friendly composition and carbon footprint reduction potential, thereby demonstrating both technical feasibility and commercial viability. Full article
(This article belongs to the Special Issue Functional Polymers and Their Composites for Sustainable Development)
Show Figures

Figure 1

18 pages, 10604 KiB  
Article
Fast Detection of Plants in Soybean Fields Using UAVs, YOLOv8x Framework, and Image Segmentation
by Ravil I. Mukhamediev, Valentin Smurygin, Adilkhan Symagulov, Yan Kuchin, Yelena Popova, Farida Abdoldina, Laila Tabynbayeva, Viktors Gopejenko and Alexey Oxenenko
Drones 2025, 9(8), 547; https://doi.org/10.3390/drones9080547 - 1 Aug 2025
Viewed by 181
Abstract
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves [...] Read more.
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves chemicals but also reduces the environmental load on cultivated fields. Machine learning algorithms are widely used for plant classification. Research on the application of the YOLO algorithm is conducted for simultaneous identification, localization, and classification of plants. However, the quality of the algorithm significantly depends on the training set. The aim of this study is not only the detection of a cultivated plant (soybean) but also weeds growing in the field. The dataset developed in the course of the research allows for solving this issue by detecting not only soybean but also seven weed species common in the fields of Kazakhstan. The article describes an approach to the preparation of a training set of images for soybean fields using preliminary thresholding and bound box (Bbox) segmentation of marked images, which allows for improving the quality of plant classification and localization. The conducted research and computational experiments determined that Bbox segmentation shows the best results. The quality of classification and localization with the application of Bbox segmentation significantly increased (f1 score increased from 0.64 to 0.959, mAP50 from 0.72 to 0.979); for a cultivated plant (soybean), the best classification results known to date were achieved with the application of YOLOv8x on images obtained from the UAV, with an f1 score = 0.984. At the same time, the plant detection rate increased by 13 times compared to the model proposed earlier in the literature. Full article
Show Figures

Figure 1

24 pages, 958 KiB  
Article
Optimizing Aspergillus oryzae Inoculation Dosage and Fermentation Duration for Enhanced Protein Content in Soybean Meal and Its Influence on Dog Food Extrusion
by Youhan Chen, Thomas Weiss, Donghai Wang, Sajid Alavi and Charles Gregory Aldrich
Processes 2025, 13(8), 2441; https://doi.org/10.3390/pr13082441 - 1 Aug 2025
Viewed by 281
Abstract
This study aimed to optimize the inoculation dosage and fermentation duration to enhance the protein content and reduce soluble oligosaccharides in soybean meal using Aspergillus oryzae and assessed its performance in dog food extrusion. A 3 × 5 factorial design was used to [...] Read more.
This study aimed to optimize the inoculation dosage and fermentation duration to enhance the protein content and reduce soluble oligosaccharides in soybean meal using Aspergillus oryzae and assessed its performance in dog food extrusion. A 3 × 5 factorial design was used to determine the optimal fermentation conditions. These conditions were applied to ferment soybean meal in bulk for nutritional analysis. Finally, the impact of fermentation on extrusion processing was assessed by formulating and extruding four diets: SBM (30% soybean meal), AMF (30% soybean meal with 1% Amaferm®A. oryzae biomass), FSBM (30% fermented soybean meal), and SPI (18% soy protein isolate). Diets were extruded with a single-screw extruder, and physical characteristics of kibbles, particle size distribution, and viscosity of raw mixes were analyzed. The optimal fermentation conditions were 1 × 104 spore/g substrate for 36 h, which increased the crude protein content by 4.63% DM, methionine and cysteine total content by 0.15% DM, and eliminated sucrose, while significantly reducing stachyose, raffinose, and verbascose (95.22, 87.37, and 41.82%, respectively). The extrusion results showed that FSBM had intermediate specific mechanical energy (SME), in-barrel moisture requirements, and sectional expansion index (198.7 kJ/kg, 28.2%, and 1.80, respectively) compared with SBM (83.7 kJ/kg, 34.5%, and 1.30, respectively) and SPI (305.3 kJ/kg, 33.5%, and 2.55, respectively). The FSBM also exhibited intermediate particle size distribution and the least raw mix viscosity. These findings demonstrate that A. oryzae fermentation enhances the nutrient profile of soybean meal while improving extrusion efficiency and kibble quality, supporting its potential use as a sustainable pet food ingredient. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

13 pages, 1189 KiB  
Article
Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
by Irena Bertoncelj, Anže Rovanšek and Robert Leskovšek
Agriculture 2025, 15(15), 1658; https://doi.org/10.3390/agriculture15151658 - 1 Aug 2025
Viewed by 175
Abstract
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when [...] Read more.
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when applied consistently over extended periods. However, understanding of the earthworm population dynamics in the period following the implementation of changes in tillage practices remains limited. This three-year field study (2021–2023) investigates earthworm populations during the early transition phase (4–6 years) following the conversion from conventional ploughing to conservation (<8 cm depth, with residue retention) and no-tillage systems in a temperate arable system in central Slovenia. Earthworms were sampled annually in early October from three adjacent fields, each following the same three-year crop rotation (maize—winter cereal + cover crop—soybeans), using a combination of hand-sorting and allyl isothiocyanate (AITC) extraction. Results showed that reduced tillage practices significantly increased both earthworm biomass and abundance compared to conventional ploughing. However, a significant interaction between tillage and year was observed, with a sharp decline in earthworm abundance and mass in 2022, likely driven by a combination of 2022 summer tillage prior to cover crop sowing and extreme drought conditions. Juvenile earthworms were especially affected, with their proportion decreasing from 62% to 34% in ploughed plots and from 63% to 26% in conservation tillage plots. Despite interannual fluctuations, no-till showed the lowest variability in earthworm population. Long-term monitoring is essential to disentangle management and environmental effects and to inform resilient soil management strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

13 pages, 1191 KiB  
Article
Gut Microbiome Structural Dynamics in Japanese Quail Across Developmental Stages
by Daniela da Silva Gomes, Alexandre Lemos de Barros Moreira Filho, Wydemberg José de Araújo, Gustavo Felipe Correia Sales, Hemilly Marques da Silva, Thalis José de Oliveira, Antonio Venício de Sousa, Celso José Bruno de Oliveira and Patrícia Emília Naves Givisiez
Microbiol. Res. 2025, 16(8), 167; https://doi.org/10.3390/microbiolres16080167 - 1 Aug 2025
Viewed by 188
Abstract
The cecal microbiota is essential for intestinal health and performance. This study describes the succession patterns of the cecal microbiota in Japanese quail (Coturnix japonica) until 42 days of age. Sixty quails were raised using standard conditions and fed corn–soybean meal [...] Read more.
The cecal microbiota is essential for intestinal health and performance. This study describes the succession patterns of the cecal microbiota in Japanese quail (Coturnix japonica) until 42 days of age. Sixty quails were raised using standard conditions and fed corn–soybean meal diets. Cecal contents were sampled from five birds weekly from 7 to 42 days of age and submitted to Illumina 16S rRNA sequencing for metabarcoding analysis. Diversity and functional prediction were carried out with QIIME2, PICRUSt2, STAMP and MicrobiomeAnalyst 2.0. Firmicutes increased from 50% at 7 days to more than 80% at 42 days, whereas Bacteroidota decreased from 45% to 12% in the same period. Alpha diversity progressively increased with age, indicating a richer and more balanced microbiota at later ages. Genera such as Bacteroides were predominant in the beginning and later were replaced by Lachnospiraceae, Ruminococcus and Faecalibacterium. These developmental taxonomic features aligned with significant shifts in ten metabolic pathways identified by prediction, revealing a transition from biosynthetic functions to complex carbohydrate metabolism and cell wall biosynthesis. The first seven days are considered a critical window for probiotics intervention, which may favor the establishment of a microbiota that is more stable and beneficial to quail performance. Full article
Show Figures

Figure 1

19 pages, 3489 KiB  
Article
Impact of Nitrogen Fertilisation and Inoculation on Soybean Nodulation, Nitrogen Status, and Yield in a Central European Climate
by Waldemar Helios, Magdalena Serafin-Andrzejewska, Marcin Kozak and Sylwia Lewandowska
Agriculture 2025, 15(15), 1654; https://doi.org/10.3390/agriculture15151654 - 1 Aug 2025
Viewed by 178
Abstract
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate [...] Read more.
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate climates, where variable weather conditions can significantly affect nodulation and yield. This study evaluated the effects of three nitrogen fertilisation doses (0, 30, and 60 kg N·ha−1), applied in the form of ammonium nitrate (34% N) and two commercial rhizobial inoculants—HiStick Soy (containing Bradyrhizobium japonicum strain 532C) and Nitragina (including a Polish strain of B. japonicum)—on nodulation, nitrogen uptake, and seed yield. A three-year field experiment (2017–2019) was conducted in southwestern Poland using a two-factor randomized complete block design. Nodulation varied significantly across years, with the highest values recorded under favourable early-season moisture and reduced during drought. In the first year, inoculation with HiStick Soy significantly increased nodule number and seed yield compared to Nitragina and the uninoculated control. Nitrogen fertilisation consistently improved seed yield, although it had no significant effect on nodulation. The highest nitrogen use efficiency was observed with moderate nitrogen input (30 kg N·ha−1) combined with inoculation. These findings highlight the importance of integrating effective rhizobial inoculants with optimized nitrogen fertilisation to improve soybean productivity and nitrogen efficiency under variable temperate climate conditions. Full article
(This article belongs to the Special Issue Strategies to Enhance Nutrient Use Efficiency and Crop Nutrition)
Show Figures

Figure 1

17 pages, 3308 KiB  
Article
Exogenous Melatonin Application Improves Shade Tolerance and Growth Performance of Soybean Under Maize–Soybean Intercropping Systems
by Dan Jia, Ziqing Meng, Shiqiang Hu, Jamal Nasar, Zeqiang Shao, Xiuzhi Zhang, Bakht Amin, Muhammad Arif and Harun Gitari
Plants 2025, 14(15), 2359; https://doi.org/10.3390/plants14152359 - 1 Aug 2025
Viewed by 210
Abstract
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study [...] Read more.
Maize–soybean intercropping is widely practised to improve land use efficiency, but shading from maize often limits soybean growth and productivity. Melatonin, a plant signaling molecule with antioxidant and growth-regulating properties, has shown potential in mitigating various abiotic stresses, including low light. This study investigated the efficacy of applying foliar melatonin (MT) to enhance shade tolerance and yield performance of soybean under intercropping. Four melatonin concentrations (0, 50, 100, and 150 µM) were applied to soybean grown under mono- and intercropping systems. The results showed that intercropping significantly reduced growth, photosynthetic activity, and yield-related traits. However, the MT application, particularly at 100 µM (MT100), effectively mitigated these declines. MT100 improved plant height (by up to 32%), leaf area (8%), internode length (up to 41%), grain yield (32%), and biomass dry matter (30%) compared to untreated intercropped plants. It also enhanced SPAD chlorophyll values, photosynthetic rate, stomatal conductance, chlorophyll fluorescence parameters such as Photosystem II efficiency (ɸPSII), maximum PSII quantum yield (Fv/Fm), photochemical quenching (qp), electron transport rate (ETR), Rubisco activity, and soluble protein content. These findings suggest that foliar application of melatonin, especially at 100 µM, can improve shade resilience in soybean by enhancing physiological and biochemical performance, offering a practical strategy for optimizing productivity in intercropping systems. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

17 pages, 6625 KiB  
Article
Management Zones for Irrigated and Rainfed Grain Crops Based on Data Layer Integration
by Luiz Gustavo de Góes Sterle and José Paulo Molin
Agronomy 2025, 15(8), 1864; https://doi.org/10.3390/agronomy15081864 - 31 Jul 2025
Viewed by 189
Abstract
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and [...] Read more.
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and 1.50 m, and terrain data were analyzed using multivariate statistics to define MZs. Two clustering methods—fuzzy c-means (FCM) and hierarchical clustering—were compared for variance reduction effectiveness. Rainfed areas showed greater spatial variability (yield CV 9–12%; ECa CV 20–27%) than irrigated fields (yield CV < 7%; ECa CV ~5%). Principal component analysis (PCA) identified subsoil ECa and elevation as key variables in irrigated fields, while surface ECa and topography influenced rainfed variability. FCM produced more homogeneous zones with fewer classes, especially in irrigated fields, whereas hierarchical clustering better detected outliers but required more zones for similar variance reduction. Yield correlated strongly with slope and moisture in rainfed systems. These results emphasize aligning MZ delineation with production system characteristics—enabling variable rate irrigation in irrigated fields and promoting moisture conservation in rainfed systems. FCM is recommended for operational efficiency, while hierarchical clustering offers higher precision in complex contexts. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

8 pages, 221 KiB  
Communication
Use of Corn Bran with Solubles in Laying Hen’s Diets
by Maria Clara N. Piazza, Ideraldo L. Lima, Ricardo V. Nunes, Kelly M. M. Dias, Romário D. Bernardes, Larissa P. Castro, Beatriz A. Honório, Giovanna L. Vieira and Arele A. Calderano
Animals 2025, 15(15), 2244; https://doi.org/10.3390/ani15152244 - 31 Jul 2025
Viewed by 231
Abstract
This study evaluated the production performance and egg quality of Lohmann Brown laying hens fed diets containing different levels of Corn Bran with Solubles (CBS). A total of 144 hens aged 44 weeks were assigned to three treatments in a completely randomized design, [...] Read more.
This study evaluated the production performance and egg quality of Lohmann Brown laying hens fed diets containing different levels of Corn Bran with Solubles (CBS). A total of 144 hens aged 44 weeks were assigned to three treatments in a completely randomized design, with eight replicates per treatment and six birds per replicate. The experimental treatments included diets with CBS inclusion levels of 0%, 5%, and 10%. The experiment lasted 84 days (44 to 55 weeks of age). Data were analyzed via one-way ANOVA, with mean differences evaluated using Tukey’s HSD test (α = 0.05). No significant effects were observed for laying rate, feed intake, feed conversion ratio, or egg mass (p > 0.05). However, egg quality parameters such as shell percentage, shell weight per unit surface area (SWUSA), and yolk color were influenced by the treatments (p < 0.05). Hens fed diets with 5% CBS exhibited higher shell percentage and SWUSA compared to those on the 0% CBS diet. Yolk color intensity increased with higher CBS inclusion levels. In conclusion, incorporating up to 10% CBS in corn–soybean meal diets for laying hens can enhance egg yolk pigmentation. Notably, including 5% CBS improves eggshell quality. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
18 pages, 2510 KiB  
Article
The Glutathione Peroxidase Gene Family in Chenopodium quinoa: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis
by Jing Yang, Anna Xu, Kexin An, Lilong Wang, Taiping Luo, Xinyue Yu, Haibo Yin, Shanli Guo and Xia Zhang
Antioxidants 2025, 14(8), 940; https://doi.org/10.3390/antiox14080940 - 30 Jul 2025
Viewed by 195
Abstract
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary [...] Read more.
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary analysis on their protein characteristics, chromosome distribution, gene structure, conserved domain structure, cis-acting elements, and expression patterns. Phylogenetic analysis showed that the GPX genes of quinoa, Arabidopsis, soybean, rice, and maize were divided into three groups. Most of the CqGPXs had the three characteristic conserved motifs and other conserved sequences and amino acid residues. Six types of cis-acting elements were identified in the CqGPX gene promoter, with stress and hormone response-related cis-acting elements constituting the two main categories. Additionally, the expression patterns of CqGPX genes across various tissues and their responses to treatments with NaCl, PEG, CdCl2, and H2O2 were also investigated. The qRT-PCR results showed significant differences in the expression levels of the CqGPX genes under stress treatment at different time points. Consistently, the activity of glutathione peroxidase enzymes increased under stresses. Heterologous expression of CqGPX4 and CqGPX15 conferred stress tolerance to E. coli. This study will provide a reference for exploring the function of CqGPX genes. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

13 pages, 716 KiB  
Article
The Effects of Soy Flour and Resistant Starch on the Quality of Low Glycemic Index Cookie Bars
by Hong-Ting Victor Lin, Guei-Ling Yeh, Jenn-Shou Tsai and Wen-Chieh Sung
Processes 2025, 13(8), 2420; https://doi.org/10.3390/pr13082420 - 30 Jul 2025
Viewed by 275
Abstract
Low glycemic index (GI) cookie bars were prepared with soft wheat flour substituted with 10–50% soybean flour and 10–50% resistant starch. The effects of increased levels of soybean flour and resistant starch on the quality of low glycemic index cookie bars were investigated [...] Read more.
Low glycemic index (GI) cookie bars were prepared with soft wheat flour substituted with 10–50% soybean flour and 10–50% resistant starch. The effects of increased levels of soybean flour and resistant starch on the quality of low glycemic index cookie bars were investigated (i.e., moisture, cookie spread, texture (breaking force), surface color, and in vitro starch digestibility). It was found that increasing soybean flour substitution increased the breaking force, moisture, protein content, and yellowish color of the low GI cookie bars but decreased the cookie bar spread and the lightness of the cookie bars (p < 0.05). The addition of soybean flour and resistant starch by up to 50% did not significantly change the in vitro starch digestibility of the cookie bars. The overall acceptability of the cookie bars was lower when the soybean flour blend went beyond 10%. When soft wheat flour in the cookie bar formulation was replaced at the following levels (10%, 30%, and 50%) by resistant starch, the cookie spread and lightness of the cookie bars increased but the breaking force was decreased along with the yellowish color (p < 0.05). When resistant starch was combined with soft wheat flour at levels of up to 50%, this significantly increased the content of total dietary fiber and spread ratio of cookie bars. Sensorial analysis showed that resistant starch presence had an acceptable impact on overall acceptability of the low GI cookie bars. Resistant starch represents a viable dietary fiber source when substituted for 50% of soft wheat flour in formulations. While this substitution may result in increased spread ratio and decreased crispness in cookie bars, the addition of 10% soybean flour can mitigate these textural changes. Full article
Show Figures

Figure 1

14 pages, 886 KiB  
Article
An Innovative Approach for Maximum Recovery of Isoflavones from Glycine max by the Design of Experiments Method
by Aleksandra Bibow, Sławomir Dresler and Marta Oleszek
Appl. Sci. 2025, 15(15), 8442; https://doi.org/10.3390/app15158442 - 30 Jul 2025
Viewed by 236
Abstract
Isoflavones are the main phenolic compounds of soybean that affect its biological activity. The quantity of these valuable compounds extracted from plant material can significantly vary, influenced by the chosen extraction method and the specific extractants employed. Moreover, in cosmetics and pharmacy, the [...] Read more.
Isoflavones are the main phenolic compounds of soybean that affect its biological activity. The quantity of these valuable compounds extracted from plant material can significantly vary, influenced by the chosen extraction method and the specific extractants employed. Moreover, in cosmetics and pharmacy, the application of non-toxic, eco-friendly solvents is very important. This study aimed to develop the best mixture of extractants to maximize the recovery of individual isoflavones from soybean seeds by optimization of the proportion of three components: ethanol, water, and propanediol. The design of experiments (DOE) method was strategically employed. The extracts were obtained through accelerated solvent extraction and meticulously analyzed for isoflavone content using advanced electrospray ionization–time of flight–mass spectrometry (ESI-TOF-MS) profiling. The predominant isoflavones were daidzin, genistin, malonylgenistin, malonyldaidzin, and malonylglycitin. Our experiment demonstrated that employing three extractants in a balanced 1:1:1 v/v/v ratio resulted in the highest isolation of isoflavones compared to all other mixtures tested. Nevertheless, a detailed exploration of approximate values and utility profiles revealed a more effective composition for extraction efficiency. This optimal mixture features 32.8% ethanol, 39.2% water, and 27.8% propanediol, maximizing the yield of isoflavones from soybean seeds. The innovative use of mixture design and triangular response surfaces has proven to be a powerful approach for developing this superior three-component extraction mixture. This innovative approach not only enhances extraction efficiency but also paves the way for improved processing methods in the industry. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
Show Figures

Figure 1

Back to TopTop