Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (379)

Search Parameters:
Keywords = Somatic embryos

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4661 KiB  
Article
Somatic Embryogenesis in Native Peruvian Fine-Flavor Cocoa Genotypes
by Karol Rubio, Santos Leiva, Manuel Oliva, Jorge R. Diaz-Valderrama and Juan Carlos Guerrero-Abad
Int. J. Plant Biol. 2025, 16(3), 84; https://doi.org/10.3390/ijpb16030084 (registering DOI) - 1 Aug 2025
Viewed by 62
Abstract
Cacao genotypes propagation through plant tissue culture represents a strategic approach for establishing a core collection of elite plants to be used as a donor material source, necessary for increasing new planting areas of cacao. This study aimed to evaluate somatic embryo regeneration [...] Read more.
Cacao genotypes propagation through plant tissue culture represents a strategic approach for establishing a core collection of elite plants to be used as a donor material source, necessary for increasing new planting areas of cacao. This study aimed to evaluate somatic embryo regeneration in ten native fine-aroma cacao genotypes (INDES-06, INDES-11, INDES-14, INDES-32, INDES-52, INDES-53, INDES-63, INDES-64, INDES-66, INDES-70) from the INDES-CES germplasm collection, under in vitro conditions using culture medium supplemented with different concentrations of Thidiazuron (0, 10, and 20 nM). Our results showed an average of 20 and 100% of callogenesis in all genotypes evaluated, but the callus development did not appear after early stages of its induction; however, primary somatic embryos were observed after 42 days after TDZ treatment in the INDES-52, INDES-53, INDES-64, INDES-66, INDES-70 genotypes. The INDES-52 genotype was more responsive to under 20 nM of TDZ, generating an average of 17 embryos per explant. This study contributes to the adaptation and establishment of a protocol for somatic embryo regeneration of fine-flavor cacao genotypes. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

15 pages, 3311 KiB  
Article
Induction of Triploid Grass Carp (Ctenopharyngodon idella) and Changes in Embryonic Transcriptome
by Zixuan E, Han Wen, Yingshi Tang, Mingqing Zhang, Yaorong Wang, Shujia Liao, Kejun Chen, Danqi Lu, Haoran Lin, Wen Huang, Xiaoying Chen, Yong Zhang and Shuisheng Li
Animals 2025, 15(15), 2165; https://doi.org/10.3390/ani15152165 - 22 Jul 2025
Viewed by 281
Abstract
Grass carp is an economically important cultured species in China. Triploid embryo production is widely applied in aquaculture to achieve reproductive sterility, improve somatic growth, and reduce ecological risks associated with uncontrolled breeding. In this study, a simple cold shock method for inducing [...] Read more.
Grass carp is an economically important cultured species in China. Triploid embryo production is widely applied in aquaculture to achieve reproductive sterility, improve somatic growth, and reduce ecological risks associated with uncontrolled breeding. In this study, a simple cold shock method for inducing triploid grass carp was developed. The triploid induction rate of 71.73 ± 5.00% was achieved by applying a cold treatment at 4 °C for 12 min, starting 2 min after artificial fertilization. Flow cytometry and karyotype analysis revealed that triploid individuals exhibited a 1.5-fold increase in DNA content compared to diploid counterparts, with a chromosomal composition of 3n = 72 (33m + 36sm + 3st). Additionally, embryonic transcriptome analysis demonstrated that, in the cold shock-induced embryos, genes associated with abnormal mesoderm and dorsal–ventral axis formation, zygotic genome activation (ZGA), and anti-apoptosis were downregulated, whereas pro-apoptotic genes were upregulated, which may contribute to the higher abnormal mortality observed during embryonic development. Overall, this study demonstrates optimized conditions for inducing triploidy in grass carp via cold shock and provides insights into the transcriptomic changes that take place in cold shock-induced embryos, which could inform future grass carp genetic breeding programs. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

14 pages, 1157 KiB  
Article
Phenolic Exudation Control and Indirect Somatic Embryogenesis of Garlic-Fruit Tree (Malania oleifera Chun & S.K. Lee)—An Endangered Woody Tree Species of Southeastern Yunnan Province, China
by Rengasamy Anbazhakan, Xin-Meng Zhu, Neng-Qi Li, Brihaspati Poudel and Jiang-Yun Gao
Plants 2025, 14(14), 2186; https://doi.org/10.3390/plants14142186 - 15 Jul 2025
Viewed by 310
Abstract
Malania oleifera Chun & S.K. Lee, an endemic monotypic species that belongs to the family Olacaceae, is under continuous pressure of decline owing to several ecological and physiological factors. The present study aimed to establish an efficient in vitro protocol for callus-mediated indirect [...] Read more.
Malania oleifera Chun & S.K. Lee, an endemic monotypic species that belongs to the family Olacaceae, is under continuous pressure of decline owing to several ecological and physiological factors. The present study aimed to establish an efficient in vitro protocol for callus-mediated indirect somatic embryogenesis in M. oleifera by alleviating tissue browning. Internodes and leaves obtained from seedlings were used as explants. Antioxidant pre-treatment (ascorbic acid, AA) followed by different carbon sources (sucrose, maltose, glucose, and fructose) and plant growth regulators in various concentrations and combinations were employed in Woody Plant Medium (WPM) to alleviate explant browning and induce callus formation from the explants. AA pre-treatment and subsequent culture on maltose at a concentration of 116.8 mM were optimal for controlling phenolic exudation on >90% of both explants. The highest responses of 53.77% and 57.43% for embryogenic calli were induced from internode and leaf explants, respectively. The highest responses, 85.22% and 93.80%, were observed for somatic embryos that matured into the globular, heart-shaped and torpedo stages at different percentages on NAA 2.5 mg/L in combination with BA 1.0 mg/L for both explants. The matured somatic embryos were finally germinated at a maximum concentration of GA3, 2.0 mg/L. All plantlets were successfully hardened and acclimatized under culture room conditions and then transferred to the greenhouse. The current study suggests an efficient protocol for indirect somatic embryogenesis by alleviating phenolic exudation from the explants of M. oleifera. This first successful report of in vitro culture establishment in M. oleifera may offer an effective alternative measure to conserve this species and provide a system for analyzing bioactive chemicals and for use in the oil industry. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 4159 KiB  
Article
Integrated Transcriptomic and Metabolic Analyses Highlight Key Pathways Involved in the Somatic Embryogenesis of Picea mongolica
by Jinling Dai, Shengli Zhang and Yu’e Bai
Plants 2025, 14(14), 2141; https://doi.org/10.3390/plants14142141 - 11 Jul 2025
Viewed by 370
Abstract
In the severe environment of Hunshandake Sandy Land, the uncommon and indigenous Chinese tree species Picea mongolica is an important biological component. Conventional seed propagation in P. mongolica is constrained by low germination rates, prolonged breeding cycles, and hybrid offspring genetic instability, limiting [...] Read more.
In the severe environment of Hunshandake Sandy Land, the uncommon and indigenous Chinese tree species Picea mongolica is an important biological component. Conventional seed propagation in P. mongolica is constrained by low germination rates, prolonged breeding cycles, and hybrid offspring genetic instability, limiting efficient varietal improvement. In contrast, somatic embryogenesis (SE) offers superior propagation efficiency, exceptional germination synchrony, and strict genetic fidelity, enabling rapid mass production of elite regenerants. However, SE in P. mongolica is hampered by severe genotype dependence, poor mature embryo induction rates, and loss of embryogenic potential during long-term cultures, restricting the production of high-quality seedlings. In this study, we aimed to analyze the transcriptome and metabolome of three crucial phases of SE: mature somatic embryos (MSEs), globular somatic embryos (GSEs), and embryogenic calli (EC). Numerous differentially expressed genes (DEGs) were found, especially in pathways linked to ribosomal functions, flavonoid biosynthesis, and the metabolism of starch and sucrose. Additionally, 141 differentially accumulated metabolites (DAMs) belonging to flavonoids, organic acids, carbohydrates, lipids, amino acids, and other metabolites were identified. An integrated study of metabolomic and transcriptome data indicated considerable enrichment of DEGs and DAMs in starch and sucrose metabolism, as well as phenylpropanoid biosynthesis pathways, all of which are required for somatic embryo start and development. This study revealed a number of metabolites and genes linked with SE, offering important insights into the molecular mechanisms driving SE in P. mongolica and laying the groundwork for the development of an efficient SE system. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 5753 KiB  
Protocol
Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars
by Marion Barrera, Blanca Olmedo, Matías Narváez, Felipe Moenne-Locoz, Anett Rubio, Catalina Pérez, Karla Cordero-Lara and Humberto Prieto
Plants 2025, 14(13), 2059; https://doi.org/10.3390/plants14132059 - 5 Jul 2025
Viewed by 608
Abstract
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary [...] Read more.
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary uses. Although some of these varieties are adapted to cooler climates, they often suffer from reduced productivity or increased disease susceptibility when cultivated in warmer productive environments. These limitations underscore the need for breeding programs to incorporate biotechnological tools that can enhance the adaptability and resilience of the plants. However, New Genomic Techniques (NGTs), including CRISPR-Cas9, require robust in vitro systems, which are still underdeveloped for temperate japonica genotypes. In this study, we developed a reproducible and adaptable protocol for protoplast isolation and regeneration from the temperate japonica cultivars ‘Ónix’ and ‘Platino’ using somatic embryos as the starting tissue. Protoplasts were isolated via enzymatic digestion (1.5% Cellulase Onozuka R-10 and 0.75% Macerozyme R-10) in 0.6 M AA medium over 18–20 h at 28 °C. Regeneration was achieved through encapsulation in alginate beads and coculture with feeder extracts in 2N6 medium, leading to embryogenic callus formation within 35 days. Seedlings were regenerated in N6R and N6F media and acclimatized under greenhouse conditions within three months. The isolated protoplast quality displayed viability rates of 70–99% within 48 h and supported transient PEG-mediated transfection with GFP. Additionally, the transient expression of a gene editing CRISPR-Cas9 construct targeting the DROUGHT AND SALT TOLERANCE (OsDST) gene confirmed genome editing capability. This protocol offers a scalable and genotype-adaptable system for protoplast-based regeneration and gene editing in temperate japonica rice, supporting the application of NGTs in the breeding of cold-adapted cultivars. Full article
Show Figures

Graphical abstract

14 pages, 475 KiB  
Article
Effect of Pre-IVM Duration with cAMP Modulators on the Production of Cloned Equine Embryos and Foals
by Jenin V. Cortez, Kylie Hardwicke, Carlos E. Méndez-Calderón and Christopher G. Grupen
Animals 2025, 15(13), 1961; https://doi.org/10.3390/ani15131961 - 3 Jul 2025
Viewed by 287
Abstract
The asynchrony of cytoplasmic and nuclear maturation in cumulus–oocyte complexes (COCs) due to prematurely declining concentrations of cyclic adenosine monophosphate (cAMP) has been shown to result in reduced oocyte developmental competence. The objective of this study was to evaluate the effect of pre-IVM [...] Read more.
The asynchrony of cytoplasmic and nuclear maturation in cumulus–oocyte complexes (COCs) due to prematurely declining concentrations of cyclic adenosine monophosphate (cAMP) has been shown to result in reduced oocyte developmental competence. The objective of this study was to evaluate the effect of pre-IVM treatment with cAMP modulators for different durations on the developmental potential of equine oocytes used for cloned embryo production. Collected COCs were transferred to cryovials filled with transport medium at 20–22 °C. Within the cryovials, the COCs were either untreated (Control) for 18 h or treated with 50 µM forskolin and 100 µM 3-isobutyl-1-methylxanthine for the first 4 h (Pre-IVM 4 h) or the entire 18 h (Pre-IVM 18 h). Oocytes were then transferred to maturation medium and incubated for a further 22–24 h at 38.5 °C in 5% CO2 in air. Somatic cell nuclear transfer embryos were then produced using the meiotically mature oocytes and donor cells from six different fibroblast cell lines. The rates of maturation and embryo development did not differ significantly between the groups, though blastocyst formation tended to be inferior in the Pre-IVM 4 h group compared with the Control group (p = 0.06). Of 67 blastocysts produced, 23 were transferred to recipient mares on Day 4 or 5 post-ovulation. Regarding the pregnancy outcomes, no significant differences were found between the groups, and four viable foals were born, each derived from a different donor cell line. The findings expand on those from previous evaluations of this biphasic IVM system, and indicate that the cAMP-modulating treatments exert limited effects under the pre-IVM conditions used here. Full article
Show Figures

Figure 1

14 pages, 1891 KiB  
Article
HP1-Mediated Silencing of the Doublesex1 Gene for Female Determination in the Crustacean Daphnia magna
by Junya Leim, Nikko Adhitama, Quang Dang Nong, Pijar Religia, Yasuhiko Kato and Hajime Watanabe
J. Dev. Biol. 2025, 13(3), 23; https://doi.org/10.3390/jdb13030023 - 3 Jul 2025
Viewed by 401
Abstract
The crustacean Daphnia magna produces genetically identical females and males by parthenogenesis. Males are produced in response to environmental cues including crowding and lack of food. For male development, the DM-domain containing transcription factor Doublesex1 (DSX1) is expressed spatiotemporally in male-specific traits and [...] Read more.
The crustacean Daphnia magna produces genetically identical females and males by parthenogenesis. Males are produced in response to environmental cues including crowding and lack of food. For male development, the DM-domain containing transcription factor Doublesex1 (DSX1) is expressed spatiotemporally in male-specific traits and orchestrates male trait formation in both somatic and gonadal tissues. However, it remains unknown how the dsx1 gene is silenced in females to avoid male trait development. Heterochromatin Protein 1 (HP1) plays a crucial role in epigenetic gene silencing during developmental processes. Here we report the identification of four HP1 orthologs in D. magna. None of these orthologs exhibited sexually dimorphic expression, and among them, HP1-1 was most abundantly expressed during embryogenesis. The knock-down of HP1-1 in female embryos led to the derepression of dsx1 in the male-specific traits, resulting in the development of male characteristics, such as the elongation of the first antennae. These results suggest that HP1-1 silences dsx1 for female development while environmental cues unlock this silencing to induce male production. We infer the HP1-dependent formation of a sex-specific chromatin structure on the dsx1 locus is a key process in the environmental sex determination of D. magna. Full article
Show Figures

Figure 1

23 pages, 1565 KiB  
Article
Proteomic Analysis and Expression of Selected Genes During the Early Somatic Embryogenesis of Jatropha curcas L.
by Anamarel Edzná Medina-Hernández, Ileana Vera-Reyes, Emmanuel Ríos-Castro, Juan José Torres-Ruiz, Teresa Ponce-Noyola, Gabriela Trejo-Tapia, Adriana Garay-Arroyo, Josefina Barrera-Cortés and Ana C. Ramos-Valdivia
Int. J. Mol. Sci. 2025, 26(13), 6384; https://doi.org/10.3390/ijms26136384 - 2 Jul 2025
Viewed by 1078
Abstract
Jatropha curcas L. is a shrub of the Euphorbiaceae family with non-toxic varieties found in Mexico that holds significant potential for biofuel production and other industrial applications. However, its limited in vitro regenerative capacity is a barrier to the development of productive species. [...] Read more.
Jatropha curcas L. is a shrub of the Euphorbiaceae family with non-toxic varieties found in Mexico that holds significant potential for biofuel production and other industrial applications. However, its limited in vitro regenerative capacity is a barrier to the development of productive species. Somatic embryogenesis (SE) offers a strategy to establish a regeneration system to overcome these challenges and enable genetic improvement. In this work, proteomic and gene expression analyses were utilized to identify key factors involved in SE induction in a non-toxic variety of J. curcas. Two-dimensional electrophoresis (2-DE) in combination with mass spectrometry was used to compare the proteomes of pre-globular and globular somatic embryos. RT-qPCR was used for gene expression analysis of the BBM, AGL15, SERK, IAA26 and eIF3f genes. The globular stage showed enrichment in the pathways related to carbohydrate and energy metabolism, protein folding, and stress response. In addition, the gene expression analysis of selected genes revealed a significantly elevated expression of BBM, AGL15, and IAA26 in globular embryos compared to pre-globular embryos. In contrast, SERK expression was low, and eIF3f expression remained unchanged between stages. These expression patterns may contribute to developmental arrest at the globular stage. These findings provide new insights into the molecular mechanisms regulating early SE in J. curcas and offer potential strategies for improving its propagation and industrial applications. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 3rd Edition)
Show Figures

Figure 1

17 pages, 4250 KiB  
Article
Establishment of Efficient Somatic Embryo Maturation System of Pinus elliottii
by Lin Xu, Zhaolei Deng, Shan Hu, Qian Liu, Qifu Luan and Chunxia Yang
Plants 2025, 14(13), 1985; https://doi.org/10.3390/plants14131985 - 29 Jun 2025
Viewed by 384
Abstract
Pinus elliottii, a key economic conifer in southern China, requires efficient propagation methods to meet demand for elite germplasm in resin and timber production. While somatic embryogenesis-based plant regeneration has been successfully achieved in Pinus elliottii, large-scale production remains challenging. Our [...] Read more.
Pinus elliottii, a key economic conifer in southern China, requires efficient propagation methods to meet demand for elite germplasm in resin and timber production. While somatic embryogenesis-based plant regeneration has been successfully achieved in Pinus elliottii, large-scale production remains challenging. Our results demonstrate that the genotype of Pinus elliottii significantly influences the induction rate of embryogenic callus. During somatic embryo maturation, the liquid–solid induction method increased the number of mature embryos by 25.85 times. Maturation efficiency was further enhanced by a 3-week pretreatment followed by the application of 9 mg/L ABA, 0.5 mg/L PSK, and 6 mg/L COS. Additionally, the incorporation of activated carbon significantly promoted both the maturation and germination of somatic embryos. In the somatic embryo maturation stage, 1 g/L activated carbon induced 288.67 mature embryos per gram of embryogenic callus, resulting in a total of 1452 embryos. During germination, the application of 4 g/L activated carbon achieved a germination rate of 63%, and the survival rate of somatic embryo-derived seedlings reached 85%. This study not only identifies the optimal conditions for somatic embryogenesis in Pinus elliottii but also establishes an efficient protocol for somatic embryo maturation induction, providing a crucial scientific foundation for the rapid propagation and seedling production of Pinus elliottii. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

15 pages, 5139 KiB  
Article
Cryopreservation and Maturation Media Optimization for Enhanced Somatic Embryogenesis in Masson Pine (Pinus massoniana)
by Qian Yang, Ying Lin, You-Mei Chen, Qi Fei, Jian-Ren Ye and Li-Hua Zhu
Plants 2025, 14(11), 1569; https://doi.org/10.3390/plants14111569 - 22 May 2025
Viewed by 400
Abstract
Pinus massoniana Lamb. (masson pine) is a critical species for afforestation in southern China but faces severe threats from pine wilt disease (PWD) caused by Bursaphelenchus xylophilus. To accelerate disease-resistant breeding, this study investigated the effects of cryopreservation on the embryonic capacity [...] Read more.
Pinus massoniana Lamb. (masson pine) is a critical species for afforestation in southern China but faces severe threats from pine wilt disease (PWD) caused by Bursaphelenchus xylophilus. To accelerate disease-resistant breeding, this study investigated the effects of cryopreservation on the embryonic capacity of the embryogenic callus as well as the effects of abscisic acid (ABA), polyethylene glycol 8000 (PEG 8000) and phytagel concentration on the somatic embryo’s maturation and germination. Furthermore, the impact of transplanting substrates on the survival and growth of regenerated plantlets were evaluated. The results showed that cryopreservation at −196 °C effectively maintained the embryogenic potential of the callus, with post-thaw tissues exhibiting superior somatic embryo maturation capacity compared to the long-term subcultured callus (38.4 vs. 13.2 embryos/mL). Key maturation parameters were systematically optimized: ABA concentration at 6 mg/L in the suspension culture maximized embryo yield of 24.1 somatic embryos/mL, while PEG 8000 at 130 g/L in solid medium achieved peak embryo production of 38.4 somatic embryos/mL, and the maximum of 26.6 somatic embryos/mL when the concentration of phytagel was 3.5 g/L. The highest germination rate of 29.8% was observed with 130 g/L PEG in the maturation medium. The highest survival rate (56.5%) and maximum plant height (22.3 cm) after 12 months of transplantation were achieved in substrates consisting of soil and vermiculite, which outperformed those containing varying proportions of mushroom residue. This study establishes a scalable protocol for the mass propagation of PWD-resistant P. massoniana, integrating cryopreservation and maturation media optimization, which offers dual benefits for disease-resistant breeding and sustainable germplasm conservation. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

16 pages, 2015 KiB  
Article
Somatic Embryogenesis and Genetic Transformation of Caragana intermedia
by Ju Tian, Jialei Zhu, Xiaohan Deng, Xu Zhu, Ruigang Wang and Guojing Li
Plants 2025, 14(10), 1545; https://doi.org/10.3390/plants14101545 - 21 May 2025
Viewed by 516
Abstract
Caragana intermedia is a perennial shrub species in the genus Caragana (Fabaceae), demonstrating remarkable stress resistance and adaptability. However, research on its somatic embryogenesis (SE) and genetic transformation techniques remains limited. In this study, we established an SE system by utilizing immature cotyledons [...] Read more.
Caragana intermedia is a perennial shrub species in the genus Caragana (Fabaceae), demonstrating remarkable stress resistance and adaptability. However, research on its somatic embryogenesis (SE) and genetic transformation techniques remains limited. In this study, we established an SE system by utilizing immature cotyledons isolated from young C. intermedia seeds. Our findings demonstrated that the immature cotyledons at 6–7 weeks after flowering (WAF) were the best explants for SE. The optimal embryo induction medium consisted of an MS basal medium supplemented with 5 mg/L α-naphthaleneacetic acid (NAA), 3 mg/L 6-benzylaminopurine (6-BA), 30 g/L sucrose, 7 g/L agar, and 500 mg/L hydrolyzed casein. Cotyledon-stage embryos germinated on a half-strength MS medium, exhibiting a 34.36% germination rate. Based on the SE system, we developed a preliminary genetic transformation system using the RUBY reporter gene, which successfully generated transgenic calli and cotyledon-stage embryos. The establishment of the SE system is expected to shorten breeding cycles, facilitate propagation of superior cultivars, and support large-scale industrial applications in C. intermedia. Furthermore, the stable transformation system provides a platform for molecular breeding and gene function verification. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 5912 KiB  
Article
5-AzaCytidine Promotes Somatic Embryogenesis of Taxodium Hybrid ‘Zhongshanshan’ by Regulating Redox Homeostasis
by Guoying Yuan, Dan Wang, Chaoguang Yu, Jianfeng Hua, Yunlong Yin and Tingting Chen
Plants 2025, 14(9), 1354; https://doi.org/10.3390/plants14091354 - 30 Apr 2025
Viewed by 566
Abstract
DNA methylation plays a crucial role in regulating the developmental processes of plants. Particularly, it is closely associated with the development of embryogenic cells (EC) and somatic embryos (SE). In this study, we investigated the effects of 5-azaCytidine (5-azaC) treatment on somatic embryogenesis [...] Read more.
DNA methylation plays a crucial role in regulating the developmental processes of plants. Particularly, it is closely associated with the development of embryogenic cells (EC) and somatic embryos (SE). In this study, we investigated the effects of 5-azaCytidine (5-azaC) treatment on somatic embryogenesis proliferation and maturation of Taxodium hybrid ‘zhongshanshan’. The results showed that the callus proliferation was inhibited when the concentration of 5-azaC exceeded 30 μM, while treatment with 5 μM 5-azaC improved the maturation rate and expedited the process of SE formation. It was also noted that 5-azaC influenced somatic embryogenesis during the second week of embryo induction, substantially enhancing the maturation rate of somatic embryos and the germination rate of Taxodium hybrid ‘zhongshanshan’. Furthermore, the analysis revealed that treatment with 5-azaC resulted in elevated levels of H2O2, SOD, POD, and AsA during the cotyledonary embryo period in Taxodium hybrid ‘zhongshanshan’, indicating its potential to promote somatic embryogenesis by regulating redox homeostasis. This study concluded that 5-azaC could improve the efficiency of somatic embryogenesis in Taxodium hybrid ‘zhongshanshan’, as well as provide a solid foundation for investigating the effects of 5-azaC on somatic embryogenesis in other conifer species. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture—2nd Edition)
Show Figures

Figure 1

14 pages, 12299 KiB  
Article
Induction of Somatic Embryogenesis in Araucaria araucana (Molina) K. Koch: Considerations for Ex Situ Conservation of Ancient Tree in Chile
by Daniela Riffo-Agurto, Neusa Steiner, Priscila Cartes, Pamela Quiroga, Jaime Espejo, Ester San Martin, Jean-Pierre Lasserre, Marcos Edel Martínez-Montero, Martha Hernández de la Torre, Darcy Ríos-Leal, Roberto Ipinza, Simón Sandoval and Manuel Sánchez-Olate
Forests 2025, 16(5), 732; https://doi.org/10.3390/f16050732 - 25 Apr 2025
Viewed by 637
Abstract
Araucaria araucana is an emblematic native conifer from Chile and Argentina that has been classified as threatened due to anthropogenic activities. Somatic embryogenesis (SE) is a biotechnological tool used for both the preservation of genetic material and the propagation of valuable genotypes. The [...] Read more.
Araucaria araucana is an emblematic native conifer from Chile and Argentina that has been classified as threatened due to anthropogenic activities. Somatic embryogenesis (SE) is a biotechnological tool used for both the preservation of genetic material and the propagation of valuable genotypes. The present study investigates the effects of explant source and culture medium on SE induction in A. araucana genotypes from three wild plant populations. Immature strobili were collected from different geographical provenances: a coastal area (Villa Araucarias, “VA”), Cordillera de Nahuelbuta (Trongol Alto, “TR”), and the Andes Mountains (Malalcahuello, “MA”). SE induction was observed after 45 days in a basal medium (BM) supplemented with 1-naphthaleneacetic acid (NAA—11 µM), 6-benzylaminopurine (6-BA—2.8 µM), and Kinetin (Kin—2.8 µM). The highest induction rate (75%) was achieved for seeds from VA. Embryogenic cell line (ECL) proliferation requires auxins but is genotype-dependent, as not all genotypes survive. Cytochemical analysis revealed the presence of pro-embryogenic masses (PEMs) in the ECLs, indicating an efficient SE induction protocol. The progression of PEMs to early embryos was observed in the presence of maltose (3% w/v), polyethylene glycol 3350 (PEG—7% w/v), and abscisic acid (ABA—68 µM). Our results establish a baseline for the establishment of in vitro cultures for a diverse range of A. araucana genotypes, enabling the initiation of ex situ preservation programs and further investigation into embryo maturation. Full article
(This article belongs to the Special Issue Somatic Embryogenesis and Organogenesis on Tree Species: 2nd Edition)
Show Figures

Figure 1

48 pages, 5608 KiB  
Review
Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases
by Peijie Yu, Bin Liu, Cheng Dong and Yun Chang
Cells 2025, 14(8), 619; https://doi.org/10.3390/cells14080619 - 21 Apr 2025
Viewed by 1991
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop [...] Read more.
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions. Full article
(This article belongs to the Special Issue The Potential of Induced Pluripotent Stem Cells)
Show Figures

Figure 1

19 pages, 5291 KiB  
Article
Genome-Wide Identification of WOX Genes in Korean Pine and Analysis of Expression Patterns and Properties of Transcription Factors
by Qun Zhang, Xiuyue Xu and Ling Yang
Biology 2025, 14(4), 411; https://doi.org/10.3390/biology14040411 - 12 Apr 2025
Viewed by 682
Abstract
(1) Background: WOX (WUSCHEL-related homologous box) is a plant-specific transcription factor involved in plant development and stress response. It has been reported to be involved in processes such as growth and development, stem cell division and differentiation, and organ development; (2) Methods: In [...] Read more.
(1) Background: WOX (WUSCHEL-related homologous box) is a plant-specific transcription factor involved in plant development and stress response. It has been reported to be involved in processes such as growth and development, stem cell division and differentiation, and organ development; (2) Methods: In this study, bioinformatics was used to identify and analyze the WOX gene family of Korean pine. The gene characteristics were identified and analyzed through yeast transcriptional activation assays as well as subcellular localization experiments; (3) Results: A total of 21 members of the WOX gene family of Korean pine were identified in this study. The phylogenetic tree divides the PkWOX genes into three sub-branches. 21 PkWOX genes are unevenly distributed on 7 of the 12 chromosomes. PkWOX16 was expressed in all tissues. PkWOX2, 3 had higher expression in the embryonic callus, non-embryonic callus, somatic embryo, and zygotic embryo. PkWOX2, 3 and 16 were located in the nucleus and in the cell membrane. The PkWOX2 and 3 proteins exhibited transcriptional self-activation activity, while PkWOX16 did not; (4) Conclusions: In this study, the members of the WOX transcription factor family in Korean pine were identified and systematically analyzed, laying a foundation for their subsequent functional research. Full article
(This article belongs to the Special Issue Adaptation Mechanisms of Forest Trees to Abiotic Stress)
Show Figures

Figure 1

Back to TopTop