Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars
Abstract
1. Introduction
2. Results
2.1. Protoplast Isolation
2.2. Gene Transfer and Editing Applications in Isolated Protoplasts
2.3. Protoplast Regeneration
2.4. Plant Regeneration
3. Discussion
4. Materials and Methods
4.1. Plant Material and Tissue Culture Media
4.2. Somatic Embryogenesis (SE) Callus Induction
4.3. Protoplast Isolation from Embryogenic Callus Cultures
4.4. Determination of the Yield and Viability of Protoplasts
4.5. Vectors
4.6. PEG-Mediated Protoplast Transfections
Transfection Evaluation
4.7. Protoplast Ca2+ Alginate Embedding
4.8. Establishment of Conditioned Feeder (Nurse) Suspensions of Platino and Onix Rice Varieties
4.9. Germination and Plant Regeneration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pacleb, M.; Jeong, O.-Y.; Lee, J.-S.; Padolina, T.; Braceros, R.; Pautin, L.; Torollo, G.; Sana, E.E.; Del-Amen, J.Y.; Baek, M.-K.; et al. Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy 2021, 11, 2253. [Google Scholar] [CrossRef]
- Cordero-Lara, K.I. Temperate Japonica Rice (Oryza sativa L.) Breeding: History, Present and Future Challenges. Chil. J. Agric. Res. 2020, 80, 303–314. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Making agrifood systems more resilient to shocks and stresses. In The State of Food and Agriculture (SOFA); FAO: Roma, Italy, 2021; pp. v–182. [Google Scholar] [CrossRef]
- Negrão, S.; Oliveira, M.M.; Jena, K.K.; Mackill, D. Integration of Genomic Tools to Assist Breeding in the Japonica Subspecies of Rice. Mol. Breed. 2008, 22, 159–168. [Google Scholar] [CrossRef]
- Azizi-Dargahlou, S.; Pouresmaeil, M. Agrobacterium Tumefaciens-Mediated Plant Transformation: A Review. Mol. Biotechnol. 2024, 66, 1563–1580. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.M.; Bargmann, B.O.R. Protoplast Regeneration and Its Use in New Plant Breeding Technologies. Front. Genome Ed. 2021, 3, 734951. [Google Scholar] [CrossRef] [PubMed]
- Charrier, A.; Vergne, E.; Dousset, N.; Richer, A.; Petiteau, A.; Chevreau, E. Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System. Front. Plant Sci. 2019, 10, 40. [Google Scholar] [CrossRef]
- Hwarari, D.; Radani, Y.; Ke, Y.; Chen, J.; Yang, L. CRISPR/Cas Genome Editing in Plants: Mechanisms, Applications, and Overcoming Bottlenecks. Funct. Integr. Genom. 2024, 24, 50. [Google Scholar] [CrossRef] [PubMed]
- Sood, P.; Bhattacharya, A.; Sood, A. Problems and Possibilities of Monocot Transformation. Biol. Plant. 2011, 55, 1–15. [Google Scholar] [CrossRef]
- Mohammed, S.; Samad, A.A.; Rahmat, Z. Agrobacterium-Mediated Transformation of Rice: Constraints and Possible Solutions. Rice Sci. 2019, 26, 133–146. [Google Scholar] [CrossRef]
- Yue, J.-J.; Yuan, J.-L.; Wu, F.-H.; Yuan, Y.-H.; Cheng, Q.-W.; Hsu, C.-T.; Lin, C.-S. Protoplasts: From Isolation to CRISPR/Cas Genome Editing Application. Front. Genome Ed. 2021, 3, 717017. [Google Scholar] [CrossRef]
- Metje-Sprink, J.; Menz, J.; Modrzejewski, D.; Sprink, T. DNA-Free Genome Editing: Past, Present and Future. Front. Plant Sci. 2019, 9, 1957. [Google Scholar] [CrossRef] [PubMed]
- Acha, G.; Vergara, R.; Muñoz, M.; Mora, R.; Aguirre, C.; Muñoz, M.; Kalazich, J.; Prieto, H. A Traceable DNA-Replicon Derived Vector to Speed Up Gene Editing in Potato: Interrupting Genes Related to Undesirable Postharvest Tuber Traits as an Example. Plants 2021, 10, 1882. [Google Scholar] [CrossRef]
- Abdullah, R.; Cocking, E.C.; Thompson, J.A. Efficient Plant Regeneration from Rice Protoplasts Through Somatic Embryogenesis. Nat. Biotechnol. 1986, 4, 1087–1090. [Google Scholar] [CrossRef]
- Wen, F.; Peng, J.; Lister, R.M.; Hodges, T.K. A Procedure for Regenerating Japonica and Indica Varieties of Rice from Protoplasts. Plant Mol. Biol. Report. 1991, 9, 308–321. [Google Scholar] [CrossRef]
- Rengasamy, B.; Manna, M.; Jonwal, S.; Sathiyabama, M.; Thajuddin, N.B.; Sinha, A.K. A Simplified and Improved Protocol of Rice Transformation to Cater Wide Range of Rice Cultivars. Protoplasma 2024, 261, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Hasezawa, S.; Baba, A.; Syōno, K. Protoplast Culture and Transformation Studies on Rice. In Plant Protoplasts and Genetic Engineering II; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 107–121. [Google Scholar] [CrossRef]
- Chen, J.; Yi, Q.; Song, Q.; Gu, Y.; Zhang, J.; Hu, Y.; Liu, H.; Liu, Y.; Yu, G.; Huang, Y. A Highly Efficient Maize Nucellus Protoplast System for Transient Gene Expression and Studying Programmed Cell Death-Related Processes. Plant Cell Rep. 2015, 34, 1239–1251. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, J.; Duan, S.; Ao, Y.; Dai, J.; Liu, J.; Wang, P.; Li, Y.; Liu, B.; Feng, D.; et al. A Highly Efficient Rice Green Tissue Protoplast System for Transient Gene Expression and Studying Light/Chloroplast-Related Processes. Plant Methods 2011, 7, 30. [Google Scholar] [CrossRef]
- Barrera, M.; Olmedo, B.; Zúñiga, C.; Cepeda, M.; Olivares, F.; Vergara, R.; Cordero-Lara, K.; Prieto, H. Somatic Embryogenesis and Agrobacterium-Mediated Gene Transfer Procedures in Chilean Temperate Japonica Rice Varieties for Precision Breeding. Plants 2024, 13, 416. [Google Scholar] [CrossRef]
- Instituto de Investigaciones Agropecuarias (INIA). Platino-INIA: Variedad de Arroz Grano Corto-Ancho Para Aplicaciones Culinarias Especializadas [Ficha Técnica]; Unidad de Gestión de la Innovación, INIA: Santiago, Chile, 2024. [Google Scholar]
- Instituto de Investigaciones Agropecuarias (INIA). Onix: Primera Variedad Chilena de Arroz Negro con Adaptabilidad al Cambio Climático [Ficha Técnica]; Unidad de Gestión de la Innovación, INIA: Santiago, Chile, 2024. [Google Scholar]
- Joux, F.; Lebaron, P. Use of Fluorescent Probes to Assess Physiological Functions of Bacteriaat Single-Cell Level. Microbes Infect. 2000, 2, 1523–1535. [Google Scholar] [CrossRef]
- Davey, M.R.; Anthony, P.; Power, J.B.; Lowe, K.C. Plant Protoplasts: Status and Biotechnological Perspectives. Biotechnol. Adv. 2005, 23, 131–171. [Google Scholar] [CrossRef]
- Kantharajah, A.S.; Dodd, W.A. Factors That Influence the Yield and Viability of Cucumber (Cucumis Sativus L) Cotyledon Protoplasts. Aust. J. Bot. 1990, 38, 169–175. [Google Scholar] [CrossRef]
- Fujimura, T.; Sakurai, M.; Akagi, H.; Negishi, T.; Hirose, A. Regeneration of Rice Plants from Protoplasts. Plant Tissue Cult. Lett. 1985, 2, 74–75. [Google Scholar] [CrossRef]
- Yamada, Y.; Yang, Z.-Q.; Tang, D.-T. Plant Regeneration from Protoplast-Derived Callus of Rice (Oryza sativa L.). Plant Cell Rep. 1986, 5, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Kudo-Shiratori, A.; Inoue, M. Callus Formation and Plant Regeneration from Rice Protoplasts Purified by Density Gradient Centrifugation. Plant Sci. 1989, 62, 237–246. [Google Scholar] [CrossRef]
- Prakash, J.; Foxe, M.J. Use of Cellulase “Onozuka” RS and Pectolyase Y-23 in Isolating Leaf Mesophyll Protoplasts from Two Recalcitrant Potato Cultivars. Ir. J. Agric. Res. 1984, 23, 99–103. [Google Scholar]
- Panda, D.; Karmakar, S.; Dash, M.; Tripathy, S.K.; Das, P.; Banerjee, S.; Qi, Y.; Samantaray, S.; Mohapatra, P.K.; Baig, M.J.; et al. Optimized Protoplast Isolation and Transfection with a Breakpoint: Accelerating Cas9/sgRNA Cleavage Efficiency Validation in Monocot and Dicot. aBIOTECH 2024, 5, 151–168. [Google Scholar] [CrossRef]
- Poddar, S.; Tanaka, J.; Cate, J.H.D.; Staskawicz, B.; Cho, M.-J. Efficient Isolation of Protoplasts from Rice Calli with Pause Points and Its Application in Transient Gene Expression and Genome Editing Assays. Plant Methods 2020, 16, 151. [Google Scholar] [CrossRef]
- Kyozuka, J.; Shimamoto, K. Transformation and Regeneration of Rice Protoplasts. In Plant Tissue Culture Manual; Lindsey, K., Ed.; Springer: Dordrecht, The Netherlands, 1991; pp. 243–259. [Google Scholar] [CrossRef]
- Page, M.T.; Parry, M.A.J.; Carmo-Silva, E. A High-Throughput Transient Expression System for Rice. Plant Cell Environ. 2019, 42, 2057–2064. [Google Scholar] [CrossRef]
- Thompson, J.A.; Abdullah, R.; Cocking, E.C. Protoplast Culture of Rice (Oryza sativa L.) Using Media Solidified with Agarose. Plant Sci. 1986, 47, 123–133. [Google Scholar] [CrossRef]
- Kyozuka, J.; Hayashi, Y.; Shimamoto, K. High Frequency Plant Regeneration from Rice Protoplasts by Novel Nurse Culture Methods. Mol. Gen. Genet. MGG 1987, 206, 408–413. [Google Scholar] [CrossRef]
- Tricoli, D.M.; Debernardi, J.M. An Efficient Protoplast-Based Genome Editing Protocol for Vitis Species. Hortic. Res. 2024, 11, uhad266. [Google Scholar] [CrossRef] [PubMed]
- Megia, R.; Haïcour, R.; Rossignol, L.; Sihachakr, D. Callus Formation from Cultured Protoplasts of Banana (Musa Sp.). Plant Sci. 1992, 85, 91–98. [Google Scholar] [CrossRef]
- Gupta, H.S.; Pattanayak, A. Plant Regeneration from Mesophyll Protoplasts of Rice (Oryza sativa L.). Bio/Technology 1993, 11, 90–94. [Google Scholar] [CrossRef]
- Torrizo, L.B.; Zapata, F.J. High Efficiency Plant Regeneration from Protoplasts of the Indica Cultivar IR58. J. Exp. Bot. 1992, 43, 1633–1637. [Google Scholar] [CrossRef]
- Toriyama, K.; Hinata, K. Cell Suspension and Protoplast Culture in Rice. Plant Sci. 1985, 41, 179–183. [Google Scholar] [CrossRef]
- Fontes, N.; Silva, R.; Vignault, C.; Lecourieux, F.; Gerós, H.; Delrot, S. Purification and Functional Characterization of Protoplasts and Intact Vacuoles from Grape Cells. BMC Res. Notes 2010, 3, 19. [Google Scholar] [CrossRef]
- Grosser, J.W.; Ćalović, M.; Louzada, E.S. Protoplast Fusion Technology—Somatic Hybridization and Cybridization. In Plant Cell Culture: Essential Methods, 1st ed.; Davey, M.R., Paul, A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 175–198. [Google Scholar] [CrossRef]
- Malnoy, M.; Viola, R.; Jung, M.-H.; Koo, O.-J.; Kim, S.; Kim, J.-S.; Velasco, R.; Nagamangala Kanchiswamy, C. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 2016, 7, 1904. [Google Scholar] [CrossRef]
- Ramesh, S.V.; Sahu, P.P.; Prasad, M.; Praveen, S.; Pappu, H.R. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race. Viruses 2017, 9, 256. [Google Scholar] [CrossRef]
- Hour, A.; Hsieh, W.; Chang, S.; Wu, Y.; Chin, H.; Lin, Y. Genetic Diversity of Landraces and Improved Varieties of Rice (Oryza sativa L.) in Taiwan. Rice 2020, 13, 82. [Google Scholar] [CrossRef]
- Xing, H.-L.; Dong, L.; Wang, Z.-P.; Zhang, H.-Y.; Han, C.-Y.; Liu, B.; Wang, X.-C.; Chen, Q.-J. A CRISPR/Cas9 Toolkit for Multiplex Genome Editing in Plants. BMC Plant Biol. 2014, 14, 327. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Chao, D.-Y.; Gao, J.-P.; Zhu, M.-Z.; Shi, M.; Lin, H.-X. A Previously Unknown Zinc Finger Protein, DST, Regulates Drought and Salt Tolerance in Rice via Stomatal Aperture Control. Genes Dev. 2009, 23, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Lu, L.; Liu, H.-Y.; Li, S.; Xing, F.; Chen, L.-L. CRISPR-P: A Web Tool for Synthetic Single-Guide RNA Design of CRISPR-System in Plants. Mol. Plant 2014, 7, 1494–1496. [Google Scholar] [CrossRef] [PubMed]
- Engler, C.; Marillonnet, S. Golden Gate Cloning. Methods Mol. Biol. (Clifton N.J.) 2014, 1116, 119–131. [Google Scholar] [CrossRef]
Medium Name/Purpose | Medium Composition |
---|---|
AA * 1/for induction of protoplast division and microcallus formation | CaCl2·2H2O 0.44 g/L, KH2PO4 0.17 g/L, MgSO4·4H2O 0.37 g/L, KCI 2.94 g/L, KI 0.83 mg/L, CoCl2·6H2O 0.025 g/L, H3BO3 6.2 mg/L, Na2MoO4·2H2O 0.25 mg/L, MnSO4·4 H2O 22.3 mg/L, CuSO4·5H2O 0.025 mg/L, ZnSO4·7H2O 8.6 mg/L, FeSO4·7H2O 27.85 mg/L, Na-EDTA 37.25 mg/L, inositol, 100 mg/L, nicotinic acid 0.5 mg/L, pyridoxine-HCl 0.1 mg/L, thiamine-HCl 0.5 mg/L, glycine 75 mg/L, L- glutamine 877 mg/L, L-aspartic acid 266 mg/L, L-arginine 228 mg/L, 2.4-D 2 mg/L, Kinetin 0.2 mg/L, and gibberellic acid 3 0.1 mg/L; pH 5.6 |
Base Medium * 2/foundation for 2N6, N6R, and N6F media | (NH4)2SO4 463 mg/L, KNO3 2.83 g/L, KH2PO4 400 mg/L, MgSO4·7H2O 185 mg/L, CaCl2·2H2O 166 mg/L, H3BO3 1.6 mg/L, KI 0.83 mg/L, MnSO4·4H2O 4.4 mg/L, ZnSO4·7H2O 1.5 mg/L, Na2EDTA 37.3 mg/L, FeSO4·7H2O 27.8 mg/L, glycine 2.0 mg/L, thiamine-HCl 1.0 mg/L, pyridoxine-HCl 0.5 mg/L, nicotinic acid 0.5 mg/L, and agar 7 g/L |
2N6 * 2/for callus induction and propagation | Base Medium supplemented with myo-inositol 100 mg/L, L-proline 500 mg/L, 2,4-D 2.0 mg/L, casein hydrolysate 500 mg/L, and sucrose 30 g/L; pH 5.8 |
N6R * 2/for induction of shoot regeneration | Base medium supplemented with myo-inositol 100 mg/L, L-proline 500 mg/L, kinetin 0.5 mg/L, casein hydrolysate 1.0 mg/L, sorbitol 30 g/L, sucrose 20 g/L, and activated charcoal 500 mg/L; pH 5.8 |
N6F * 2/for induction of roots | Base medium supplemented with casein hydrolysate 1.0 mg/L, sorbitol 30 g/L, sucrose 15 g/L, and activated charcoal 500 mg/L; pH 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera, M.; Olmedo, B.; Narváez, M.; Moenne-Locoz, F.; Rubio, A.; Pérez, C.; Cordero-Lara, K.; Prieto, H. Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars. Plants 2025, 14, 2059. https://doi.org/10.3390/plants14132059
Barrera M, Olmedo B, Narváez M, Moenne-Locoz F, Rubio A, Pérez C, Cordero-Lara K, Prieto H. Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars. Plants. 2025; 14(13):2059. https://doi.org/10.3390/plants14132059
Chicago/Turabian StyleBarrera, Marion, Blanca Olmedo, Matías Narváez, Felipe Moenne-Locoz, Anett Rubio, Catalina Pérez, Karla Cordero-Lara, and Humberto Prieto. 2025. "Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars" Plants 14, no. 13: 2059. https://doi.org/10.3390/plants14132059
APA StyleBarrera, M., Olmedo, B., Narváez, M., Moenne-Locoz, F., Rubio, A., Pérez, C., Cordero-Lara, K., & Prieto, H. (2025). Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars. Plants, 14(13), 2059. https://doi.org/10.3390/plants14132059