Induction of Triploid Grass Carp (Ctenopharyngodon idella) and Changes in Embryonic Transcriptome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Broodstock Cultivation and Breeding
2.2. Artificial Induction with Cold Shock
2.3. Embryogenesis Analysis
2.4. Flow Cytometry Analysis and Karyotype Analysis
2.5. Sample Collection, RNA Preparation, Library Construction, and Sequencing
2.6. Differential Gene Expression Analysis
2.7. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.8. Statistical Analysis
3. Results
3.1. Induction Conditions for Triploid Grass Carp
3.2. Investigation of Embryonic Development in Cold Shock-Induced Grass Carp
3.3. Analysis of DNA Content and Karyotype
3.4. Analysis of Transcriptome Data
3.5. The Pathway Analysis of DEGs of Embryos at the Blastula and Gastrula Stages in Diploid and Cold Shock-Induced Groups
3.6. Validation of DEGs with qPT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PBII | Second polar body |
LRH-A | Luteinizing hormone-releasing hormone analogue |
DOM | Domperidone |
DEGs | Differentially expressed genes |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
qRT-PCR | Quantitative real-time polymerase chain reaction |
BP | Biological process |
MF | Molecular function |
CC | Cellular component |
References
- Li, L.S.; Balto, G.; Xu, X.Y.; Shen, Y.B.; Li, J.L. The feeding ecology of grass carp: A review. Rev. Aquacult. 2023, 15, 1335–1354. [Google Scholar] [CrossRef]
- Chang, J.; Zhu, W.T.; Huo, X.C.; Qiao, M.H.; Yang, C.R.; Zhang, Y.A.; Su, J.G. Oral Lactobacillus casei expressing VP56310-500 and adjuvant flagellin C delivered by alginate-chitosan microcapsules remarkably enhances the immune protection against GCRV infection in grass carp. Aquaculture 2023, 567, 739301. [Google Scholar] [CrossRef]
- Yang, M.T.; Zhu, Y.S.; Ying, T.H.; Rong, J.H.; Wang, P.K.; Hu, Y. Preparation, characterization, and coating effect of bio-active nano-emulsion based on combined plant essential oils on quality of grass carp fillets. Food Chem. 2024, 453, 139618. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.J.; Weber, M.J.; Pierce, C.L.; Camacho, C.A. A Comparison of Grass Carp Population Characteristics Upstream and Downstream of Lock and Dam 19 of the Upper Mississippi River. J. Fish Wildl. Manag. 2020, 11, 99–111. [Google Scholar] [CrossRef]
- Brown, D.J.; Coon, T.G. Grass Carp Larvae in the Lower Missouri River and Its Tributaries. N. Am. J. Fish Manag. 1991, 11, 62–66. [Google Scholar] [CrossRef]
- Maxime, V. The physiology of triploid fish: Current knowledge and comparisons with diploid fish. Fish Fish. 2008, 9, 67–78. [Google Scholar] [CrossRef]
- Wong, T.T.; Zohar, Y. Production of reproductively sterile fish: A mini-review of germ cell elimination technologies. Gen. Comp. Endocr. 2015, 221, 3–8. [Google Scholar] [CrossRef]
- Kettunen, A.; Kauric, G.; Peruzzi, S. Induction of triploidy in Atlantic cod (Gadus morhua L.) by thermal shocks. Aquaculture 2007, 272, S276. [Google Scholar] [CrossRef]
- Ou, Y.; Li, H.; Li, J.; Dai, X.; He, J.; Wang, S.; Liu, Q.; Yang, C.; Wang, J.; Zhao, R.; et al. Formation of Different Polyploids Through Disrupting Meiotic Crossover Frequencies Based on cntd1 Knockout in Zebrafish. Mol. Biol. Evol. 2024, 41, msae047. [Google Scholar] [CrossRef]
- Gu, H.; Wang, S.; Yang, C.; Tao, M.; Wang, Z.; Liu, S. Global cooling and hot springs may have induced autotetraploidy and autohexaploidy in Schizothorax ancestors, and its implications for polyploid breeding. Aquaculture 2024, 584, 740659. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, W.; Luo, H.; Chen, J.; Tao, B.; Luo, D.; Zhu, C.; Zhu, Z.; Song, Y.; Hu, W. Hydrostatic pressure shock induced tetraploids in rice field eel (Monopterus albus). Aquaculture 2024, 584, 740636. [Google Scholar] [CrossRef]
- Garcia, S.; Yasui, G.S.; Bernardes-Junior, J.J.; da Silva, B.C.; Amaral-Junior, H.; Zaniboni-Filho, E. Induction of triploidy in Rhamdia quelen (Siluriformes, Heptapteridae) by double-temperature shock. Lat. Am. J. Aquat. Res. 2017, 45, 209–212. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Yatabe, T.; Yoshikawa, H.; Ino, Y.; Kabeya, N.; Yazawa, R.; Yoshizaki, G. Production of functionally sterile triploid Nibe croaker Nibea mitsukurii induced by cold-shock treatment with special emphasis on triploid aptitude as surrogate broodstock. Aquaculture 2018, 494, 45–56. [Google Scholar] [CrossRef]
- Oliver, L.P.; Ma, J.; Bruce, T.J.; Evavold, J.T.; Korbel, D.B.; Cain, K.D. Triploid induction in cultured burbot (Lota lota) using thermal and hydrostatic shock. Aquaculture 2020, 515, 734582. [Google Scholar] [CrossRef]
- Pradeep, P.J.; Srijaya, T.C.; Papini, A.; Chatterji, A.K. Effects of triploidy induction on growth and masculinization of red tilapia Oreochromis mossambicus (Peters, 1852) × Oreochromis niloticus (Linnaeus, 1758). Aquaculture 2012, 344, 181–187. [Google Scholar] [CrossRef]
- Zheng, G.; Li, B.; Yang, H.; Su, X.; Jia, C.; Xu, W.; Zou, S. Induction of high triploid rate blunt snout bream (Megalobrama amblycephala) by hydrostatic pressure and analysis of gonadal sterility mechanism. Aquaculture 2023, 563, 738983. [Google Scholar] [CrossRef]
- Bi, S.; Lai, H.; Wang, G.; Guo, D.; Liu, S.; Chen, X.; Zhao, X.; Liu, X.; Li, G. Triploidy induction by hydrostatic pressure shock in mandarin fish (Siniperca chuatsi). Aquaculture 2020, 520, 734979. [Google Scholar] [CrossRef]
- Liu, S. Distant hybridization leads to different ploidy fishes. Sci. China Life Sci. 2010, 53, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.B.; Xu, L.H.; Wu, C.; Wang, S.; Liu, Q.F.; Cao, L.; Mao, Z.W.; Wang, Y.D.; Hu, F.Z.; Zhou, R.; et al. Two types of gynogenetic blunt snout bream derived from different sperm. Aquaculture 2019, 511, 734250. [Google Scholar] [CrossRef]
- Cassani, J.R.; Caton, W.E. Induced triploidy in grass carp, Ctenopharyngodon idella Val. Aquaculture 1985, 46, 37–44. [Google Scholar] [CrossRef]
- McCarter, N.H. Verification of the production of triploid grass carp (Ctenopharyngodon idella) with hydrostatic-pressure. N. Z. J. Mar. Fresh. Res. 1988, 22, 501–505. [Google Scholar] [CrossRef]
- Okomoda, V.T.; Koh, I.C.C.; Hassan, A.; Amornsakun, T.; Shahreza, M.S. Embryonic and larvae development of reciprocal crosses between Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Egypt. J. Aquat. Res. 2017, 43, 321–327. [Google Scholar] [CrossRef]
- Piferrer, F.; Cal, R.M.; Go´mez, C.; Bouza, C.; Martı´nez, P. Induction of triploidy in the turbot (Scophthalmus maximus) II.: Effects of cold shock timing and induction of triploidy in a large volume of eggs. Aquaculture 2003, 220, 821–831. [Google Scholar] [CrossRef]
- Sousa, J.T.; Allen, S.K., Jr.; Wolfe, B.M.; Small, J.M. Mitotic instability in triploid and tetraploid one-year-old eastern oyster, Crassostrea virginica, assessed by cytogenetic and flow cytometry techniques. Genome 2018, 61, 79–89. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.J.; Zhang, C.; Tao, M.; Peng, L.Y.; You, C.P.; Xiao, J.; Zhou, Y.; Zhou, G.J.; Luo, K.K.; et al. Induced Gynogenesis in Grass Carp (Ctenopharyngodon idellus) Using Irradiated Sperm of Allotetraploid Hybrids. Mar. Biotechnol. 2011, 13, 1017–1026. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Pightling, A.W.; Petronella, N.; Pagotto, F. Choice of reference-guided sequence assembler and SNP caller for analysis of Listeria monocytogenes short-read sequence data greatly influences rates of error. BMC Res. Notes 2015, 8, 748. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.Y.; Wang, C.W.; Zhu, Y.Z.; Wu, J.H.; Jianyuyang; Gan, S.Y.; Lin, H.R.; Zhang, Y.; Li, S.S. Transcriptome analysis reveals the dynamics of gene expression during early embryonic development of hybrid groupers. Aquaculture 2025, 596, 741746. [Google Scholar] [CrossRef]
- Fraser, T.W.K.; Fjelldal, P.G.; Hansen, T.; Mayer, I. Welfare Considerations of Triploid Fish. Rev. Fish. Sci. 2012, 20, 192–211. [Google Scholar] [CrossRef]
- Luo, K.; Xiao, J.; Liu, S.; Wang, J.; He, W.; Hu, J.; Qin, Q.; Zhang, C.; Tao, M.; Liu, Y. Massive Production of All-female Diploids and Triploids in the Crucian Carp. Int. J. Biol. Sci. 2011, 7, 487–495. [Google Scholar] [CrossRef]
- Su, Z.G.; Xu, K.S.; Chen, S.P.; Bai, G.D. Studies on Triploid Silver Carp and its Karyotype. Zool. Res. 1984, 5, 15–20. [Google Scholar]
- Ruan, H.; Yi, X.; Huang, H. Detection of the Polar Body After Fertilization; Humana: New York, NY, USA, 2021; pp. 157–167. [Google Scholar] [CrossRef]
- Mao, Z.; Fu, Y.; Wang, S.; Wang, Y.; Luo, K.; Zhang, C.; Tao, M.; Liu, S. Further evidence for paternal DNA transmission in gynogenetic grass carp. Sci. China Life Sci. 2020, 63, 1287–1296. [Google Scholar] [CrossRef]
- Fopp-Bayat, D.; Chandra, G.; Nitkiewicz, A. How Cold Shock Affects Ploidy Level and Early Ontogenetic Development of the Sterlet, A. ruthenus L. Int. J. Mol. Sci. 2022, 23, 494. [Google Scholar] [CrossRef]
- Darzynkiewicz, Z.; Halicka, H.D.; Zhao, H. Analysis of Cellular DNA Content by Flow and Laser Scanning Cytometry. Adv. Exp. Med. Biol. 2010, 676, 137–147. [Google Scholar] [CrossRef]
- Lawson, E.; Ishola, H.A. Effects of cold shock treatment on the survival of fertilized eggs and growth performance of the larvae of African mud catfish, Clarias gariepinus (Burchell, 1822). Res. J. Fish Hydrobiol. 2010, 5, 85–91. [Google Scholar]
- Huang, J.; Yang, M.; Liu, J.; Tang, H.; Fan, X.; Zhang, W.; Wen, X.; Luo, J. Transcriptome analysis of high mortality phenomena in polyploid fish embryos: An allotriploid embryo case study in hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Aquaculture 2023, 571, 739446. [Google Scholar] [CrossRef]
- Zhang, Z.; Yi, H.; Su, Y.; Huang, C.; Wei, X.; Chen, Q.; Chen, J.; Li, H.; Bi, S.; Lai, H.; et al. Hydrostatic pressure shock induced diploid/tetraploid mosaic in mandarin fish (Siniperca chuatsi), with the observation of embryo development and change in body spots. Aquaculture 2023, 563, 738989. [Google Scholar] [CrossRef]
- Li, Y.C.; Wang, Z.P.; Cui, Y.T.; Ma, P.Z.; Zhang, X.K.; Fan, C. Transcriptomic Analysis of Pacific Oyster (Crassostrea gigas) Zygotes Under Hypotonic Triploid Induction. J. Ocean Univ. China 2021, 20, 147–158. [Google Scholar] [CrossRef]
- Andersen, I.S.; Reiner, A.H.; Aanes, H.; Aleström, P.; Collas, P. Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biol. 2012, 13, R65. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Z.; Ho, I.H.T.; Shi, Y.; Li, J.; Wang, X.; Chan, M.T.V.; Cheng, C.H.K. Genetic Deletion of miR-430 Disrupts Maternal-Zygotic Transition and Embryonic Body Plan. Front. Genet. 2020, 11, 853. [Google Scholar] [CrossRef]
- Attisano, L.; Wrana, J.L. Signal integration in TGF-beta, WNT, and Hippo pathways. F1000Prime Rep. 2013, 5, 17. [Google Scholar] [CrossRef]
- Dosch, R.; Gawantka, V.; Delius, H.; Blumenstock, C.; Niehrs, C. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 1997, 124, 2325–2334. [Google Scholar] [CrossRef]
- Baker, K.D.; Ramel, M.-C.; Lekven, A.C. A direct role for Wnt8 in ventrolateral mesoderm patterning. Dev. Dynam. 2010, 239, 2828–2836. [Google Scholar] [CrossRef]
- Wylie, A.D.; Fleming, J.-A.G.W.; Whitener, A.E.; Lekven, A.C. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development. Dev. Biol. 2014, 386, 53–63. [Google Scholar] [CrossRef]
- Bitomsky, N.; Hofmann, T.G. Apoptosis and autophagy: Regulation of apoptosis by DNA damage signalling—Roles of p53, p73 and HIPK2. FEBS J. 2009, 276, 6074–6083. [Google Scholar] [CrossRef]
- Ranjan, A.; Iwakuma, T. Non-Canonical Cell Death Induced by p53. Int. J. Mol. Sci. 2016, 17, 2068. [Google Scholar] [CrossRef]
- Kaloni, D.; Diepstraten, S.T.; Strasser, A.; Kelly, G.L. BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis 2023, 28, 20–38. [Google Scholar] [CrossRef]
Group | Cold Temperature (°C) | Cold Shock (mpf) | Shock Duration (min) | Fertilization Rate (%) | Hatching Rate (%) | Triploid Rate (%) |
---|---|---|---|---|---|---|
1 | 4 | 2 | 10 | 61.52 ± 1.03 | 12.83 ± 0.77 | 10 ± 7.13 |
2 | 4 | 2 | 12 | 58.30 ± 7.54 | 10.06 ± 0.87 | 71.73 ± 5.00 |
3 | 4 | 2 | 14 | 52.57 ± 3.18 | 8.62 ± 2.87 | 0 |
Control | - | - | - | 91.80 ± 1.46 | 80.21 ± 0.65 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
E, Z.; Wen, H.; Tang, Y.; Zhang, M.; Wang, Y.; Liao, S.; Chen, K.; Lu, D.; Lin, H.; Huang, W.; et al. Induction of Triploid Grass Carp (Ctenopharyngodon idella) and Changes in Embryonic Transcriptome. Animals 2025, 15, 2165. https://doi.org/10.3390/ani15152165
E Z, Wen H, Tang Y, Zhang M, Wang Y, Liao S, Chen K, Lu D, Lin H, Huang W, et al. Induction of Triploid Grass Carp (Ctenopharyngodon idella) and Changes in Embryonic Transcriptome. Animals. 2025; 15(15):2165. https://doi.org/10.3390/ani15152165
Chicago/Turabian StyleE, Zixuan, Han Wen, Yingshi Tang, Mingqing Zhang, Yaorong Wang, Shujia Liao, Kejun Chen, Danqi Lu, Haoran Lin, Wen Huang, and et al. 2025. "Induction of Triploid Grass Carp (Ctenopharyngodon idella) and Changes in Embryonic Transcriptome" Animals 15, no. 15: 2165. https://doi.org/10.3390/ani15152165
APA StyleE, Z., Wen, H., Tang, Y., Zhang, M., Wang, Y., Liao, S., Chen, K., Lu, D., Lin, H., Huang, W., Chen, X., Zhang, Y., & Li, S. (2025). Induction of Triploid Grass Carp (Ctenopharyngodon idella) and Changes in Embryonic Transcriptome. Animals, 15(15), 2165. https://doi.org/10.3390/ani15152165