Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (767)

Search Parameters:
Keywords = Solid state lighting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2048 KiB  
Article
Photocatalytic Degradation of Oxytetracycline and Imidacloprid Under Visible Light with Sr0.95Bi0.05TiO3: Influence of Aqueous Matrix
by Maria J. Nunes, Ana Lopes, Maria J. Pacheco, Paulo T. Fiadeiro, Guilherme J. Inacio, Jefferson E. Silveira, Alyson R. Ribeiro, Wendel S. Paz and Lurdes Ciríaco
Water 2025, 17(15), 2177; https://doi.org/10.3390/w17152177 - 22 Jul 2025
Viewed by 180
Abstract
In this study, Sr0.95Bi0.05TiO3 was synthesized via solid state reaction, characterized, and applied as a visible-light-active photocatalyst for the degradation of oxytetracycline, imidacloprid, and their mixture. To evaluate the influence of the aqueous matrix on pollutant degradation, photocatalytic [...] Read more.
In this study, Sr0.95Bi0.05TiO3 was synthesized via solid state reaction, characterized, and applied as a visible-light-active photocatalyst for the degradation of oxytetracycline, imidacloprid, and their mixture. To evaluate the influence of the aqueous matrix on pollutant degradation, photocatalytic experiments were carried out in both distilled water and a real environmental sample (surface water). The Sr0.95Bi0.05TiO3 perovskite showed high photocatalytic performance under visible light, achieving nearly complete degradation of oxytetracycline after 2 h, and significant removal of imidacloprid in river water (60% after 3 h). Enhanced degradation in surface water was attributed to favorable ionic composition and pH. The perovskite oxide maintained its photocatalytic performance over five consecutive cycles, with no significant loss in photocatalytic activity or structural and morphological stability. Ecotoxicological assessment using Daphnia magna confirmed that the treated water was non-toxic, indicating that no harmful byproducts were formed. Complementary Density Functional Theory calculations were conducted to complement experimental findings, providing insights into the structural, electronic, and optical properties of the photocatalyst, enhancing the understanding of the degradation mechanisms involved. This integrated approach, combining experimental photocatalytic performance evaluation in different matrices, ecotoxicity testing, and theoretical modeling, highlights Sr0.95Bi0.05TiO3 as a promising, stable, and environmentally safe photocatalyst for practical wastewater treatment applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 5943 KiB  
Article
Preparation and Optimization of Mn2+-Activated Na2ZnGeO4 Phosphors: Insights into Precursor Selection and Microwave-Assisted Solid-State Synthesis
by Xiaomeng Wang, Siyi Wei, Jiaping Zhang, Jiaren Du, Yukun Li, Ke Chen and Hengwei Lin
Nanomaterials 2025, 15(14), 1117; https://doi.org/10.3390/nano15141117 - 18 Jul 2025
Viewed by 309
Abstract
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for [...] Read more.
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for the preparation of Na2ZnGeO4:Mn2+. Leveraging the unique attributes of the MASS technique, a systematic investigation into the applicability of various Mn-source precursors was conducted. Additionally, the integration of the MASS approach with traditional solid-state reaction (SSR) methods was assessed. The findings indicate that the MASS technique effectively incorporates Mn ions from diverse precursors (including higher oxidation states of manganese) into the crystal lattice, resulting in efficient green emission from Mn2+. Notably, the photoluminescence quantum yield (PLQY) of the sample utilizing MnCO3 as the manganese precursor was recorded at 2.67%, whereas the sample synthesized from MnO2 exhibited a remarkable PLQY of 17.69%. Moreover, the post-treatment of SSR-derived samples through the MASS process significantly enhanced the PLQY from 0.67% to 8.66%. These results underscore the promise of the MASS method as a novel and efficient synthesis strategy for the rapid and scalable production of Mn2+-doped green luminescent materials. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

19 pages, 1065 KiB  
Review
Recovery of Nutrients from the Aqueous Phase of Hydrothermal Liquefaction—A Review
by Barbara Camila Bogarin Cantero, Yalin Li, Prasanta Kalita, Yuanhui Zhang and Paul Davidson
Water 2025, 17(14), 2099; https://doi.org/10.3390/w17142099 - 14 Jul 2025
Viewed by 543
Abstract
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the [...] Read more.
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the process, which has high concentrations of nitrogen and carbon and cannot be disposed of in the environment without treatment. The HTL-AP is enriched with organic compounds, particularly light polar organics and nitrogenous compounds, which are inhibitory to microbial treatment in wastewater treatment plants. For this reason, the valorization of the HTL-AP is significant for the circular economy of HTL. This review synthesizes published findings on different types of treatment of the HTL-AP for the recovery of valuable nutrients and the removal of toxic compounds. This work outlines the trade-offs of the treatments to serve as a guide for future research to address these weaknesses and improve the valorization of the HTL-AP. Furthermore, this work uniquely focuses on HTL-AP treatment for recovering plant-available nitrogen, targeting its potential use as a fertilizer. The literature highlights the importance of increasing nitrogen bioavailability in HTL-AP through two-step treatments and by selecting HTL-AP derived from protein-rich feedstocks, which offer higher initial nitrogen content. According to the current state of research, further work is needed to optimize chemical and biological treatments for nutrient recovery from HTL-AP, particularly regarding treatment scale and duration. Additionally, economic analyses across different treatment types are currently lacking, but are essential to evaluate their feasibility and practicality. Full article
(This article belongs to the Special Issue Emerging Technologies for Nutrient Recovery and Wastewater Treatment)
Show Figures

Figure 1

19 pages, 3941 KiB  
Article
Efficient Energy Transfer Down-Shifting Material for Dye-Sensitized Solar Cells
by Emeka Harrison Onah, N. L. Lethole and P. Mukumba
Materials 2025, 18(14), 3213; https://doi.org/10.3390/ma18143213 - 8 Jul 2025
Viewed by 262
Abstract
Dye-sensitized solar cells (DSSCs) are promising alternatives for power generation due to their environmental friendliness, cost effectiveness, and strong performance under diffused light. Conversely, their low spectral response in the ultraviolet (UV) region significantly obliterates their overall performance. The so-called luminescent down-shifting (LDS) [...] Read more.
Dye-sensitized solar cells (DSSCs) are promising alternatives for power generation due to their environmental friendliness, cost effectiveness, and strong performance under diffused light. Conversely, their low spectral response in the ultraviolet (UV) region significantly obliterates their overall performance. The so-called luminescent down-shifting (LDS) presents a practical solution by converting high-energy UV photons into visible light that can be efficiently absorbed by sensitizer dyes. Herein, a conventional solid-state technique was applied for the synthesis of an LDS, europium (II)-doped barium orthosilicate (BaSiO3:Eu2+) material. The material exhibited strong UV absorption, with prominent peaks near 400 nm and within the 200–300 nm range, despite a weaker response in the visible region. The estimated optical bandgap was 3.47 eV, making it well-suited for UV absorbers. Analysis of the energy transfer mechanism from the LDS material to the N719 dye sensitizer depicted a strong spectral overlap of 2×1010M1cm1nm4, suggesting efficient energy transfer from the donor to the acceptor. The estimated Förster distance was approximately 6.83 nm, which matches the absorption profile of the dye-sensitizer. Our findings demonstrate the potential of BaSiO3:Eu2+ as an effective LDS material for enhancing UV light absorption and improving DSSC performance through increased spectral utilization and reduced UV-induced degradation. Full article
(This article belongs to the Special Issue Advanced Luminescent Materials and Applications)
Show Figures

Figure 1

19 pages, 4423 KiB  
Review
Laser Active Optical Systems (LAOSs) for Material Processing
by Vladimir Chvykov
Micromachines 2025, 16(7), 792; https://doi.org/10.3390/mi16070792 - 2 Jul 2025
Viewed by 457
Abstract
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser [...] Read more.
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser beams with tailored energy distribution across the aperture, making them ideal for material processing applications. This concept was first successfully implemented using metal vapor lasers as the gain medium. In these systems, material processing was achieved by using a laser beam that either carried the required energy profile or the image of the object itself. Later, other laser media were utilized for LAOSs, including barium vapor, strontium vapor, excimer XeCl lasers, and solid-state media. Additionally, during the development of these systems, several modifications were introduced. For example, Space-Time Light Modulators (STLMs) and CCD cameras were incorporated, along with the use of multipass amplifiers, disk-shaped or thin-disk (TD) solid-state laser amplifiers, and other advancements. These techniques have significantly expanded the range of power, energy, pulse durations, and operating wavelengths. Currently, TD laser amplifiers and STLMs based on Digital Light Processor (DLP) technology or Digital Micromirror Devices (DMDs) enhance the potential to develop LAOS devices for Subtractive and Additive Technologies (ST, AT), applicable in both macromachining (cutting, welding, drilling) and micro-nano processing. This review presents comparable characteristics and requirements for these various LAOS applications. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

30 pages, 9790 KiB  
Review
A Comprehensive Review on Aero-Materials: Present and Future Perspectives
by Corina Orha, Mircea Nicolaescu, Mina-Ionela Morariu (Popescu), Tatiana Galatonova, Simon Busuioc, Carmen Lazau and Cornelia Bandas
Coatings 2025, 15(7), 754; https://doi.org/10.3390/coatings15070754 - 25 Jun 2025
Viewed by 328
Abstract
Recently, a new class of materials with very high porosity and ultra-lightweight, namely, semiconductor aero-materials, has attracted the attention of many researchers. Semiconductor aero-materials, due to their special properties, can be used in the development of devices applied in biomedical, electronics, optoelectronic, energy [...] Read more.
Recently, a new class of materials with very high porosity and ultra-lightweight, namely, semiconductor aero-materials, has attracted the attention of many researchers. Semiconductor aero-materials, due to their special properties, can be used in the development of devices applied in biomedical, electronics, optoelectronic, energy conversion and storage, sensors, biosensors, catalysis, automotive, and aeronautic industries. Although aero-materials and aerogels are similar, different methods of obtaining them are used. Aerogels are synthesized from organic, inorganic, or hybrid precursors, the main characteristic being that they are gel-like solids with a high air content (99.9%) in the structure. Thus, three-dimensional (3D) interconnected porous network chains are formed, resulting in light solid-state structures with very high porosity due to the large number of air pores in the network. On the other hand, to obtain aero-materials with controlled properties such as morphology, shape, or the formation of 3D hollow structures, sacrificial templates are used. Thus, sacrificial structures (which can be easily removed) can be obtained depending on the morphology of the 3D structure to be obtained. Therefore, this review paper offers a comprehensive coverage of the synthesis methods of different types of semiconductor aero-materials that use ZnO tetrapod, ZnO(T), as a sacrificial template, related to the present and future perspectives. These ZnO(T) sacrificial substrates offer several advantages, including diverse synthesis processes and easy removal methods that occur simultaneously with the growth of the desired aero-materials. Full article
Show Figures

Figure 1

24 pages, 6370 KiB  
Article
Influence of Peptide Conjugation Sites on Lunatin–Alumina Nanoparticles: Implications for Membrane Interaction and Antimicrobial Activity
by Carolina Silva Ferreira, Lívia Mara Fontes Costa, Lúcio Otávio Nunes, Kelton Rodrigues de Souza, Giovanna Paula Araújo, Evgeniy S. Salnikov, Kelly Cristina Kato, Helen Rodrigues Martins, Adriano Monteiro de Castro Pimenta, Jarbas Magalhães Resende, Burkhard Bechinger and Rodrigo Moreira Verly
Pharmaceuticals 2025, 18(7), 952; https://doi.org/10.3390/ph18070952 - 24 Jun 2025
Viewed by 486
Abstract
Background/Objectives: The increasing prevalence of multidrug-resistant bacteria presents a major global health challenge, prompting a search for innovative antimicrobial strategies. This study aimed to develop and evaluate a novel nanobiostructure combining alumina nanoparticles (NPs) with the antimicrobial peptide lunatin-1 (Lun-1), forming peptide-functionalized nanofilaments. [...] Read more.
Background/Objectives: The increasing prevalence of multidrug-resistant bacteria presents a major global health challenge, prompting a search for innovative antimicrobial strategies. This study aimed to develop and evaluate a novel nanobiostructure combining alumina nanoparticles (NPs) with the antimicrobial peptide lunatin-1 (Lun-1), forming peptide-functionalized nanofilaments. The main objective was to investigate how the site of peptide functionalization (C-terminal vs. N-terminal) affects membrane interactions and antibacterial activity. Methods: NP–peptide conjugates were synthesized via covalent bonding between lun-1 and alumina NP and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), zeta potential analysis, dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and solid-state 13C NMR. Antibacterial activities were assessed against different Gram-positive and Gram-negative strains. Biophysical analyses, including circular dichroism (CD), isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and solid-state 2H NMR, were employed to evaluate peptide–membrane interactions in the presence of membrane-mimetic vesicles composed of POPC:POPG (3:1) and DMPC:DMPG (3:1). Results: Characterization confirmed the successful formation of NP–peptide nanofilaments. Functionalization at the N-terminal significantly influenced both antibacterial activity and peptide conformation compared to C-terminal attachment. Biophysical data demonstrated stronger membrane interaction and greater membrane disruption when lun-1 was conjugated at the N-terminal. Conclusions: The site of peptide conjugation plays a crucial role in modulating the biological and biophysical properties of NP–lunatin-1 conjugates. C-terminal attachment of lunatin-1 retains both membrane interaction and antibacterial efficacy, making it a promising strategy for the design of peptide-based nanotherapeutics targeting resistant pathogens. Full article
Show Figures

Figure 1

13 pages, 5126 KiB  
Article
Ultrastructure Analysis and Molecular Characterization of Trichomitus batrachorum (Parabasalia; Hypotrichomonadida) Isolated from Liver of Ameiva ameiva (Reptilia: Squamata)
by Lina Maria Pelaez Cortes, Júlia de Castro Ascenção, Rhagner Bonono dos Reis, Gabriela Peixoto, Gabriel Gazzoni Araújo Gonçalves, Jana Messias Sandes, Fábio André Brayner dos Santos, Luiz Carlos Alves, Felipe Arley Costa Pessoa, Claudia María Ríos Velásquez and Helena Lúcia Carneiro Santos
Microorganisms 2025, 13(6), 1286; https://doi.org/10.3390/microorganisms13061286 - 31 May 2025
Viewed by 547
Abstract
Trichomitus batrachorum is a species of trichomonad that has gained attention due to its ecological importance and potential interactions with various hosts, such as amphibians (anurans) and reptiles (lizards and chelonians), where it has been recorded in the gastrointestinal tract of these vertebrates, [...] Read more.
Trichomitus batrachorum is a species of trichomonad that has gained attention due to its ecological importance and potential interactions with various hosts, such as amphibians (anurans) and reptiles (lizards and chelonians), where it has been recorded in the gastrointestinal tract of these vertebrates, specifically in their feces. Molecular studies have placed this flagellated protist within the Metamonada clade. Unlike parabasalids that inhabit endothermic mammals in relatively stable temperature conditions, protists associated with ectothermic reptiles are subject to significant temperature fluctuations. The ability of T. batrachorum to thrive in the variable temperatures encountered by reptiles suggests that its parasitism may remain largely unaffected by climate change. In our study, we detected and characterized T. batrachorum from the liver tissue of the lizard species Ameiva ameiva, collected in Presidente Figueiredo Municipality, Amazonas State, Brazil. The identification of T. batrachorum was confirmed by cultivation technique, light microscopy, scanning electron microscopy and transmission electron microscopy for ultrastructural analyses, and sequencing the 5.8S rDNA (region ITS1- ITS2) and 18S rRNA (ribosomal RNA) genes. One potential interpretation for this finding is that the flagellates may have migrated from the intestine to the bile duct, ultimately reaching the liver. This is the first successful characterization of T. batrachorum in the liver of a lizard, and provides a solid foundation for further research to elucidate the potential pathogenicity of this flagellate and the role of A. ameiva in the epidemiology of parabasalids in other animal species. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

13 pages, 1628 KiB  
Communication
Synthesis and Photochromic Properties of Diarylethene Derivatives with Aggregation-Induced Emission (AIE) Behavior
by Jiaxin Guo, Haoyuan Yu and Yuhua Jin
Materials 2025, 18(11), 2520; https://doi.org/10.3390/ma18112520 - 27 May 2025
Viewed by 606
Abstract
Photochromic materials have attracted widespread attention due to their potential applications in optical information storage, optoelectronic devices, and fluorescence probes. As a typical photochromic system, diarylethene derivatives are considered one of the most promising photochromic materials due to their outstanding photostability and significant [...] Read more.
Photochromic materials have attracted widespread attention due to their potential applications in optical information storage, optoelectronic devices, and fluorescence probes. As a typical photochromic system, diarylethene derivatives are considered one of the most promising photochromic materials due to their outstanding photostability and significant bistable properties. Based on an aggregation-induced emission (AIE) mechanism, this study employed a molecular structural engineering strategy to design and synthesize a series of diarylethene derivatives containing ethyl benzoate substituents. A systematic investigation of the structure–activity relationship between their photochromic behavior and AIE characteristics revealed a dual-state light response mechanism in the solid and solution states. This study demonstrates that the target compounds exhibited significant photochromic responses under UV–visible light irradiation, with enhanced emission in the solid state compared to the solution state, confirming the remarkable enhancement effect of AIE on aggregation. Structural characterization techniques such as nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (H RMS) were employed to elucidate the correlation between molecular conformation and photophysical properties. Furthermore, these materials demonstrated potential for multi-level anti-counterfeiting, high-density optical storage, and bioimaging applications, providing experimental foundations for the development of novel multifunctional photochromic materials. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

24 pages, 1922 KiB  
Article
Performance Comparison of Lambertian and Non-Lambertian Drone Visible Light Communications for 6G Aerial Vehicular Networks
by Jupeng Ding, Chih-Lin I, Jintao Wang and Hui Yang
Appl. Sci. 2025, 15(11), 5835; https://doi.org/10.3390/app15115835 - 22 May 2025
Viewed by 407
Abstract
Increasing reported works identify that drones could and should be sufficiently utilized to work as aerial base stations in the upcoming 6G aerial vehicular networks, for providing emergency communication and flexible coverage. Objectively, light-emitting diode (LED) based lighting devices are ubiquitously integrated into [...] Read more.
Increasing reported works identify that drones could and should be sufficiently utilized to work as aerial base stations in the upcoming 6G aerial vehicular networks, for providing emergency communication and flexible coverage. Objectively, light-emitting diode (LED) based lighting devices are ubiquitously integrated into these commercially available drone platforms for the general purposes of illumination and indication. Impresively, for further enhancing and diversifying the wireless air interface capability of the above 6G aerial vehicular networks, the solid-state light emitter, especially LED-based visible light communication (VLC) technologies, is increasingly introduced and explored in the rapidly developing drone communications. However, the emerging investigation dimension of spatial light beam is still waiting for essential research attention for the LED-based drone VLC. Up to now, to the best of our knowledge, almost all LED-based drone VLC schemes are still limited to conventional Lambertian LED beam configuration and objectively reject these technical possibilities and potential value of drone VLC schemes with distinct non-Lambertian LED beam configurations. The core contribution of the study is overcoming the existing limitation of the current rigid Lambertian beam use, and comparatively investigating the performance of drone VLC with non-Lambertian LED beam configurations for future 6G aerial vehicular networks. Objectively, this work opens a novel research dimension and provides a series of valuable research opportunities for the community of drone VLC. Numerical results demonstrate that, for a typical drone VLC scenario, compared with about 6.40 Bits/J/Hz energy efficiency of drone VLC based on the baseline Lambertian LED beam configuration with the same emitted power, up to about 15.64 Bits/J/Hz energy efficiency could be provided by the studied drone VLC with a distinct non-Lambertian LED beam configuration. These results show that the spatial LED beam dimension should be further elaborately explored and utilized to derive more performance improvement of the 6G aerial vehicular networks oriented drone VLC. Full article
Show Figures

Figure 1

15 pages, 2420 KiB  
Article
Performance Comparison of Multipixel Biaxial Scanning Direct Time-of-Flight Light Detection and Ranging Systems With and Without Imaging Optics
by Konstantin Albert, Manuel Ligges, Andre Henschke, Jennifer Ruskowski, Menaka De Zoysa, Susumu Noda and Anton Grabmaier
Sensors 2025, 25(10), 3229; https://doi.org/10.3390/s25103229 - 21 May 2025
Viewed by 542
Abstract
The laser pulse detection probability of a scanning direct time-of-flight light detection and ranging (LiDAR) measurement is evaluated based on the optical signal distribution on a multipixel single photon avalanche diode (SPAD) array. These detectors intrinsically suffer from dead-times after the successful detection [...] Read more.
The laser pulse detection probability of a scanning direct time-of-flight light detection and ranging (LiDAR) measurement is evaluated based on the optical signal distribution on a multipixel single photon avalanche diode (SPAD) array. These detectors intrinsically suffer from dead-times after the successful detection of a single photon and, thus, allow only for limited counting statistics when multiple returning laser photons are imaged on a single pixel. By blurring the imaged laser spot, the transition from single-pixel statistics with high signal intensity to multipixel statistics with less signal intensity is examined. Specifically, a comparison is made between the boundary cases in which (i) the returning LiDAR signal is focused through optics onto a single pixel and (ii) the detection is performed without lenses using all available pixels on the sensor matrix. The omission of imaging optics reduces the overall system size and minimizes optical transfer losses, which is crucial given the limited laser emission power due to safety standards. The investigation relies on a photon rate model for interfering (background) and signal light, applied to a simulated first-photon sensor architecture. For single-shot scenarios that reflect the optimal use of the time budget in scanning LiDAR systems, the lens-less and blurred approaches can achieve comparable or even superior results to the focusing system. This highlights the potential of fully solid-state scanning LiDAR systems utilizing optical phase arrays or multidirectional laser chips. Full article
(This article belongs to the Special Issue SPAD-Based Sensors and Techniques for Enhanced Sensing Applications)
Show Figures

Graphical abstract

20 pages, 2054 KiB  
Review
Solid-State Materials for Opto-Spintronics: Focus on Ferromagnets and 2D Materials
by Ana-Maria Florea (Raduta), Stefan Caramizoiu, Ana-Maria Iordache, Stefan-Marian Iordache and Bogdan Bita
Solids 2025, 6(2), 25; https://doi.org/10.3390/solids6020025 - 20 May 2025
Viewed by 2237
Abstract
Opto-spintronics is an emerging field that focuses on harnessing light to manipulate and analyze electron spins to develop next-generation electronic devices. This paper explores recent progress and the role of solid-state materials in opto-spintronics by focusing on key classes of materials, such as [...] Read more.
Opto-spintronics is an emerging field that focuses on harnessing light to manipulate and analyze electron spins to develop next-generation electronic devices. This paper explores recent progress and the role of solid-state materials in opto-spintronics by focusing on key classes of materials, such as ferromagnetic semiconductors, two-dimensional (2D) transition metal dichalcogenides (TMDCs), and topological insulators. It examines the unique properties of ferromagnetic and antiferromagnetic materials and their ability to interact with light to affect spin dynamics, offering potential for improved sensing and quantum computing. By combining opto-spintronics with solid-state systems, spintronic devices could become faster and more efficient, leading to new technological advancements and scalable technologies. Full article
Show Figures

Figure 1

13 pages, 3616 KiB  
Article
Synthesis, Structure, and Luminescence Properties of Zinc(II) Complex with a Spacer-Armed Tetradentate N2O2-Donor Schiff Base
by Alexey Gusev, Elena Braga, Kirill Mamontov, Mikhail Kiskin and Wolfgang Linert
Inorganics 2025, 13(5), 173; https://doi.org/10.3390/inorganics13050173 - 19 May 2025
Viewed by 648
Abstract
A zinc complex bearing a pyrazolone-based azomethine ligand has been synthesized for blue-emitting organic light-emitting diodes (OLEDs). The azomethine ligand H2L and the complex [ZnL·H2O] were characterized by IR, 1H NMR, XRD, and TGA/DSC techniques. According to a single-crystal [...] Read more.
A zinc complex bearing a pyrazolone-based azomethine ligand has been synthesized for blue-emitting organic light-emitting diodes (OLEDs). The azomethine ligand H2L and the complex [ZnL·H2O] were characterized by IR, 1H NMR, XRD, and TGA/DSC techniques. According to a single-crystal X-ray diffraction analysis, the complex [ZnL·H2O] has a molecular structure. Its solid-state PL maxima appear to be at 416 nm and emit moderate blue emission with a quantum yield (QY) of 2%, with a dehydrated form of the complex showing greater efficiency with a QY of 55.5%. ZnL-based electroluminescent devices for OLED applications were fabricated. The devices exhibit blue emission with brightness up to 5300 Cd/A. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

12 pages, 2540 KiB  
Article
Monolithic GaN-Based Dual-Quantum-Well LEDs with Size-Controlled Color-Tunable White-Light Emission
by Seung Hun Lee, Dabin Jeon, Gun-Woo Lee and Sung-Nam Lee
Materials 2025, 18(9), 2140; https://doi.org/10.3390/ma18092140 - 6 May 2025
Viewed by 473
Abstract
We report a monolithic GaN-based light-emitting diode (LED) platform capable of color-tunable white-light emission via LED size scaling. By varying the LED size from 800 µm to 50 µm, the injection current density was effectively controlled under constant driving current, enabling precise modulation [...] Read more.
We report a monolithic GaN-based light-emitting diode (LED) platform capable of color-tunable white-light emission via LED size scaling. By varying the LED size from 800 µm to 50 µm, the injection current density was effectively controlled under constant driving current, enabling precise modulation of carrier distribution within a dual-composition multi-quantum well (MQW) structure. The active layer consists of five lower In0.15Ga0.85N/GaN QWs for blue emission and strain induction, and an upper In0.3Ga0.7N/GaN single QW engineered for red-orange emission. The strain imposed by lower QWs promotes indium segregation in the last QW through spinodal decomposition, resulting in a broadened emission spanning from ~500 nm to 580 nm. High-resolution TEM and EDX analyses directly confirmed the indium segregation and phase-separated structure of the last QW. Spectral analysis revealed that larger devices exhibited dominant emission at 580 nm with a correlated color temperature (CCT) of 2536 K and a CIE coordinate of (0.501, 0.490). As LED size decreased, increased hole injection allowed recombination to occur in deeper QWs, resulting in a blueshift to 450 nm and a CCT of 9425 K with CIE (0.224, 0.218) in the 50 × 50 µm2 LED. This approach enables phosphor-free white-light generation with tunable color temperatures and chromaticities using a single wafer, offering a promising strategy for compact, adaptive solid-state lighting applications. Full article
(This article belongs to the Special Issue Advances in Nanophotonic Materials, Devices, and Applications)
Show Figures

Figure 1

21 pages, 1202 KiB  
Article
Exploiting Data Duplication to Reduce Data Migration in Garbage Collection Inside SSD
by Shiqiang Nie, Jie Niu, Chaoyun Yang, Peng Zhang, Qiong Yang, Dong Wang and Weiguo Wu
Electronics 2025, 14(9), 1873; https://doi.org/10.3390/electronics14091873 - 4 May 2025
Viewed by 697
Abstract
NAND flash memory has been widely adopted as the primary data storage medium in data centers. However, the inherent characteristic of out-of-place updates in NAND flash necessitates garbage collection (GC) operations on NAND flash-based solid-state drives (SSDs), aimed at reclaiming flash blocks occupied [...] Read more.
NAND flash memory has been widely adopted as the primary data storage medium in data centers. However, the inherent characteristic of out-of-place updates in NAND flash necessitates garbage collection (GC) operations on NAND flash-based solid-state drives (SSDs), aimed at reclaiming flash blocks occupied by invalid data. GC processes entail additional read and write operations, which can lead to the blocking of user requests, thereby increasing the tail latency. Moreover, frequent execution of GC operations is prone to induce more pages to be written, further reducing the lifetime of SSDs. In light of these challenges, we introduce an innovative GC scheme, termed SplitGC. This scheme leverages the records of data redundancy gathered during periodic read scrub operations within the SSD. By analyzing these features of data duplication, SplitGC enhances the selection strategy for the victim block. Furthermore, it bifurcates the migration of valid data pages into two phases: non-duplicate pages follow standard relocation procedures, whereas the movement of duplicate pages is scheduled during idle periods of the SSD. The experiment results show that our scheme reduces tail latency induced by GC by 8% to 83% at the 99.99th percentile and significantly decreases the amount of valid page migration by 38% to 67% compared with existing schemes. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

Back to TopTop