Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,573)

Search Parameters:
Keywords = Silicon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3652 KiB  
Article
Mechanical Loading of Barite Rocks: A Nanoscale Perspective
by Hassan Abubakar Adamu, Seun Isaiah Olajuyi, Abdulhakeem Bello, Peter Azikiwe Onwualu, Olumide Samuel Ogunmodimu Oluwaseun and David Oluwasegun Afolayan
Minerals 2025, 15(8), 779; https://doi.org/10.3390/min15080779 (registering DOI) - 24 Jul 2025
Abstract
Barite, a mineral composed of barium sulphate, holds global significance due to its wide range of industrial applications. It plays a crucial role as a weighting agent in drilling fluids for the oil and gas industry, in radiation shielding, and as a filler [...] Read more.
Barite, a mineral composed of barium sulphate, holds global significance due to its wide range of industrial applications. It plays a crucial role as a weighting agent in drilling fluids for the oil and gas industry, in radiation shielding, and as a filler in paints and plastics. Although there are significant deposits of the mineral in commercial quantities in Nigeria, the use of barite of Nigerian origin has been low in the industry due to challenges that require further research and development. This research employed nanoindentation experiments using a model Ti950 Tribo indenter instrument equipped with a diamond Berkovich tip. Using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), we gained information about the structure and elements in the samples. The load–displacement curves were examined to determine the hardness and reduced elastic modulus of the barite samples. The SEM images showed that barite grains have a typical grainy shape, with clear splitting lines and sizes. XRD and EDX analysis confirmed that the main components are chlorite, albite, barium, and oxygen, along with small impurities like silicon and calcium from quartz and calcite. The average hardness of the IB3 and IB4 samples was 1.88 GPa and 1.18 GPa, respectively, meaning that the IB3 sample will need more energy to crush because its hardness is within the usual barite hardness range of 1.7 GPa to 2.0 GPa. The findings suggest further beneficiation processes to enhance the material’s suitability for drilling and other applications. Full article
Show Figures

Figure 1

17 pages, 13106 KiB  
Article
Evaluating the Accuracy and Repeatability of Mobile 3D Imaging Applications for Breast Phantom Reconstruction
by Elena Botti, Bart Jansen, Felipe Ballen-Moreno, Ayush Kapila and Redona Brahimetaj
Sensors 2025, 25(15), 4596; https://doi.org/10.3390/s25154596 - 24 Jul 2025
Abstract
Three-dimensional imaging technologies are increasingly used in breast reconstructive and plastic surgery due to their potential for efficient and accurate preoperative assessment and planning. This study systematically evaluates the accuracy and consistency of six commercially available 3D scanning applications (apps)—Structure Sensor, 3D Scanner [...] Read more.
Three-dimensional imaging technologies are increasingly used in breast reconstructive and plastic surgery due to their potential for efficient and accurate preoperative assessment and planning. This study systematically evaluates the accuracy and consistency of six commercially available 3D scanning applications (apps)—Structure Sensor, 3D Scanner App, Heges, Polycam, SureScan, and Kiri—in reconstructing the female torso. To avoid variability introduced by human subjects, a silicone breast mannequin model was scanned, with fiducial markers placed at known anatomical landmarks. Manual distance measurements were obtained using calipers by two independent evaluators and compared to digital measurements extracted from 3D reconstructions in Blender software. Each scan was repeated six times per application to ensure reliability. SureScan demonstrated the lowest mean error (2.9 mm), followed by Structure Sensor (3.0 mm), Heges (3.6 mm), 3D Scanner App (4.4 mm), Kiri (5.0 mm), and Polycam (21.4 mm), which showed the highest error and variability. Even the app using an external depth sensor (Structure Sensor) showed no statistically significant accuracy advantage over those using only the iPad’s built-in camera (except for Polycam), underscoring that software is the primary driver of performance, not hardware (alone). This work provides practical insights for selecting mobile 3D scanning tools in clinical workflows and highlights key limitations, such as scaling errors and alignment artifacts. Future work should include patient-based validation and explore deep learning to enhance reconstruction quality. Ultimately, this study lays the foundation for more accessible and cost-effective 3D imaging in surgical practice, showing that smartphone-based tools can produce clinically useful scans. Full article
(This article belongs to the Special Issue Biomedical Imaging, Sensing and Signal Processing)
10 pages, 2418 KiB  
Article
Research on the Efficient Desilication Process of Low-Grade Bauxite in Guangxi
by Guoxian Hu, Anmin Li, An Xia, Dongjie Zhang, Liwen Pan, Xiaolian Zhao and Xingzhi Pang
Crystals 2025, 15(8), 675; https://doi.org/10.3390/cryst15080675 - 24 Jul 2025
Abstract
With the continuous exploitation of bauxite mineral resources, Guangxi bauxite faces many difficulties in alumina production due to its characteristics of high silicon content, high iron content, and a low Al-Si ratio. In view of this, this study is closely related to the [...] Read more.
With the continuous exploitation of bauxite mineral resources, Guangxi bauxite faces many difficulties in alumina production due to its characteristics of high silicon content, high iron content, and a low Al-Si ratio. In view of this, this study is closely related to the key link of bauxite pre-desiliconization and strives to break free from the status quo to improve the aluminum/silicon ratio and help optimize the subsequent alumina-refining process. In the work presented in this paper, the unique mineralogy of Guangxi bauxite was comprehensively considered, covering its complex mineral composition and fine distribution characteristics. The barium hydroxide pre-desilication technology was first used for in-depth experimental exploration, and the silicon removal efficiency under different working conditions was systematically compared. The system compared the silicon removal effect and the associated aluminum loss under different working conditions. The results of this study will lay a solid foundation for the rational and efficient development of bauxite in Guangxi, which is expected to reduce the cost of alumina production, improve the economic benefits for the Guangxi aluminum industry, simultaneously strengthen the efficiency of resource recycling, accelerate the sustainable development of the industry, and provide a useful reference example for subsequent similar studies. Full article
25 pages, 12687 KiB  
Article
High-Performance All-Optical Logic Gates Based on Silicon Racetrack and Microring Resonators
by Amer Kotb, Zhiyang Wang and Kyriakos E. Zoiros
Electronics 2025, 14(15), 2961; https://doi.org/10.3390/electronics14152961 - 24 Jul 2025
Abstract
We propose a high-speed all-optical logic gate design based on silicon racetrack and ring resonators patterned on a silica substrate. The architecture features racetrack resonators at both the input and output, with a central ring resonator enabling the required phase-sensitive interference for logic [...] Read more.
We propose a high-speed all-optical logic gate design based on silicon racetrack and ring resonators patterned on a silica substrate. The architecture features racetrack resonators at both the input and output, with a central ring resonator enabling the required phase-sensitive interference for logic processing. Logic operations are achieved through the interplay of constructive and destructive interference induced by phase-shifted input beams. Using the finite-difference time-domain (FDTD) method in Lumerical software, we simulate and demonstrate seven fundamental Boolean logic functions, namely XOR, AND, OR, NOT, NOR, NAND, and XNOR, at an operating wavelength of 1.33 µm. The system supports a data rate of 47.94 Gb/s, suitable for ultrafast optical computing. The performance is quantitatively evaluated using the contrast ratio (CR) as the reference metric, with more than acceptable values of 13.09 dB (XOR), 13.84 dB (AND), 13.14 dB (OR), 13.80 dB (NOT), 14.53 dB (NOR), 13.80 dB (NAND), and 14.67 dB (XNOR), confirming strong logic level discrimination. Comparative analysis with existing optical gate designs underscores the advantages of our compact silicon-on-silica structure in terms of speed, CR performance, and integration potential. This study validates the effectiveness of racetrack–ring configurations for next-generation all-optical logic circuits. Full article
18 pages, 7054 KiB  
Article
Failure Analysis and Optimized Simulation Design of Silicon Micromechanical Resonant Accelerometers
by Jingchen Wang, Heng Liu and Zhi Li
Sensors 2025, 25(15), 4583; https://doi.org/10.3390/s25154583 - 24 Jul 2025
Abstract
To develop solutions to the frequency instability and failure of silicon micromechanical resonant accelerometers, the state characteristics of micromechanical resonant accelerometers are investigated under temperature and vibration stresses. Through theoretical analysis and finite element simulation, the following is found: the Young’s modulus of [...] Read more.
To develop solutions to the frequency instability and failure of silicon micromechanical resonant accelerometers, the state characteristics of micromechanical resonant accelerometers are investigated under temperature and vibration stresses. Through theoretical analysis and finite element simulation, the following is found: the Young’s modulus of silicon varies with temperature, causing a resonance frequency shift of −1.364 Hz/°C; the residual stress of temperature change affects the resonance frequency shift of the microstructure, causing it to be 5.43 Hz/MPa (tensile stress) and −5.25 Hz/MPa (compressive stress); thermal expansion triggers the failure of the bonding wire, and, in the range of 10 °C to 150 °C, the peak stress of the electrode/lead bond area increases from 83.2/85.6 MPa to 1.08/1.28 GPa. The failure mode under vibration stress is resonance structure fracture and interlayer peeling. An isolation frame design is proposed for the sensitive part of the microstructure, which reduces the frequency effects by 34% (tensile stress) and 15% (compressive stress) under temperature-variable residual stresses and the maximum value of the structural root mean square stresses by 69.7% (X-direction), 63.6% (Y-direction), and 71.3% (Z-direction) under vibrational stresses. Full article
(This article belongs to the Section Physical Sensors)
20 pages, 2675 KiB  
Article
Mechanistic Insights into Brine Domain Assembly Regulated by Natural Potential Field: A Molecular Dynamics Exploration in Porous Media
by Xiaoman Leng, Yajun Wang, Yueying Wang, Zhixue Sun, Shuangyan Kou, Ruidong Wu, Yifan Xu and Yufeng Jiang
Processes 2025, 13(8), 2355; https://doi.org/10.3390/pr13082355 - 24 Jul 2025
Abstract
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of [...] Read more.
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of the electric field on cluster aggregation. It was found that the critical electric field intensity was 7 V/m. When the electric field intensity was lower than this value, the aggregation rate was only increased by 0.73 times due to thermal motion; when it was higher than this value, the rate increased sharply by 3.2 times due to the dominant effect of electric field force. The microscopic structure analysis indicated that the strong electric field induced the transformation of clusters from fractal structure into an amorphous structure (the index of the order degree increased by 58%). The directional regulation experiments confirmed that the axial electric field led to anisotropic growth (the index of uniformity increased by 0.58 ± 0.04), and the rotational electric field could achieve a three-dimensional uniform distribution (the index of uniformity increased by 42%). This study provides theoretical support for the regulation of brine behavior and the optimization of geological energy storage. Full article
(This article belongs to the Section Energy Systems)
23 pages, 16399 KiB  
Article
Design and Implementation of a Full SiC-Based Phase-Shifted Full-Bridge DC-DC Converter with Nanocrystalline-Cored Magnetics for Railway Battery Charging Applications
by Fatih Enes Gocen, Salih Baris Ozturk, Mehmet Hakan Aksit, Gurkan Dugan, Benay Cakmak and Caner Demir
Energies 2025, 18(15), 3945; https://doi.org/10.3390/en18153945 - 24 Jul 2025
Abstract
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary [...] Read more.
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary side, resulting in significant efficiency improvements due to the superior switching characteristics and high-temperature tolerance inherent in SiC devices. A nanocrystalline-cored center-tapped transformer is optimized to minimize voltage stress on the rectifier diodes. Additionally, the use of a nanocrystalline core provides high saturation flux density, low core loss, and excellent permeability, particularly at high frequencies, which significantly enhances system efficiency. The converter also compensates for temperature fluctuations during operation, enabling a wide and adjustable output voltage range according to the temperature differences. A prototype of the 10-kW, 50-kHz PSFB converter, operating with an input voltage range of 700–750 V and output voltage of 77–138 V, was developed and tested both through simulations and experimentally. The converter achieved a maximum efficiency of 97% and demonstrated a high power density of 2.23 kW/L, thereby validating the effectiveness of the proposed design for railway battery charging applications. Full article
(This article belongs to the Special Issue Advancements in Electromagnetic Technology for Electrical Engineering)
Show Figures

Figure 1

14 pages, 3769 KiB  
Article
Inversely Designed Silicon Nitride Power Splitters with Arbitrary Power Ratios
by Yang Cong, Shuo Liu, Yanfeng Liang, Haoyu Wang, Huanlin Lv, Fangxu Liu, Xuanchen Li and Qingxiao Guo
Photonics 2025, 12(8), 744; https://doi.org/10.3390/photonics12080744 - 24 Jul 2025
Abstract
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The [...] Read more.
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The devices are designed with ultra-compact dimensions using three-dimensional finite-difference time-domain (3D FDTD) analysis and an inverse design algorithm. Within a 50 nm bandwidth (1525 nm to 1575 nm), we demonstrated a 1 × 2 OPS with splitting ratios of 1:1, 1:1.5, and 1:2; a 1 × 3 OPS with ratios of 1:2:1 and 2:1:2; and a 1 × 4 OPS with ratios of 1:1:1:1 and 2:1:2:1. The target splitting ratios are achieved by optimizing pixel distributions in the coupling region. The dimensions of the designed devices are 1.96 × 1.96 µm2, 2.8 × 2.8 µm2, and 2.8 × 4.2 µm2, respectively. The designed devices achieve transmission efficiencies exceeding 90% and exhibit excellent power splitting ratios (PSRs). Full article
Show Figures

Figure 1

19 pages, 2238 KiB  
Article
Productivity, Biodiversity and Forage Value of Meadow Sward Depending on Management Intensity and Silicon Application
by Barbara Borawska-Jarmułowicz and Grażyna Mastalerczuk
Sustainability 2025, 17(15), 6717; https://doi.org/10.3390/su17156717 - 24 Jul 2025
Abstract
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and [...] Read more.
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and legumes were sown. During the next three years, the sward was fertilized and cut 3-times per year, and then, for five years, was mown twice a year, without fertilization. On the sward formed at that time, in 2023, an experiment was established to evaluate how management intensity (2- or 3-cuts and rate of fertilizer) and silicon application (Si or 0Si) affect botanical composition, yield, and nutrient content in perennial meadow swards under variable precipitation over two years. Species richness rose in the sward in the second year, especially under 3-cut management (from 15 to 21 species). The share of species sown earlier in the mixtures Dactylis glomerata, Festulolium braunii, and Medicago x varia was very high at both management intensities (66–87% DM). Yield and the content of crude protein and nutrients were higher in the 3-cut system in the second and third regrowths. Silicon supplementation increased plant diversity and yield resilience during drought, with more intensive management supporting sustainable forage production. Moreover, the sward contained more nutrients with 3-cuttings in the second and third regrowths. These findings indicate that intensive meadow management and silicon application enhance productivity, forage value, and biodiversity, providing valuable insights for sustainable meadow management strategies. Full article
Show Figures

Figure 1

18 pages, 4119 KiB  
Article
Structural Mechanics Calculations of SiC/Mo-Re Composites with Improved High Temperature Creep Properties
by Ke Li, Egor Kashkarov, Hailiang Ma, Ping Fan, Qiaoli Zhang, Andrey Lider and Daqing Yuan
Materials 2025, 18(15), 3459; https://doi.org/10.3390/ma18153459 - 23 Jul 2025
Abstract
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is [...] Read more.
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is investigated by finite element simulation based on scale separation. The results of the study showed that the incorporation of gradient transition layers between the metallic and ceramic phases effectively mitigates thermally induced local stresses arising from mismatches in coefficients of thermal expansion. By optimizing the composition of the gradient transition layers, the stress distribution within the composite under operating conditions has been adjusted. As a result, the stress experienced by the alloy phase is significantly reduced, potentially extending the high-temperature creep rupture life. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

21 pages, 1612 KiB  
Review
Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review
by Kamogelo Katlego Motshumi, Awonke Mbangi, Elmarie Van Der Watt and Zenzile Peter Khetsha
Agriculture 2025, 15(15), 1582; https://doi.org/10.3390/agriculture15151582 - 23 Jul 2025
Abstract
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted [...] Read more.
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted water and soil, focusing on enhancing phytoremediation efficiency through the use of silicon-based biostimulant treatments. Mustard spinach is known for its capacity to accumulate and tolerate high levels of toxic metals, such as Pb, Cd, and Hg, owing to its strong physiological and biochemical defense mechanisms, including metal chelation, antioxidant activity, and osmotic adjustment. However, phytoremediation potential is often constrained by the negative impact of heavy metal stress on plant growth. Recent studies have shown that silicon-based biostimulants can alleviate metal toxicity by reducing metal bioavailability, increasing metal immobilization, and improving the antioxidative capacity and growth of plants. Combining silicon amendments with mustard spinach cultivation is a promising, eco-friendly approach to the remediation of mining-impacted soils and waters, potentially restoring agricultural productivity and reducing health risks to the resident populations. This review elucidates the multifaceted mechanisms by which silicon-enhanced phytoremediation operates, including soil chemistry modification, metal sequestration, antioxidant defense, and physiological resilience, while highlighting the practical, field-applicable benefits of this combined approach. Furthermore, it identifies urgent research priorities, such as field validation and the optimization of silicon application methods. Full article
(This article belongs to the Special Issue The Role of Silicon in Improving Crop Growth Under Abiotic Stress)
Show Figures

Figure 1

18 pages, 2288 KiB  
Article
Defect Studies in Thin-Film SiO2 of a Metal-Oxide-Silicon Capacitor Using Drift-Assisted Positron Annihilation Lifetime Spectroscopy
by Ricardo Helm, Werner Egger, Catherine Corbel, Peter Sperr, Maik Butterling, Andreas Wagner, Maciej Oskar Liedke, Johannes Mitteneder, Michael Mayerhofer, Kangho Lee, Georg S. Duesberg, Günther Dollinger and Marcel Dickmann
Nanomaterials 2025, 15(15), 1142; https://doi.org/10.3390/nano15151142 - 23 Jul 2025
Abstract
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, [...] Read more.
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, electric fields up to 1.72MV/cm were applied. The measurements reveal a field-dependent suppression of positronium (Ps) formation by up to 64%, leading to an enhancement of free positron annihilation. The increase in free positrons suggests that vacancy clusters are the dominant defect type in the oxide layer. Additionally, drift towards the SiO2/Si interface reveals not only larger void-like defects but also a distinct population of smaller traps that are less prominent when drifting to the Al/SiO2 interface. In total, by combining positron drift with PALS, more detailed insights into the nature and spatial distribution of defects within the SiO2 network and in particular near the SiO2/Si interface are obtained. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

15 pages, 2886 KiB  
Article
Electrical Characteristics of Mesh-Type Floating Gate Transistors for High-Performance Synaptic Device Applications
by Soyeon Jeong, Jaemin Kim, Hyeongjin Chae, Taehwan Koo, Juyeong Chae and Moongyu Jang
Appl. Sci. 2025, 15(15), 8174; https://doi.org/10.3390/app15158174 - 23 Jul 2025
Abstract
Nanoparticle floating gate (NPFG) transistors have gained attention as synaptic devices due to their discrete charge storage capability, which minimizes leakage currents and enhances the memory window. In this study, we propose and evaluate a mesh-type floating gate transistor (Mesh-FGT) designed to emulate [...] Read more.
Nanoparticle floating gate (NPFG) transistors have gained attention as synaptic devices due to their discrete charge storage capability, which minimizes leakage currents and enhances the memory window. In this study, we propose and evaluate a mesh-type floating gate transistor (Mesh-FGT) designed to emulate the characteristics of NPFG transistors. Individual floating gates with dimensions of 3 µm × 3 µm are arranged in an array configuration to form the floating gate structure. The Mesh-FGT is composed of an Al/Pt/Cr/HfO2/Pt/Cr/HfO2/SiO2/SOI (silicon-on-insulator) stack. Threshold voltages (Vth) extracted from the transfer and output curves followed Gaussian distributions with means of 0.063 V (σ = 0.100 V) and 1.810 V (σ = 0.190 V) for the erase (ERS) and program (PGM) states, respectively. Synaptic potentiation and depression were successfully demonstrated in a multi-level implementation by varying the drain current (Ids) and Vth. The Mesh-FGT exhibited high immunity to leakage current, excellent repeatability and retention, and a stable memory window that initially measured 2.4 V. These findings underscore the potential of the Mesh-FGT as a high-performance neuromorphic device, with promising applications in array device architectures and neuromorphic neural network implementations. Full article
Show Figures

Figure 1

18 pages, 5469 KiB  
Article
Site Application of Thermally Conductive Concrete Pavement: A Comparison of Its Thermal Effectiveness with Normal Concrete Pavement
by Joo-Young Kim and Jae-Suk Ryou
Materials 2025, 18(15), 3444; https://doi.org/10.3390/ma18153444 - 23 Jul 2025
Abstract
In this study, the thermal effectiveness of thermally conductive concrete pavements (TCPs) using silicon carbide (SiC) as a fine aggregate replacement was investigated, compared with that of ordinary Portland cement pavements (OPCPs). The most important purpose of this study is to improve the [...] Read more.
In this study, the thermal effectiveness of thermally conductive concrete pavements (TCPs) using silicon carbide (SiC) as a fine aggregate replacement was investigated, compared with that of ordinary Portland cement pavements (OPCPs). The most important purpose of this study is to improve the thermal performance of concrete pavement. Additionally, this study utilized improved thermal properties to enhance the efficiency of pavement heating to prevent icing and snow stacking. Both mixtures met the Korean standards for air content (4.5–6%) and slump (80–150 mm), demonstrating adequate workability. TCP exhibited a higher mechanical performance, with average compressive and flexural strengths of 42.88 MPa and 7.35 MPa, respectively, exceeding the required targets of a 30 MPa compressive strength and a 4.5 MPa flexural strength. The improved strength was mainly attributed to the filler effect and partly due to the van der Waals interactions of the SiC particles. Thermal conductivity tests showed a significant improvement in the TCP (3.20 W/mK), which was approximately twice that of OPCP (1.59 W/mK), indicating an enhanced heat transfer efficiency. In winter field tests, TCP effectively maintained high surface temperatures, overcoming heat loss and outperforming the OPCP. In the site experiment, thermal efficiency was clearly shown in the temperature at the center of the TCP, which was 3.5 °C higher than at the center of the OPCP at the coldest time. These improvements suggest that SiC-reinforced concrete pavements can be practically utilized for effective snow removal and ice mitigation in road systems. Full article
Show Figures

Figure 1

Back to TopTop