Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (401)

Search Parameters:
Keywords = SiO2 shell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4761 KB  
Article
High-Performance CoxNiy@NC/SiO2 Catalysts Derived from ZIF-67 for Enhanced Hydrogenation of 1-Nitronaphthalene
by Xuedong Lan, Ming Zhong, Weidi Dai and Pingle Liu
Catalysts 2026, 16(1), 93; https://doi.org/10.3390/catal16010093 - 16 Jan 2026
Viewed by 181
Abstract
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni [...] Read more.
A series of silica-supported, nitrogen-doped carbon-encapsulated cobalt–nickel alloy catalysts (CoxNiy@NC/SiO2) was successfully synthesized and systematically evaluated for the liquid-phase hydrogenation of 1-nitronaphthalene to 1-naphthylamine. Physicochemical characterization confirmed that the incorporation of nickel promotes the formation of Co–Ni alloys and modulates the electronic structure of the catalysts. The catalytic performance was found to be highly sensitive to the Co/Ni ratio, with Co2Ni1@NC/SiO2 exhibiting the most outstanding activity. Under optimized reaction conditions (90 °C, 0.6 MPa H2, 5.5 h), both the conversion of 1-nitronaphthalene and the selectivity toward 1-naphthylamine reached approximately 99%. The catalyst also demonstrated excellent stability and recyclability, attributed to the protective nitrogen-doped carbon shell and the synergistic interaction between the Co–Ni alloy and M–Nx active sites. This work provides a new strategy for designing efficient and robust non-noble-metal catalysts for hydrogenation reactions. Full article
(This article belongs to the Special Issue Catalysis and Sustainable Green Chemistry)
Show Figures

Graphical abstract

17 pages, 4657 KB  
Article
Study on the Immobilization of Horseradish Peroxidase on a Multi-Level Composite Carrier SiO2@MnO2@MAF-7
by Mengjie Huang, Baihui Zhang, Xiangyu Jiang, Maojie Jiang, Peng Yin, Xuan Fang, Yanna Lin and Fuqiang Ma
Materials 2026, 19(2), 254; https://doi.org/10.3390/ma19020254 - 8 Jan 2026
Viewed by 199
Abstract
This study addresses the issues of poor stability and difficulty in recovery of free horseradish peroxidase (HRP) by developing a multi-level composite immobilized carrier that combines high loading capacity with long-term stability. The SiO2@MnO2@MAF-7 core–shell structured carrier was prepared [...] Read more.
This study addresses the issues of poor stability and difficulty in recovery of free horseradish peroxidase (HRP) by developing a multi-level composite immobilized carrier that combines high loading capacity with long-term stability. The SiO2@MnO2@MAF-7 core–shell structured carrier was prepared via a solvothermal self-assembly method. Three immobilization strategies—adsorption, covalent cross-linking, and encapsulation—were systematically compared for their immobilization efficacy on HRP. The material structure was analyzed using techniques such as specific surface area analysis (BET), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) to characterize the material structure. Enzyme kinetic parameter determination experiments were conducted to systematically evaluate the performance advantages of the immobilized enzyme. BET analysis showed that SiO2@MnO2@MAF-7 had a specific surface area of 251.99 m2/g and a mesoporous area of 12.47 nm, and its HRP loading was 50.37 U/mg (immobilization efficiency 85.03%). Compared with free HRP, the Km value of the immobilized enzyme was decreased by 42%, the activity retention rate was increased by 35–50% at 80 °C and pH 4–9, and the activity was maintained by 65% after five repeated uses. In this study, MAF-7 was combined with MnO2/SiO2 for HRP immobilization for the first time, and the triple effect of rigid support-catalytic synergy-confined protection synergistically improved the stability of the enzyme, providing a new strategy for the industrial application of oxidoreductases. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 2749 KB  
Article
Biochar Silicon Content Divergently Regulates N2O Emissions and Cadmium Availability in Acidic Soils
by Xintong Xu, Xixian Xie, Hongyuan Huang, Yadi Yu, Xiaoqin Lai and Ling Zhang
Agronomy 2026, 16(1), 75; https://doi.org/10.3390/agronomy16010075 - 26 Dec 2025
Viewed by 244
Abstract
Acidic agricultural soils are frequently challenged by co-occurring heavy metal contamination and greenhouse gas (GHG) emissions. While biochar is widely used for integrated remediation, the specific role of silicon (Si) in modulating its effectiveness in cadmium (Cd) stabilization and nitrous oxide (N2 [...] Read more.
Acidic agricultural soils are frequently challenged by co-occurring heavy metal contamination and greenhouse gas (GHG) emissions. While biochar is widely used for integrated remediation, the specific role of silicon (Si) in modulating its effectiveness in cadmium (Cd) stabilization and nitrous oxide (N2O) mitigation remains insufficiently understood. This study evaluated the co-remediation efficacy of two types of high-Si (bamboo leaves, ML; rice straw, RS) and two types of low-Si (Camellia oleifera leaves, CL; Camellia oleifera shells, CS) biochar, produced at 450 °C, within a Cd-contaminated and nitrogen-fertilized acidic soil. Results from a 90-day incubation showed that while all biochar effectively immobilized Cd, the low-Si CL biochar exhibited a superior stabilization efficiency of 66.2%. This enhanced performance was attributed to its higher soil organic carbon (SOC) and moderate dissolved organic carbon (DOC) release, which facilitated robust Cd2+ sorption and complexation. In contrast, high-Si biochar was more effective in mitigating cumulative N2O emissions (up to 67.8%). This mitigation was strongly associated with an elevated abundance of the nosZ gene (up to 48.1%), which catalyzes the terminal step of denitrification. Soil pH and DOC were identified as pivotal drivers regulating both Cd bioavailability and N2O dynamics. Collectively, low-Si biochar is preferable for Cd stabilization in acidic soils, whereas high-Si biochar is more effective at elevating pH and reducing N2O emissions. These findings emphasize that optimizing co-remediation outcomes necessitates a targeted approach, selecting biochar based on the specific contamination profile and desired environmental benefits. Full article
Show Figures

Graphical abstract

18 pages, 2584 KB  
Article
Upconversion Nanoparticles with Mesoporous Silica Coatings for Doxorubicin Targeted Delivery to Melanoma Cells
by Párástu Oskoei, Rúben Afonso, Verónica Bastos, João Nogueira, Lisa-Marie Keller, Elina Andresen, Maysoon I. Saleh, Bastian Rühle, Ute Resch-Genger, Ana L. Daniel-da-Silva and Helena Oliveira
Molecules 2026, 31(1), 74; https://doi.org/10.3390/molecules31010074 - 24 Dec 2025
Viewed by 609
Abstract
Melanoma is one of the most aggressive skin cancers and requires innovative therapeutic strategies to overcome the limitations of conventional therapies. In this work, upconversion nanoparticles coated with mesoporous silica and functionalized with folic acid (UCNP@mSiO2-FA) were developed as a targeted [...] Read more.
Melanoma is one of the most aggressive skin cancers and requires innovative therapeutic strategies to overcome the limitations of conventional therapies. In this work, upconversion nanoparticles coated with mesoporous silica and functionalized with folic acid (UCNP@mSiO2-FA) were developed as a targeted nanocarrier system for the delivery of doxorubicin (DOX). The UCNPs were synthesized via thermal decomposition, coated with mesoporous silica shells, and functionalized with folic acid (FA) to enable receptor-mediated targeting. DOX was then loaded into the mesoporous silica coating by adsorption, yielding UCNP@mSiO2-FA-DOX. The different UCNPs were characterized for size, composition, colloidal stability, and loading and release of DOX. This comprehensive physicochemical characterization confirmed a high DOX loading efficiency and a slightly increased drug release under acidic conditions, mimicking the tumour microenvironment. In vitro assays using four melanoma cell lines (A375, B16-F10, MNT-1, and SK-MEL-28) revealed an excellent biocompatibility of UCNP@mSiO2-FA and a significantly higher cytotoxicity of UCNP@mSiO2-FA-DOX compared to unloaded UCNPs, in a dose-dependent manner. Cell cycle analysis demonstrated G2/M phase arrest after treatment with UCNP@mSiO2-FA-DOX, confirming its antiproliferative effect. Overall, UCNP@mSiO2-FA-DOX represents a promising nanoplatform for targeted melanoma therapy, combining active tumour targeting and enhanced anticancer efficacy. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

12 pages, 2333 KB  
Article
Gas-Phase Modification as Key Process in Design of New Generation of Gd2O3-Based Contrast Agents for Computed Tomography
by Anton V. Kupriyanov, Igor Y. Kaplin, Evgeniya V. Suslova, Denis A. Shashurin, Alexei V. Shumyantsev, Dmitry N. Stolbov, Serguei V. Savilov and Georgy A. Chelkov
Surfaces 2026, 9(1), 1; https://doi.org/10.3390/surfaces9010001 - 22 Dec 2025
Viewed by 178
Abstract
In the present study, thin-layered core–shell Gd2O3@SiO1.5R (R is C3H6NH2) structures were synthesized by gas-phase surface modification of a Gd2O3 core with a 3-aminopropyltriethoxysilane (APTES) shell for the [...] Read more.
In the present study, thin-layered core–shell Gd2O3@SiO1.5R (R is C3H6NH2) structures were synthesized by gas-phase surface modification of a Gd2O3 core with a 3-aminopropyltriethoxysilane (APTES) shell for the first time. The proposed method consists of two consecutive steps carried out in a fixed-bed reactor. The first step involves APTES adsorption on the Gd2O3 surface, followed by APTES hydrolysis by water vapor. The organosyloxane shell formation was confirmed by transmission and scanning electron microscopy, IR spectroscopy, and thermogravimetric data. X-ray attenuation coefficients of Gd2O3 and Gd2O3@SiO1.5R samples were determined by photon-counting computed tomography in a phantom study. The SiO1.5R shells in the synthesized Gd2O3@SiO1.5R samples had minimal thickness and did not affect the attenuation coefficients of Gd2O3. Full article
Show Figures

Graphical abstract

31 pages, 22151 KB  
Article
Calcium-Enriched Magnetic Core–Shell Mesoporous Nanoparticles for Potential Application in Bone Regeneration
by Despoina Kordonidou, Georgia K. Pouroutzidou, Nikoletta Florini, Ioannis Tsamesidis, Konstantina Kazeli, Dimitrios Gkiliopoulos, George Vourlias, Makis Angelakeris, Philomela Komninou, Panos Patsalas and Eleana Kontonasaki
Nanomaterials 2025, 15(24), 1904; https://doi.org/10.3390/nano15241904 - 18 Dec 2025
Viewed by 581
Abstract
Magnetite (Fe3O4) nanoparticles are biocompatible, non-toxic, and easily functionalized. Coating them with mesoporous silica (mSiO2) offers high surface area, pore volume, and tunable surface chemistry for drug loading. In this study, Fe3O4 magnetic nanoparticles [...] Read more.
Magnetite (Fe3O4) nanoparticles are biocompatible, non-toxic, and easily functionalized. Coating them with mesoporous silica (mSiO2) offers high surface area, pore volume, and tunable surface chemistry for drug loading. In this study, Fe3O4 magnetic nanoparticles were synthesized and coated with mSiO2 shells enriched with calcium ions (Ca2+), aiming to enhance bioactivity for bone regeneration and tissue engineering. Different synthesis routes were tested to optimize shell formation Their characterization confirmed the presence of a crystalline Fe3O4 core with partial conversion to maghemite (Fe2O3) post-coating. The silica shell was mostly amorphous and the optimized samples exhibited mesoporous structure (type IVb). Calcium incorporation slightly altered the magnetic properties without significantly affecting core crystallinity or particle size (11.68–13.56 nm). VSM analysis displayed symmetric hysteresis loops and decreased saturation magnetization after coating and Ca2+ addition. TEM showed spherical morphology with some agglomeration. MTT assays confirmed overall non-toxicity, except for mild cytotoxicity at high concentrations in the Ca2+-enriched sample synthesized by a modified Stöber method. Their capacity to induce human periodontal ligament cell osteogenic differentiation, further supports the potential of Fe3O4/mSiO2/Ca2+ core–shell nanoparticles as promising candidates for bone-related biomedical applications due to their favorable magnetic, structural, and biological properties. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

11 pages, 2283 KB  
Article
Multimodal Magnetic Nanoparticle–Quantum Dot Composites
by Kareem Ouhalla Knipschild, Vera Kuznetsova, Aoife Kavanagh, Finn Huonder, Caroline O’Sullivan, Amy Clayton, Yaroslav Kryuchkov, Lorenzo Branzi and Yurii K. Gun’ko
Nanomaterials 2025, 15(24), 1853; https://doi.org/10.3390/nano15241853 - 10 Dec 2025
Viewed by 433
Abstract
Multimodal nanocomposites that combine optical and magnetic functionalities are of great interest for applications such as imaging and temperature sensing. Ternary CuInS2 (CIS)-based quantum dots (QDs) offer low toxicity, strong near-infrared (NIR) emission, and high photostability, making them promising for optical nanothermometry [...] Read more.
Multimodal nanocomposites that combine optical and magnetic functionalities are of great interest for applications such as imaging and temperature sensing. Ternary CuInS2 (CIS)-based quantum dots (QDs) offer low toxicity, strong near-infrared (NIR) emission, and high photostability, making them promising for optical nanothermometry and imaging. In this study, CIS QDs were synthesized using an aqueous cysteine-mediated approach. Manganese ferrite (MnFe2O4) nanoparticles were prepared as the magnetic component due to their non-toxicity and superparamagnetic properties. To integrate both functionalities, QDs and magnetic nanoparticles (MNPs) were encapsulated in silica and then combined to form multimodal CIS/MnFe2O4/SiO2 nanocomposites. The structure and morphology of the materials were characterized by TEM and XRD, while their optical properties were examined using UV–Vis, photoluminescence (PL) spectroscopy. This design ensured optical isolation, preventing fluorescence quenching while maintaining colloidal stability. The obtained composites exhibited PL in the NIR region and a thermosensitivity of 2.04%/°C. TEM analysis confirmed uniform silica shell formation and successful integration of both components within the composite. The materials also retained the superparamagnetic behavior of MnFe2O4, making them suitable for combined optical and magnetic functionalities. These results demonstrate the potential of CIS/MnFe2O4/SiO2 nanocomposites as multifunctional platforms for optical imaging, temperature monitoring, and magnetically modulated effects. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

13 pages, 15558 KB  
Article
A Bacteria Sol–Gel Template Approach to Form Palladium Core–Shell Catalysts for Suzuki–Miyaura Reactions
by Vitaliy N. Soromotin, Pavel V. Rybochkin, Violetta A. Pertseva and Olga A. Kamanina
Chemistry 2025, 7(6), 188; https://doi.org/10.3390/chemistry7060188 - 25 Nov 2025
Viewed by 433
Abstract
This study presents a sustainable and efficient method for fabricating core–shell structured palladium catalysts using a bacterial template and sol–gel synthesis. This synthesis aligns with green chemistry principles by minimizing waste and enhancing resource efficiency. Our results demonstrate that the bacterial template effectively [...] Read more.
This study presents a sustainable and efficient method for fabricating core–shell structured palladium catalysts using a bacterial template and sol–gel synthesis. This synthesis aligns with green chemistry principles by minimizing waste and enhancing resource efficiency. Our results demonstrate that the bacterial template effectively stabilizes Pd nanoparticles (NPs), preventing significant agglomeration during synthesis and subsequent calcination under different atmospheres and final temperatures. The catalyst samples were characterized by SEM, TEM, XRD, and TGA. The 1 wt% Pd/R@SiO2 catalyst exhibited high activity in the Suzuki–Miyaura cross-coupling reaction, achieving competitive yields. Furthermore, the catalyst demonstrated a stable performance over five consecutive cycles. This work underscores the potential of biotemplated synthesis as a versatile and eco-friendly platform for producing high-performance, tunable catalysts. Full article
(This article belongs to the Special Issue Celebrating the 50th Anniversary of Professor Valentine Ananikov)
Show Figures

Figure 1

17 pages, 4459 KB  
Article
Microstructure (EBSD-KAM)-Informed Selection of Single-Powder Soft Magnetics for Molded Inductors
by Chang-Ting Yang, Yu-Fang Huang, Chun-Wei Tien, Kun-Yang Wu, Hung-Shang Huang and Hsing-I Hsiang
Materials 2025, 18(21), 5016; https://doi.org/10.3390/ma18215016 - 4 Nov 2025
Viewed by 638
Abstract
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors [...] Read more.
This study systematically benchmarks the performance of four single soft magnetic powders—water-atomized Fe–Si–Cr (FeSiCr), silica-coated reduced iron powder (RIP), silica-coated carbonyl iron powder (CIP), and phosphate-coated CIP (CIP-P)—to establish quantitative relationships between powder attributes, deformation substructure, and high-frequency loss for molded power inductors (100 kHz–1 MHz). We prepared toroidal compacts at 200 MPa and characterized them by initial permeability (μi), core-loss (Pcv(f)), partitioning (Pcv(f) = Khf + Kef2, Kh, Ke: hysteresis and eddy-current loss coefficients), and EBSD (electron backscatter diffraction)-derived microstrain metrics (Kernel Average Misorientation, KAM; low-/high-angle grain-boundary fractions). Corrosion robustness was assessed using a 5 wt% NaCl, 35 °C, 24 h salt-spray protocol. Our findings reveal that FeSiCr achieves the highest μi across the frequency band, despite its lowest compaction density. This is attributed to its coarse particle size (D50 ≈ 18 µm) and the resulting lower intragranular pinning. The loss spectra are dominated by hysteresis over this frequency range, with FeSiCr exhibiting the largest Kh, while the fine, silica-insulated Fe powders (RIP/CIP) most effectively suppress Ke. EBSD analysis shows that the high coercivity and hysteresis loss in CIP (and, to a lesser extent, RIP) are correlated with dense, deformation-induced subgrain networks, as evidenced by higher mean KAM and a lower low-angle grain boundary fraction. In contrast, FeSiCr exhibits the lowest KAM, with strain confined primarily to particle contact regions. Corrosion testing ranked durability as FeSiCr ≳ CIP ≈ RIP ≫ CIP-P, which is consistent with the Cr-rich passivation of FeSiCr and the superior barrier properties of the SiO2 shells compared to low-dose phosphate. At 15 A, inductance retention ranks CIP (67.9%) > RIP (55.7%) > CIP-P (48.8%) > FeSiCr (33.2%), tracking a rise in effective anisotropy and—for FeSiCr—lower Ms that precipitate earlier roll-off. Collectively, these results provide a microstructure-informed selection map for single-powder formulations. We demonstrate that particle size and shell chemistry are the primary factors governing eddy currents (Ke), while the KAM-indexed substructure dictates hysteresis loss (Kh) and DC-bias superposition characteristics. This framework enables rational trade-offs between magnetic permeability, core loss, and environmental durability. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

15 pages, 2955 KB  
Article
Dual-Responsive Hybrid Microgels Enabling Phase Inversion in Pickering Emulsions
by Minyue Shen, Lin Qi, Li Zhang, Panfei Ma, Wei Liu, To Ngai and Hang Jiang
Polymers 2025, 17(20), 2762; https://doi.org/10.3390/polym17202762 - 15 Oct 2025
Cited by 1 | Viewed by 739
Abstract
Pickering emulsions have emerged as promising multiphase systems owing to their high stability and diverse applications in materials and chemical engineering. However, achieving precise and stimuli-responsive regulation of emulsion type, particularly reversible phase inversion between oil-in-water and water-in-oil states under fixed formulation without [...] Read more.
Pickering emulsions have emerged as promising multiphase systems owing to their high stability and diverse applications in materials and chemical engineering. However, achieving precise and stimuli-responsive regulation of emulsion type, particularly reversible phase inversion between oil-in-water and water-in-oil states under fixed formulation without additional stabilizers, remains a considerable challenge. In this work, we developed a sol–gel strategy, i.e., in situ hydrolysis and condensation of silane precursors to form a silica shell directly on responsive microgels, to produce H-SiO2@P(NIPAM-co-MAA) hybrid microgels. The resulting hybrid particles simultaneously retained pH and temperature responsiveness, enabling the transfer of these properties from the polymeric network to the emulsion interface. When employed as stabilizers, the hybrid microgels allowed the controlled formation of Pickering emulsions that remained stable for one week under testing conditions. More importantly, they facilitated in situ reversible phase inversion under external stimuli. Overall, this work establishes a sol–gel approach to fabricate organic–inorganic hybrid microgels with well-defined dispersion and uniform silica deposition, while preserving dual responsiveness and enabling controlled phase inversion of Pickering emulsions. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 2327 KB  
Article
Design, Synthesis and Sensing Application of Novel Dual Lanthanide Doped Core–Shell Fluorescent Silica-Based Nanoparticles
by Qiuping Li, Hongxia Ouyang, You Zhou, Xinghui Yang, Qi Wang, Yonghong Ding and Haichao Yu
Biosensors 2025, 15(10), 636; https://doi.org/10.3390/bios15100636 - 24 Sep 2025
Viewed by 892
Abstract
The synthesis of lanthanide fluorescent nanoparticles and the investigation of their fluorescence sensing applications have attracted a great deal of attention in materials science over the past decades. In this study, we designed and synthesized a core–shell fluorescent nanoparticle based on dual-center emission [...] Read more.
The synthesis of lanthanide fluorescent nanoparticles and the investigation of their fluorescence sensing applications have attracted a great deal of attention in materials science over the past decades. In this study, we designed and synthesized a core–shell fluorescent nanoparticle based on dual-center emission from the europium and terbium complexes, and demonstrated its application as a ratiometric fluorescence sensor for the detection of 2,6-pyridinedicarboxylic acid (DPA). The europium complex is embedded in the inner core, providing a stable fluorescence signal at 617 nm, while the terbium complex is positioned in the outer shell and exhibits a fluorescence “Turn-ON” response at 545 nm upon interaction with DPA molecules. The fluorescence intensity ratio F545/F617 exhibits a sensitive response to the DPA concentration. Experimental results demonstrate that the as-prepared SiO2@Eu@SiO2@Tb nanoparticle exhibits a linear response in the DPA concentration range of 10–100 μM, with a detection limit (LOD) of 1.38 μM and well selectivity for DPA sensing. This strategy offers new insights into the development of novel lanthanide-based ratiometric fluorescence sensors. Full article
(This article belongs to the Special Issue Recent Advances and Perspectives of Fluorescent Biosensors)
Show Figures

Figure 1

16 pages, 4465 KB  
Article
Cost-Effective Fabrication of Silica–Silver Microspheres with Enhanced Conductivity for Electromagnetic Interference Shielding
by Mingzheng Hao, Zhonghua Huang, Wencai Wang, Zhaoxia Lv, Tao Zhang, Wenjin Liang and Yurong Liang
Nanomaterials 2025, 15(18), 1433; https://doi.org/10.3390/nano15181433 - 18 Sep 2025
Viewed by 804
Abstract
A green and cost-effective method was employed to efficiently synthesize conductive silica–silver (SiO2/PCPA/Ag) core–shell structured microspheres. The SiO2 microspheres were initially functionalized with poly(catechol-polyamine), followed by the in situ reduction of Ag ions to Ag nanoparticles on the surface of [...] Read more.
A green and cost-effective method was employed to efficiently synthesize conductive silica–silver (SiO2/PCPA/Ag) core–shell structured microspheres. The SiO2 microspheres were initially functionalized with poly(catechol-polyamine), followed by the in situ reduction of Ag ions to Ag nanoparticles on the surface of the SiO2 microspheres using an electroless plating process. Analysis using scanning electron microscopy confirmed the successful formation of a dense and uniform silver layer on the surface of the SiO2 microspheres. The valence state of the silver present on the surface of the SiO2 microspheres was determined to be zero through analyses conducted using an X-ray photoelectron spectrometer and X-ray diffractometer. Consequently, the SiO2/PCPA/Ag microspheres, upon initial preparation, demonstrated a notable conductivity of 1005 S/cm, which was further enhanced to 1612 S/cm following additional heat treatment aimed at rectifying defects within the silver layer. The resulting rubber composites displayed a low electrical resistivity of 5.4 × 10−3 Ω·cm and exhibited a significant electromagnetic interference (EMI) shielding effectiveness exceeding 100 dB against both X-band and Ku-band frequencies, suggesting promising potential for utilization as a material for conducting and EMI shielding purposes. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 3481 KB  
Article
Thermal and Structural Behavior of Investment Casting Molds Modified with Biodegradable Walnut Shell Chips
by Marcin Małek, Janusz Kluczyński, Rafał Grzejda, Paweł Wiśniewski, Agnieszka Jenerowicz and Ireneusz Ewiak
Materials 2025, 18(18), 4289; https://doi.org/10.3390/ma18184289 - 12 Sep 2025
Cited by 1 | Viewed by 939
Abstract
Two types of spherical mold samples—designated PW1 (reference) and PW2 (modified) were prepared using the dip-and-sprinkle method. Both samples consisted of seven layers, but PW2 was differentiated by the incorporation of 5 wt.% ground walnut shell chips into the fifth layer of its [...] Read more.
Two types of spherical mold samples—designated PW1 (reference) and PW2 (modified) were prepared using the dip-and-sprinkle method. Both samples consisted of seven layers, but PW2 was differentiated by the incorporation of 5 wt.% ground walnut shell chips into the fifth layer of its structure. The aim of this modification was to assess the feasibility of employing biodegradable organic additives to generate controlled porosity after thermal decomposition, thereby enhancing gas transport through the mold structure. The gas permeability of the samples was determined across a broad temperature range from 25 to 950 °C using a dedicated, custom-built test rig developed for elevated-temperature permeability assessments. The results revealed that the inclusion of walnut shell chips significantly increased the gas permeability of the molds by approximately 42% at ambient temperature and 36% at 950 °C, attributable to the formation of stochastically distributed macro-voids upon burnout of the organic additive. The study demonstrates that selective layer modification using natural waste materials can be a viable method for tailoring functional properties of ceramic molds, offering a cost-effective, sustainable, and easily scalable alternative to conventional pore-forming strategies. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

23 pages, 3154 KB  
Article
Lanthanide Tris-Acetylacetonate Complexes for Luminescent Thermometry: From Isolated Compounds to Hybrid Prussian Blue Core–Silica Shell Nanoparticles
by Aurore Larquey, Gautier Félix, Saad Sene, Joulia Larionova and Yannick Guari
Inorganics 2025, 13(9), 304; https://doi.org/10.3390/inorganics13090304 - 11 Sep 2025
Viewed by 1411
Abstract
Precise remote temperature sensing at the micro- and nanoscale is a growing necessity in modern science and technology. We report a series of luminescent tris-acetylacetonate lanthanide complexes, Ln(acac)3(H2O)2 (Ln = Eu (1Eu), Tb (1Tb), [...] Read more.
Precise remote temperature sensing at the micro- and nanoscale is a growing necessity in modern science and technology. We report a series of luminescent tris-acetylacetonate lanthanide complexes, Ln(acac)3(H2O)2 (Ln = Eu (1Eu), Tb (1Tb), Yb (1Yb)); acac = acetylacetonate), operating as self-referenced thermometers in the 290–350 K range, both in the solid state and when embedded in hybrid nanoparticles. Among the investigated systems, the Eu3+ complex exhibits excellent lifetime-based thermometric performance, achieving a maximum relative sensitivity (Srmax) of 2.9%·K−1 at 340 K with a temperature uncertainty (δT) as low as 0.02 K and an average temperature uncertainty (δT¯) of 0.5 K, placing it among the most effective ratiometric lanthanide-based luminescent thermometers reported to date. The Yb3+ analog enables intensity-based thermometry in the near-infrared domain with a good sensitivity Srmax = 0.5%·K−1 at 293 K, δT = 0.5 K at 303 K, and δT¯ = 1.6 K. These molecular thermometers were further incorporated into the shell of Prussian Blue@SiO2 core–shell nanoparticles. Among the resulting hybrids, PB@SiO2-acac/(1Tb/1Eu) (with a Tb/Eu ratio of 2/8) stood out by enabling ratiometric temperature sensing based on the Eu3+5D07F2 lifetime, with satisfactory parameters (Srmax = 0.9%·K−1, δT = 0.21 K at 303 K, and δT¯ = 1.1 K). These results highlight the potential of simple coordination complexes and their nanohybrids for advanced luminescent thermometry applications. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 3960 KB  
Article
Laboratory-Scale Biochar-Aerated Constructed Wetlands for Low C/N Wastewater: Standardization and Legal Cooperation from a Watershed Restoration Perspective
by Mengbing Li, Sili Tan, Jiajun Huang, Qianhui Chen and Guanlong Yu
Water 2025, 17(16), 2482; https://doi.org/10.3390/w17162482 - 21 Aug 2025
Viewed by 1580
Abstract
To address the problems of eutrophication exacerbation in water bodies caused by low carbon-to-nitrogen ratio (C/N) wastewater and the limited nitrogen removal efficiency of conventional constructed wetlands, this study proposes the use of biochar (Corncob biochar YBC, Walnut shell biochar HBC, and [...] Read more.
To address the problems of eutrophication exacerbation in water bodies caused by low carbon-to-nitrogen ratio (C/N) wastewater and the limited nitrogen removal efficiency of conventional constructed wetlands, this study proposes the use of biochar (Corncob biochar YBC, Walnut shell biochar HBC, and Manure biochar FBC) coupled with intermittent aeration technology to enhance nitrogen removal in constructed wetlands. Through the construction of vertical flow wetland systems, hydraulic retention time (HRT = 1–3 d) and influent C/N ratios (1, 3, 5) were regulated, before being combined with material characterization (FTIR/XPS) and microbial analysis (16S rRNA) to reveal the synergistic nitrogen removal mechanisms. HBC achieved efficient NH4+-N adsorption (32.44 mg/L, Langmuir R2 = 0.990) through its high porosity (containing Si-O bonds) and acidic functional groups. Under optimal operating conditions (HRT = 3 d, C/N = 5), the CW-HBC system achieved removal efficiencies of 97.8%, 98.8%, and 79.6% for NH4+-N, TN, and COD, respectively. The addition of biochar shifted the dominant bacterial phylum toward Actinobacteriota (29.79%), with its slow-release carbon source (TOC = 18.5 mg/g) alleviating carbon limitation. Mechanistically, HBC synergistically optimized nitrogen removal pathways through “adsorption-biofilm (bacterial enrichment)-microzone oxygen regulation (pore oxygen gradient).” Based on technical validation, a dual-track institutionalization pathway of “standards-legislation” is proposed: incorporating biochar physicochemical parameters and aeration strategies into multi-level water environment technical standards; converting common mechanisms (such as Si-O adsorption) into legal requirements through legislative amendments; and innovating legislative techniques to balance precision and universality. This study provides an efficient technical solution for low C/N wastewater treatment while constructing an innovative framework for the synergy between technical specifications and legislation, supporting the improvement of watershed ecological restoration systems. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop