Design, Synthesis and Sensing Application of Novel Dual Lanthanide Doped Core–Shell Fluorescent Silica-Based Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Testing Instruments
2.2. Preparation of Eu(TTA)3(H2O)2
2.3. Surface Modification of Fumed Silica with Europium Complexes
2.4. Preparation of Core–Shell SiO2@Eu@SiO2@Tb Nanoparticles
2.5. Sensing Experiments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ansari, A.; Mohanta, D. Recent advances in Rare-Earth based persistent luminescent probes. In Nanoscale Matter and Principles for Sensing and Labeling Applications; Mohanta, D., Chakraborty, P., Eds.; Springer Nature: Singapore, 2024; pp. 491–511. [Google Scholar]
- Afzal, S.; Maitra, U. Sensitized lanthanide photoluminescence based sensors–a review. Helv. Chim. Acta 2022, 105, e202100194. [Google Scholar] [CrossRef]
- Parker, D.; Fradgley, J.D.; Wong, K.L. The design of responsive luminescent lanthanide probes and sensors. Chem. Soc. Rev. 2021, 50, 8193–8213. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Chang, H.J.; Xie, J.; Zhao, B.Z.; Liu, B.T.; Xu, S.L.; Pei, W.B.; Ren, N.; Huang, L.; Huang, W. Recent developments in lanthanide-based luminescent probes. Coord. Chem. Rev. 2014, 273–274, 201–212. [Google Scholar] [CrossRef]
- Parker, D. Luminescent lanthanide sensors for pH, pO2 and selected anions. Coord. Chem. Rev. 2000, 205, 109–130. [Google Scholar] [CrossRef]
- Bünzli, J.G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729–2755. [Google Scholar] [CrossRef]
- Brunet, E.; Juanes, O.; Rodriguez-Ubis, J.C. Supramolecularly organized lanthanide complexes for efficient metal excitation and luminescence as sensors in organic and biological applications. Curr. Chem. Biol. 2007, 1, 11–39. [Google Scholar]
- Dos Santos, C.M.G.; Harte, A.J.; Quinn, S.J.; Gunnlaugsson, T. Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coord. Chem. Rev. 2008, 252, 2512–2527. [Google Scholar]
- Hossain, M.K.; Ahmed, M.H.; Khan, M.I.; Miah, M.S.; Hossain, S. Recent progress of rare earth oxides for sensor, detector, and electronic device applications: A review. ACS Appl. Electron. Mater. 2021, 3, 4255–4283. [Google Scholar] [CrossRef]
- Wang, X.F.; Liu, Q.; Bu, Y.Y.; Liu, C.S.; Liu, T.; Yan, X.H. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015, 5, 86219–86236. [Google Scholar] [CrossRef]
- Shahi, P.K.; Singh, A.K.; Rai, S.B.; Ullrich, B. Lanthanide complexes for temperature sensing, UV light detection, and laser applications. Sens. Actuators A Phys. 2015, 222, 255–261. [Google Scholar] [CrossRef]
- Monteiro, B.; Leal, J.P.; Mendes, R.F.; Almeida Paz, F.A.; Linden, A.; Smetana, V.; Mudring, A.V.; Avó, J.; Pereira, C.C.L. Lanthanide-based complexes as efficient physiological temperature sensors. Mater. Chem. Phys. 2022, 277, 125424. [Google Scholar] [CrossRef]
- Li, Q.P.; Wen, Q.Q.; Fang, Z.A.; Wang, Y.D.; Ouyang, H.X.; Wang, Q.; Wei, M. Synthesis and fluorescence properties of europium complex functionalized fiberglass paper. RSC Adv. 2024, 14, 30037–30044. [Google Scholar] [CrossRef]
- Tan, H.L.; Zhang, Y.Q.; Chen, Y. Detection of mercury ions (Hg2+) in urine using a terbium chelate fluorescent probe. Sens. Actuators B Chem. 2011, 156, 120–125. [Google Scholar] [CrossRef]
- Pramanik, R. A review on fluorescent molecular probes for Hg2+ ion detection: Mechanisms, strategies, and future directions. ChemistrySelect 2025, 10, e202404525. [Google Scholar] [CrossRef]
- Bodman, S.E.; Butler, S.J. Advances in anion binding and sensing using luminescent lanthanide complexes. Chem. Sci. 2021, 12, 2716–2734. [Google Scholar] [CrossRef]
- Zhou, J.M.; Shi, W.; Xu, N.; Cheng, P. Highly selective luminescent sensing of fluoride and organic Small-Molecule pollutants based on novel lanthanide metal–organic frameworks. Inorg. Chem. 2013, 52, 8082–8090. [Google Scholar] [CrossRef]
- Cao, W.Q.; Teng, F.Y.; Cui, Y.J.; Qian, G.D. A lanthanide metal–organic framework containing a hydrazine group for highly sensitive luminescent sensing of formaldehyde gas. CrystEngComm. 2024, 26, 3844–3850. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.W.; Zhang, F.; Chu, T.S.; Yang, Y.Y. A novel lanthanide MOF thin film: The highly performance self-calibrating luminescent sensor for detecting formaldehyde as an illegal preservative in aquatic product. Sens. Actuators B Chem. 2017, 251, 667–673. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Magalhães, J.M.C.S.; Barroso, M.F.; Durães, L. Latest advances in sensors for optical detection of relevant amines: Insights into lanthanide-based sensors. J. Mater. Chem. C 2022, 10, 15263–15276. [Google Scholar] [CrossRef]
- Tsukube, H.; Shinoda, S. Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem. Rev. 2002, 102, 2389–2404. [Google Scholar] [CrossRef]
- Sun, G.T.; Xie, Y.; Sun, L.N.; Zhang, H.J. Lanthanide upconversion and downshifting luminescence for biomolecules detection. Nanoscale Horiz. 2021, 6, 766–780. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Bo, C.M.; Guo, S.W. Luminescent Ln-MOFs for Chemical Sensing Application on Biomolecules. ACS Sens. 2024, 9, 4402–4424. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Sun, L.D.; Yan, C.H. Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans. 2008, 42, 5687–5697. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, S.S.; Chen, J.; Wei, J.M.; Chen, C.Y.; Shi, W.Y.; Wu, D.Y.; Fu, L.S.; Yang, T.H. A highly efficient lanthanide coordination polymer luminescent material for the multi-task detection of environmental pollutants. Dalton Trans. 2024, 53, 276–284. [Google Scholar] [CrossRef]
- Feng, X.; Li, R.F.; Wang, L.Y.; Ng, S.W.; Qin, G.Z.; Ma, L.F. A series of homonuclear lanthanide coordination polymers based on a fluorescent conjugated ligand: Syntheses, luminescence and sensor for pollutant chromate anion. CrystEngComm 2015, 17, 7878–7887. [Google Scholar] [CrossRef]
- Wang, L.; Fan, G.L.; Xu, X.F.; Chen, D.M.; Wang, L.; Shi, W.; Cheng, P. Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metal–organic framework. J. Mater. Chem. A 2017, 5, 5541–5549. [Google Scholar] [CrossRef]
- Ren, Y.X.; Ma, Z.H.; Gao, T.; Liang, Y.C. Advance progress on luminescent sensing of nitroaromatics by crystalline lanthanide–organic complexes. Molecules 2023, 28, 4481. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, X.B.; Jiang, Y.F.; Liu, M.; Chen, Z.; Ding, L.W.; Li, B.; Zeng, C.H. Highly sensitive sensing device based on highly luminescent lanthanide nanocluster for biomarker in human urine and serum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120782. [Google Scholar] [CrossRef]
- Zhang, W.X.; Sun, J.; Li, X.; Wang, S.B.; Zhang, W.A.; Gong, Y.R.; Liu, L.; Su, Z.M. Lanthanide MOF-based luminescent sensor array for detection and identification of contaminants in water and biomarkers. Talanta 2025, 281, 126853. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, Z.W.; Zhang, P.; Gong, X.; Wang, Y. Energy transfer-based ratiometric fluorescence sensing anthrax biomarkers in bimetallic lanthanide metal-organic frameworks. Sens. Actuators B Chem. 2023, 383, 133596. [Google Scholar] [CrossRef]
- Wu, S.Y.; Lin, Y.N.; Liu, J.W.; Shi, W.; Yang, G.M.; Cheng, P. Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal–organic framework sensor. Adv. Funct. Mater. 2018, 28, 1707169. [Google Scholar] [CrossRef]
- Shen, X.; Yan, B. Photoactive rare earth complexes for fluorescence tuning and sensing cations (Fe3+) and anions (Cr2O72−). RSC Adv. 2015, 5, 6752–6757. [Google Scholar] [CrossRef]
- Song, H.M.; Liu, G.; Fan, C.B.; Pu, S.Z. A novel fluorescent sensor for Al3+ and Zn2+ based on a new europium complex with a 1,10-phenanthroline ligand. J. Rare Earths 2021, 39, 460–468. [Google Scholar] [CrossRef]
- Abdel Aziz, A.A.; Sayed, M.A. Some novel rare earth metal ions complexes: Synthesis, characterization, luminescence and biocidal efficiency. Anal. Biochem. 2020, 598, 113645. [Google Scholar] [CrossRef]
- Jiang, W.; Yi, J.Q.; Li, X.S.; He, F.; Niu, N.; Chen, L.G. A comprehensive review on upconversion Nanomaterials-Based fluorescent sensor for environment, biology, food and medicine applications. Biosensors 2022, 12, 1036. [Google Scholar] [CrossRef]
- Li, H.H.; Sheng, W.; Haruna, S.A.; Hassan, M.M.; Chen, Q.S. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3732–3764. [Google Scholar] [CrossRef]
- Huang, Z.Z.; Wang, Y.X.; Huang, L.J.; Li, B.Y.; Yan, X.H.; Wang, Y.; Kipper, M.J.; Tang, J.G. A review of lanthanide-based fluorescent nanofiber membranes by electrospinning and their applications. J. Mater. Sci. 2022, 57, 3892–3922. [Google Scholar] [CrossRef]
- Escudero, A.; Becerro, A.I.; Carrillo-Carrión, C.; Núñez, N.O.; Zyuzin, M.V.; Laguna, M.; González-Mancebo, D.; Ocaña, M.; Parak, W.J. Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics 2017, 6, 881–921. [Google Scholar] [CrossRef]
- Sun, C.N.; Gradzielski, M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv. Colloid Interface Sci. 2022, 300, 102579. [Google Scholar] [CrossRef]
- Hao, S.W.; Chen, G.Y.; Yang, C.H. Sensing using Rare-Earth-Doped upconversion nanoparticles. Theranostics 2013, 3, 331–345. [Google Scholar] [CrossRef]
- Pan, L.; Yang, F.; Kang, X.H.; Zhang, Q.P.; Jiang, C.L. Rare earth Ion-Induced functionalized fluorescent MOF hydrogel patches for monitoring lysozyme in tears. Anal. Chem. 2025, 97, 13799–13808. [Google Scholar] [CrossRef]
- Wang, X.F.; Chu, C.X.; Wu, Y.W.; Deng, Y.Y.; Zhou, J.; Yang, M.; Zhang, S.Y.; Huo, D.Q.; Hou, C.J. Synthesis of yttrium(III)-based rare-earth metal-organic framework nanoplates and its applications for sensing of fluoride ions and pH. Sens. Actuators B Chem. 2020, 321, 128455. [Google Scholar] [CrossRef]
- Mahata, P.; Mondal, S.K.; Singha, D.K.; Majee, P. Luminescent rare-earth-based MOFs as optical sensors. Dalton Trans. 2017, 46, 301–328. [Google Scholar] [CrossRef] [PubMed]
- Yan, B. Lanthanide-Functionalized metal–organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 2017, 50, 2789–2798. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; Min, H.; Li, Y. Preparation and application of carbon quantum dot fluorescent probes combined with rare earth ions. Anal. Methods 2023, 15, 5731–5753. [Google Scholar] [CrossRef]
- Xu, Z.J.; Chen, J.; Liu, Y.Y.; Wang, X.Y.; Shi, Q.D. Multi-emission fluorescent sensor array based on carbon dots and lanthanide for detection of heavy metal ions under stepwise prediction strategy. Chem. Eng. J. 2022, 441, 135690. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, Y.; Song, J.Y.; Xiong, L.H.; Zhao, X.; Chen, S.H.; Zhao, W.C.; Li, L.; Zhen, D.S. Engineering fluorescent carbon dot sensor with rare earth europium for the detection of uranium (VI) ion in vivo. Mikrochim. Acta 2025, 192, 219. [Google Scholar] [CrossRef]
- Tian, X.L.; Fan, Z.F. Novel ratiometric probe based on the use of rare earth-carbon dots nanocomposite for the visual determination of doxycycline. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119925. [Google Scholar] [CrossRef]
- Mohandoss, S.; Priyadharshini, A.; Velu, K.S.; Napoleon, A.A.; Roy, P.; Ahmad, N.; Khan, M.R.; Palanisamy, S.; You, S.G.; Kim, S.C. Rare-earth metal-doped orange emissive photoluminescent carbon quantum dots for highly sensitive detection of Hg2+ ions: Multi-color imaging and real samples. Mater. Sci. Eng. B 2025, 317, 118236. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Li, H.R. Lanthanide organic/inorganic hybrid systems: Efficient sensors for fluorescence detection. Dyes Pigment. 2020, 178, 108386. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.R.; Chai, R.; Xu, Y.; Li, H.R.; Liu, B.Y. Luminescent Lanthanide-Based Organic/Inorganic hybrid materials for discrimination of glutathione in solution and within hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 13554–13563. [Google Scholar] [CrossRef]
- Sun, Z.B.; Cui, G.J.; Li, H.Z.; Liu, Y.; Tian, Y.X.; Yan, S.Q. Multifunctional optical sensing probes based on organic–inorganic hybrid composites. J. Mat. Chem. B 2016, 4, 5194–5216. [Google Scholar] [CrossRef]
- Cui, H.; Yang, Y.L.; Bai, X.; Han, X.; Zhang, W.S.; Lu, Y.; Liu, S.X. Rare earth inorganic-organic hybrid compounds based on Keggin-type polyoxometalate {SiW12} with fast-responsive photochromism and switchable luminescence properties. J. Rare Earths 2024, 42, 286–292. [Google Scholar] [CrossRef]
- Li, J.Y.; Duan, J.H.; He, Z.H.; Liao, Y.J.; Liu, X.H.; Rong, P.F.; Chen, G.; Wan, H.; Huang, Y.M.; Ma, R.Z. Facile synthesis of organic–inorganic hybrid layered Rare-Earth hydroxide nanocone for multifunctional drug delivery system with fluorescence probe and simultaneous magnetic resonance imaging. Adv. Opt. Mater. 2023, 11, 2203146. [Google Scholar] [CrossRef]
- Li, H.R.; Cheng, W.J.; Wang, Y.; Liu, B.Y.; Zhang, W.J.; Zhang, H.J. Surface modification and functionalization of microporous hybrid material for luminescence sensing. Chem. Eur. J. 2010, 16, 2125–2130. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.C.; Mihalache, I.; Matache, M.; Radoi, A. Terbium-functionalized silica nanoparticles for metal ion sensing by fluorescence quenching. Dye. Pigment. 2021, 187, 109144. [Google Scholar] [CrossRef]
- Gogoi, H.; Banerjee, S.; Datta, A. Photoluminescent silica nanostructures and nanohybrids. ChemPhysChem 2022, 23, e202200280. [Google Scholar] [CrossRef]
- Li, Y.J.; Yu, X.D.; Yu, T. Eu3+ based mesoporous hybrid material with tunable multicolor emission modulated by fluoride ion: Application for selective sensing toward fluoride ion. J. Mater. Chem. C 2017, 5, 5411–5419. [Google Scholar] [CrossRef]
- Trupp, L.; Marchi, M.C.; Barja, B.C. Lanthanide–based luminescent hybrid silica materials prepared by sol-gel methodologies: A review. J. Sol-Gel Sci. Technol. 2022, 102, 63–85. [Google Scholar] [CrossRef]
- Li, Q.P.; Zhou, Y. Brief history, preparation method, and biological application of mesoporous silica molecular sieves: A narrative review. Molecules 2023, 28, 2013. [Google Scholar] [CrossRef]
- Asefa, T.; Tao, Z. Biocompatibility of mesoporous silica nanoparticles. Chem. Res. Toxicol. 2012, 25, 2265–2284. [Google Scholar] [CrossRef]
- Pagliaro, M. Silica-Based Materials for Advanced Chemical Applications; RSC Publishing: Cambridge, UK, 2009. [Google Scholar]
- Li, Y.J.; Xie, D.Y.; Pang, X.L.; Yu, X.D.; Yu, T.; Ge, X.T. Highly selective fluorescent sensing for fluoride based on a covalently bonded europium mesoporous hybrid material. Sens. Actuators B Chem. 2016, 227, 660–667. [Google Scholar] [CrossRef]
- Miletto, I.; Gianotti, E.; Delville, M.; Berlier, G. Silica-Based organic–inorganic hybrid nanomaterials for optical bioimaging. In Hybrid Organic-Inorganic Interfaces: Towards Advanced Functional Materials; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 729–765. [Google Scholar]
- Gao, Z.P.; Wang, Z.J.; Qiao, M.; Peng, H.N.; Ding, L.P.; Fang, Y. Mesoporous silica nanoparticles-based fluorescent mini sensor array with dual emission for discrimination of biothiols. Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125433. [Google Scholar] [CrossRef]
- Li, Y.J.; Yu, X.D.; Pang, X.L. Two Eu(III) central silica hybrids as ratiometric turn-on luminescent sensors for Al3+ ions. J. Photochem. Photobiol. A Chem. 2024, 446, 115040. [Google Scholar] [CrossRef]
- Chatterjee, S.; Li, X.S.; Liang, F.; Yang, Y.W. Design of multifunctional fluorescent hybrid materials based on SiO2 materials and core–shell Fe3O4@SiO2 nanoparticles for metal ion sensing. Small 2019, 15, 1904569. [Google Scholar] [CrossRef] [PubMed]
- Kalel, R.A. Recent adaptations in fluorescent SiO2 nanomaterial’s for detection of Hg2+ ion: A short review. Nanotechnol. Environ. Eng. 2024, 9, 423–436. [Google Scholar] [CrossRef]
- Wu, S.Y.; Min, H.; Shi, W.; Cheng, P. Multicenter metal–organic Framework-Based ratiometric fluorescent sensors. Adv. Mater. 2020, 32, 1805871. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, Y.X.; Ma, X.R.; Fan, W.W.; Cheng, Y.; He, R.Y.; Meng, X.; Shi, Y.G.; Cao, Q.E.; Zheng, L.Y. Luminophore with multiple emission centers for fluorescence/ phosphorescence dual ratiometric chemical sensing in aqueous solution. Adv. Opt. Mater. 2024, 12, 2303107. [Google Scholar] [CrossRef]
- Yang, L.; Song, Y.H.; Wang, L. Multi-emission metal–organic framework composites for multicomponent ratiometric fluorescence sensing: Recent developments and future challenges. J. Mat. Chem. B 2020, 8, 3292–3315. [Google Scholar]
- Nguyen, V.; Yan, L.H.; Xu, H.H.; Yue, M.M. One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing. Appl. Surf. Sci. 2018, 427, 1118–1123. [Google Scholar] [CrossRef]
- Zhang, S.X.; Xiao, J.Y.; Zhong, G.; Xu, T.L.; Zhang, X.J. Design and application of dual-emission metal–organic framework-based ratiometric fluorescence sensors. Analyst 2024, 149, 1381–1397. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Yang, S.; Zhu, M.C.; Zhang, Y.; Sun, Y.G.; Wu, S.Y. A multicenter lanthanide coordination polymer for ratiometric pesticide monitoring. Sens. Actuators B Chem. 2023, 383, 133593. [Google Scholar] [CrossRef]
- Xing, S.H.; Cheng, S.S.; Tan, M.Q. Multi-emitter metal-organic frameworks as ratiometric luminescent sensors for food contamination and spoilage detection. Crit. Rev. Food. Sci. Nutr. 2023, 64, 7028–7044. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.Y.; Feng, P.F.; Song, N.; Zhao, G.D.; Liu, Q.Y.; Liu, L.L.; Tang, M.; Tang, Y. Dual-functional ratiometric fluorescent sensor based on mixed-lanthanide metal–organic frameworks for the detection of trace water and temperature. Inorg. Chem. Front. 2022, 9, 1406–1415. [Google Scholar] [CrossRef]
- Madhu, M.; Santhoshkumar, S.; Tseng, W.B.; Tseng, W.L. Maximizing analytical precision: Exploring the advantages of ratiometric strategy in fluorescence, Raman, electrochemical, and mass spectrometry detection. Front. Anal. Sci. 2023, 3, 1258558. [Google Scholar] [CrossRef]
- Huang, X.L.; Song, J.B.; Yung, B.C.; Huang, X.H.; Xiong, Y.H.; Chen, X.Y. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920. [Google Scholar] [CrossRef]
- Demchenko, A.P.; Klymchenko, A.S.; Pivovarenko, V.G.; Ercelen, S. Ratiometric probes: Design and applications. In Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences; Kraayenhof, R., Visser, A.J.W.G., Gerritsen, H.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 101–110. [Google Scholar]
- Yang, X.; Li, C.C.; Li, P.F.; Fu, Q.R. Ratiometric optical probes for biosensing. Theranostics 2023, 13, 2632–2656. [Google Scholar] [CrossRef]
- Zhou, J.L.; Hu, X.Y.; Liu, C.; Liu, Y.; Tian, N.; Wu, F.; Li, W.; Lei, J.P.; Dai, Z.H. Lanthanide-bimetallic organic frameworks: From mechanism and sensors design to ratiometric fluorescent applications. Coord. Chem. Rev. 2025, 534, 216574. [Google Scholar] [CrossRef]
- Wang, Q.X.; Xue, S.F.; Chen, Z.H.; Ma, S.H.; Zhang, S.Q.; Shi, G.Y.; Zhang, M. Dual lanthanide-doped complexes: The development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens. Bioelectron. 2017, 94, 388–393. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, J.S.; Sessler, J.L. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar] [CrossRef]
- Park, S.; Kwon, N.; Lee, J.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 2020, 49, 143–179. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.L.; Li, Y.Z.; Tan, M.J.; Yuan, F.F.; Murthy, N.; Duan, Y.T.; Zhu, H.L.; Yang, S.Y. Recent advances in organic near-infrared ratiometric small-molecule fluorescent probes. Coord. Chem. Rev. 2023, 486, 215130. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Yan, F.Y.; Huang, Y.C.; Kong, D.P.; Ye, Q.H.; Xu, J.X.; Chen, L. Rhodamine-based ratiometric fluorescent probes based on excitation energy transfer mechanisms: Construction and applications in ratiometric sensing. RSC Adv. 2016, 6, 50732–50760. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Xu, S.L.; Zhai, Z.D.; Wang, K.; Liu, X.L.; Xiao, H.B.; Zhuo, S.P.; Liu, Y.Y. Recent progress of Small-Molecule ratiometric fluorescent probes for peroxynitrite in biological systems. Chem. A Eur. J. 2022, 28, e202200828. [Google Scholar] [CrossRef]
- Yao, J.L.; Zhang, K.; Zhu, H.J.; Ma, F.; Sun, M.T.; Yu, H.; Sun, J.; Wang, S.H. Efficient ratiometric fluorescence probe based on Dual-Emission quantum dots hybrid for On-Site determination of copper ions. Anal. Chem. 2013, 85, 6461–6468. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, S.Y.; Liu, C.Y.; Zhang, Y.; Su, M.J.; Rong, X.D.; Zhu, H.C.; Yu, M.H.; Sheng, W.L.; Zhu, B.C. A novel ratiometric fluorescent probe for the detection of nickel ions in the environment and living organisms. Sci. Total Environ. 2022, 840, 156445. [Google Scholar] [CrossRef]
- Ghasemi, F.; Hormozi-Nezhad, M.R.; Mahmoudi, M. A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg(II). Sens. Actuators B Chem. 2018, 259, 894–899. [Google Scholar] [CrossRef]
- Liang, M.Y.; Liu, Z.C.; Zhang, Z.H.; Mei, Y.X.; Tian, Y. A two-photon ratiometric fluorescent probe for real-time imaging and quantification of NO in neural stem cells during activation regulation. Chem. Sci. 2022, 13, 4303–4312. [Google Scholar] [CrossRef]
- Pei, X.Y.; Pan, Y.; Zhang, L.C.; Lv, Y. Recent advances in ratiometric luminescence sensors. Appl. Spectrosc. Rev. 2021, 56, 324–345. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Halim, M.; Sames, D. Cocktails of Tb3+ and Eu3+ complexes: a general platform for the design of ratiometric optical probes. J. Am. Chem. Soc. 2007, 129, 7570–7577. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, F.; Liang, M.S.; Sun, M.Y.; Xia, L.; Qu, F.L. Fabrication of a two-dimensional bi-lanthanide metal-organic framework as a ratiometric fluorescent sensor based on energy competition. Talanta 2024, 278, 126456. [Google Scholar] [CrossRef]
- Sun, T.Y.; Gao, Y.B.; Du, Y.Y.; Zhou, L.; Chen, X. Recent advances in developing lanthanide metal–organic frameworks for ratiometric fluorescent sensing. Front. Chem. 2021, 8, 624592. [Google Scholar] [CrossRef]
- Guo, L.; Tian, X.L.; Zhu, C.Y.; Hussain, S.; Han, J.F.; Li, H.R. A dual-emission fluorescent ratiometric probe based on bimetallic lanthanide complex interacted in nanoclay for monitoring of food spoilage. Sens. Actuators B Chem. 2022, 366, 131992. [Google Scholar] [CrossRef]
- Vietri, N.J. Does anthrax antitoxin therapy have a role in the treatment of inhalational anthrax? Curr. Opin. Infect. Dis. 2018, 31, 257–262. [Google Scholar] [CrossRef]
- Wu, J.; Chen, P.; Chen, J.; Ye, X.; Cao, S.; Sun, C.; Jin, Y.; Zhang, L.; Du, S. Integrated ratiometric fluorescence probe-based acoustofluidic platform for visual detection of anthrax biomarker. Biosens. Bioelectron. 2022, 214, 114538. [Google Scholar] [CrossRef]
- Yilmaz, M.D.; Oktem, H.A. Eriochrome black T–Eu3+ complex as a ratiometric colorimetric and fluorescent probe for the detection of dipicolinic acid, a biomarker of bacterial spores. Anal. Chem. 2018, 90, 4221–4225. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Shi, C.T.; Lv, C.Z.; Xu, K.L.; Hou, X.D.; Wu, L. Tb3+-based off–on fluorescent platform for multicolor and dosage-sensitive visualization of bacterial spore marker. Anal. Chem. 2023, 95, 8137–8144. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.W.; Li, J.K.; Gao, D.J.; Ma, P.Y.; Wu, Q.; Song, D.Q. A dual-mode fluorescent nanoprobe for the detection and visual screening of pathogenic bacterial spores. Anal. Chem. 2024, 96, 6012–6020. [Google Scholar] [CrossRef]
- Xu, N.; Li, X.; Luan, F.; Tian, C.Y.; Zhang, Z.Y.; Chen, L.X.; Zhuang, X.M. Ratiometric fluorescent and electrochemiluminescent dual modal assay for detection of 2,6-pyridinedicarboxylic acid as an anthrax biomarker. Anal. Chim. Acta 2024, 1288, 342181. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Y.N.; Ji, X.H.; He, Z.K. The ratiometric fluorescent detection of anthrax spore biomarker based on functionalized silicon nanodots. Chem. Pap. 2019, 73, 1753–1759. [Google Scholar] [CrossRef]
- Huo, P.P.; Li, Z.J.; Yao, R.H.; Deng, Y.H.; Gong, C.C.; Zhang, D.B.; Fan, C.B.; Pu, S.Z. Dual-ligand lanthanide metal–organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121700. [Google Scholar] [CrossRef]
- Wang, E.L.; Wu, M.F.; Li, L.; Zou, J.Y.; Zhang, L.; You, S.Y.; Dai, L.M. Regulating ratiometric fluorescence of nanoporous dual-centered lanthanide metal–organic frameworks for quantitative and visual detection of anthrax biomarkers. ACS Appl. Nano Mater. 2024, 7, 25805–25814. [Google Scholar] [CrossRef]
- Shokoohi, S.; Arefazar, A.; Khosrokhavar, R. Silane coupling agents in polymer-based reinforced composites: A review. J. Reinf. Plast. Compos. 2008, 27, 473–485. [Google Scholar] [CrossRef]
- Pape, P.G. Adhesion promoters: Silane coupling agents. In Applied Plastics Engineering Handbook; Kutz, M., Ed.; William Andrew Publishing: Oxford, UK, 2011; pp. 503–517. [Google Scholar]
- Konakanchi, A.; Alla, R.K.; Guduri, V. Silane coupling Agents--Benevolent binders in composites. Trends Biomater. Artif. Organs 2017, 31, 108–113. [Google Scholar]
- Evdokimova, E.N.; Kochina, T.A. Modification of SiO2 nanoparticles by bifunctional silanes. Glass Phys. Chem. 2024, 50, 687–694. [Google Scholar] [CrossRef]
- Olszowska-łoś, I.; Ratajczyk, T.; Pieta, I.S.; Siejca, A.; Niedziółka-Jönsson, J.; Leśniewski, A. In situ interactions of Eu(TTA)3(H2O)2 with latent fingermark components—A Time-Gated visualization of latent fingermarks on paper. Anal. Chem. 2020, 92, 15671–15678. [Google Scholar] [CrossRef]
- Dos Santos Da Silva, A.; Dos Santos, J.H.Z. Stöber method and its nuances over the years. Adv. Colloid Interface Sci. 2023, 314, 102888. [Google Scholar] [CrossRef]
- Meier, M.; Ungerer, J.; Klinge, M.; Nirschl, H. Synthesis of nanometric silica particles via a modified Stöber synthesis route. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 559–564. [Google Scholar] [CrossRef]
- Saha, A.; Mishra, P.; Biswas, G.; Bhakta, S. Greening the pathways: A comprehensive review of sustainable synthesis strategies for silica nanoparticles and their diverse applications. RSC Adv. 2024, 14, 11197–11216. [Google Scholar] [CrossRef]
- Duarte, A.P.; Gressier, M.; Menu, M.; Dexpert-Ghys, J.; Caiut, J.M.A.; Ribeiro, S.J.L. Structural and luminescence properties of Silica-Based hybrids containing new Silylated-Diketonato Europium(III) complex. J. Phys. Chem. C 2012, 116, 505–515. [Google Scholar] [CrossRef]
- Han, L.; Dong, X.Z.; Liu, S.G.; Wang, X.H.; Ling, Y.; Li, N.B.; Luo, H.Q. A multi-ratiometric fluorescence sensor integrated intrinsic signal amplification strategy for a sensitive and visual assay of the anthrax biomarker based on a bimetallic lanthanide metal–organic framework. Environ. Sci. Nano 2023, 10, 683–693. [Google Scholar] [CrossRef]
- Huang, C.Y.; Ma, R.X.; Luo, Y.X.; Shi, G.Y.; Deng, J.J.; Zhou, T.S. Stimulus response of TPE-TS@Eu/GMP ICPs: Toward colorimetric sensing of an anthrax biomarker with double ratiometric fluorescence and its coffee ring test kit for Point-of-Use application. Anal. Chem. 2020, 92, 12934–12942. [Google Scholar] [CrossRef]
- Guo, L.; Liang, M.S.; Wang, X.L.; Kong, R.M.; Chen, G.; Xia, L.; Qu, F.L. The role of l-histidine as molecular tongs: A strategy of grasping Tb3+ using ZIF-8 to design sensors for monitoring an anthrax biomarker on-the-spot. Chem. Sci. 2020, 11, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, J.J.; Cao, C.; Cao, L.; Zheng, T.F.; Wen, H.R.; Liu, S.J. A stable Zn(II) metal–organic framework as Turn-On and Blue-Shift fluorescence sensor for amino acids and dipicolinic acid in living cells or using aerosol jet printing. Inorg. Chem. 2025, 64, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.L.; Chen, B.B.; He, J.H.; Li, C.M.; Li, Y.F.; Huang, C.Z. Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots. Talanta 2019, 191, 443–448. [Google Scholar] [CrossRef]
- Ghinaiya, N.V.; Patel, M.R.; Park, T.J.; Kailasa, S.K. Synthesis of phenothiazine lead chloride perovskite quantum dots for fluorescence detection of dipicolinic acid in aqueous medium. Mikrochim. Acta 2025, 192, 365. [Google Scholar] [CrossRef]
- Yuan, M.; Jin, Y.; Yu, L.; Bu, Y.M.; Sun, M.T.; Yuan, C.; Wang, S.H. Europium-modified carbon nitride nanosheets for smartphone-based fluorescence sensitive recognition of anthrax biomarker dipicolinic acid. Food Chem. 2023, 398, 133884. [Google Scholar] [CrossRef]
- Kong, R.M.; Liang, N.; Guo, S.X.; Ge, X.Y. Dual-emission europium metal-organic framework as fluorescent sensor for sensitive detection of anthrax biomarkers. Microchem. J. 2025, 215, 114322. [Google Scholar] [CrossRef]
- Abbas, Z.; Dasari, S.; Beltrán-Leiva, M.J.; Cantero-López, P.; Páez-Hernández, D.; Arratia-Pérez, R.; Butcher, R.J.; Patra, A.K. Luminescent europium(III) and terbium(III) complexes of β-diketonate and substituted terpyridine ligands: Synthesis, crystal structures and elucidation of energy transfer pathways. New J. Chem. 2019, 43, 15139–15152. [Google Scholar] [CrossRef]
- Yadav, U.; Abbas, Z.; Butcher, R.J.; Patra, A.K. A luminescent terbium(III) probe as an efficient ‘turn-on’ sensor for dipicolinic acid, a bacillus anthracis biomarker. New J. Chem. 2022, 46, 18285–18294. [Google Scholar] [CrossRef]
- Monteiro, J.H.S.K. Recent advances in luminescence imaging of biological systems using lanthanide(III) luminescent complexes. Molecules 2020, 25, 2089. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Ouyang, H.; Zhou, Y.; Yang, X.; Wang, Q.; Ding, Y.; Yu, H. Design, Synthesis and Sensing Application of Novel Dual Lanthanide Doped Core–Shell Fluorescent Silica-Based Nanoparticles. Biosensors 2025, 15, 636. https://doi.org/10.3390/bios15100636
Li Q, Ouyang H, Zhou Y, Yang X, Wang Q, Ding Y, Yu H. Design, Synthesis and Sensing Application of Novel Dual Lanthanide Doped Core–Shell Fluorescent Silica-Based Nanoparticles. Biosensors. 2025; 15(10):636. https://doi.org/10.3390/bios15100636
Chicago/Turabian StyleLi, Qiuping, Hongxia Ouyang, You Zhou, Xinghui Yang, Qi Wang, Yonghong Ding, and Haichao Yu. 2025. "Design, Synthesis and Sensing Application of Novel Dual Lanthanide Doped Core–Shell Fluorescent Silica-Based Nanoparticles" Biosensors 15, no. 10: 636. https://doi.org/10.3390/bios15100636
APA StyleLi, Q., Ouyang, H., Zhou, Y., Yang, X., Wang, Q., Ding, Y., & Yu, H. (2025). Design, Synthesis and Sensing Application of Novel Dual Lanthanide Doped Core–Shell Fluorescent Silica-Based Nanoparticles. Biosensors, 15(10), 636. https://doi.org/10.3390/bios15100636