Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = SiO2 Planarization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3779 KB  
Article
In Situ Optical Monitoring and Morphological Evolution of Si Nanowires Grown on Faceted Al2O3(0001) Substrates
by Olzat Toktarbaiuly, Mergen Zhazitov, Muhammad Abdullah, Yerbolat Tezekbay, Nazerke Kydyrbay, Nurxat Nuraje and Tolagay Duisebayev
Nanomaterials 2025, 15(20), 1589; https://doi.org/10.3390/nano15201589 - 17 Oct 2025
Viewed by 345
Abstract
This paper presents the growth and in situ optical characterization of silicon nanowires (Si NWs) on Al2O3(0001) substrates that are thermally faceted using the atomic low angle shadowing technique (ATLAS) method. Annealing Al2O3 substrates in air [...] Read more.
This paper presents the growth and in situ optical characterization of silicon nanowires (Si NWs) on Al2O3(0001) substrates that are thermally faceted using the atomic low angle shadowing technique (ATLAS) method. Annealing Al2O3 substrates in air before surface faceting was used for the first time, as identified by atomic force microscopy (AFM). Planar Si NW arrays were subsequently deposited and characterized in real-time by reflectance anisotropy spectroscopy (RAS). RAS measurements detected irreversible spectral changes during growth, e.g., red-shift in peak energy for marking amorphous Si NW formation. Blue-shifts in RAS spectra following annealing post-growth at varied temperatures were found to be associated with structural nanowire development. AFM analysis following annealing detected dramatic changes in morphology, e.g., quantifiable differences in NW height and thickness and complete disappearance of nanowire structures at high temperatures. These results confirm the validity of in situ RAS as a monitoring tool for nanowire growth and illustrate Si NW morphology’s sensitivity to thermal processing. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

16 pages, 3467 KB  
Article
Coordination-Driven Rare Earth Fractionation in Kuliokite-(Y), (Y,HREE)4Al(SiO4)2(OH)2F5: A Crystal–Chemical Study
by Sergey V. Krivovichev, Victor N. Yakovenchuk, Olga F. Goychuk and Yakov A. Pakhomovsky
Minerals 2025, 15(10), 1064; https://doi.org/10.3390/min15101064 - 10 Oct 2025
Viewed by 183
Abstract
The crystal structure of kuliokite-(Y), Y4Al(SiO4)2(OH)2F5, has been re-investigated using the material from the type locality the Ploskaya Mt, Kola peninsula, Russian Arctic. It has been shown that in contrast to previous studies, [...] Read more.
The crystal structure of kuliokite-(Y), Y4Al(SiO4)2(OH)2F5, has been re-investigated using the material from the type locality the Ploskaya Mt, Kola peninsula, Russian Arctic. It has been shown that in contrast to previous studies, the mineral is monoclinic, Im, with a = 4.3213(1), b = 14.8123(6), c = 8.6857(3) Å, β = 102.872(4)°, and V = 541.99(3) Å3. The crystal structure was solved and refined to R1 = 0.030 on the basis of 3202 unique observed reflections. The average chemical composition determined by electron microprobe analysis is (Y2.96Yb0.49Er0.27Dy0.13Tm0.07Lu0.05Ho0.05Gd0.01Ca0.01)Σ4.04Al0.92Si2.04O8-[(OH)2.61F4.42]Σ7.03; the idealized formula is (Y,Yb,Er)4Al[SiO4]2(OH)2.5F4.5. The crystal structure of kuliokite-(Y) contains two symmetrically independent Y sites, Y1 and Y2, coordinated by eight and seven X anions, respectively (X = O, F). The coordination polyhedra can be described as a distorted square antiprism and a distorted pentagonal bipyramid, respectively. The refinement of site occupancies indicated that the mineral represents a rare case of HREE fractionation among two cation sites driven by their coordination numbers and geometry. In agreement with the lanthanide contraction, HREEs are selectively incorporated into the Y2 site with a smaller coordination number and tighter coordination environment. The strongest building unit of the structure is the [AlX2(SiO4)2] chain of corner-sharing AlX6 octahedra and SiO4 tetrahedra running along the a axis. The chains have their planes oriented parallel to (001). The Y atoms are located in between the chains, along with the F and (OH) anions, providing the three-dimensional integrity of the crystal structure. Each F anion is coordinated by three Y3+ cations to form planar (FY3)8+ triangles parallel to the (010) plane. The triangles share common edges to form [F2Y2]4+ chains parallel to the a axis. The analysis of second-neighbor coordination of Y sites allowed us to identify the structural topology of kuliokite-(Y) as the only case of the skd network in inorganic compounds, previously known in molecular structures only. The variety of anionic content in the mineral allows us to identify the potential existence of two other mineral species that can tentatively be named ‘fluorokuliokite-(Y)’ and ‘hydroxykuliokite-(Y)’. Full article
Show Figures

Figure 1

13 pages, 2566 KB  
Article
Process Temperature Control for Low Dishing in CMP
by Yeongil Shin, Jongmin Jeong, Jiho Shin and Haedo Jeong
Materials 2025, 18(19), 4461; https://doi.org/10.3390/ma18194461 - 24 Sep 2025
Viewed by 478
Abstract
Growing demand for high-performance system semiconductors has highlighted the importance of hybrid bonding, where precise control of copper dishing is essential. This requirement reinforces the role of chemical mechanical planarization (CMP). Many studies have sought to control dishing by modifying slurry chemistry or [...] Read more.
Growing demand for high-performance system semiconductors has highlighted the importance of hybrid bonding, where precise control of copper dishing is essential. This requirement reinforces the role of chemical mechanical planarization (CMP). Many studies have sought to control dishing by modifying slurry chemistry or adjusting mechanical parameters, but these approaches have not been sufficient. This study addresses the overlooked effect of process temperature and demonstrates its role in integrating both chemical and mechanical behaviors in CMP. Removal rates of Cu, Ta, and SiO2 films were evaluated through blanket wafer experiments, and all exhibited Arrhenius-type behavior as a function of temperature and activation energy. The results showed that maintaining the process temperature at 30 °C balanced selectivity and minimized dishing on patterned wafers. To enable precise temperature control, a vortex-tube-based pad cooling system was developed. Without temperature control, dishing increased by 12 nm in the 100 µm pattern and 16 nm in the 50 µm pattern. With temperature control, dishing was reduced to 4 nm and below 1 nm, respectively. These results demonstrate that process temperature is a key parameter for controlling selectivity and ensuring precise dishing control, which is critical to meeting the requirements of hybrid bonding. Full article
Show Figures

Figure 1

23 pages, 5665 KB  
Article
Ultra-Broadband Solar Absorber Design Covering UV to NIR Range Based on Cr–SiO2 Metamaterial Planar Stacked Structures
by Wei-Ling Hsu, Xin-Yu Lin, Chia-Min Ho, Cheng-Fu Yang and Kuei-Kuei Lai
Photonics 2025, 12(9), 907; https://doi.org/10.3390/photonics12090907 - 10 Sep 2025
Viewed by 608
Abstract
This paper presents the design of an ultrabroadband solar absorber, developed using a metamaterial stack composed of only two materials, consisting of alternating layers of Cr and SiO2. Starting with a Cr layer as the substrate, multiple pairs of Cr and [...] Read more.
This paper presents the design of an ultrabroadband solar absorber, developed using a metamaterial stack composed of only two materials, consisting of alternating layers of Cr and SiO2. Starting with a Cr layer as the substrate, multiple pairs of Cr and SiO2 were stacked sequentially, where one Cr layer and one SiO2 layer constitute a single pair. To further enhance performance, a cylindrical Cr structure was added to the top. A key innovation of this work lay in its material simplicity and cost efficiency, relying solely on two inexpensive materials, Cr and SiO2. Additionally, the inclusion of the top Cr cylinder was found to significantly enhance absorptivity. Simulations demonstrate that removing this feature led to a noticeable reduction in absorptivity of approximately 10% across the 500–2000 nm wavelength range. Another important finding is the effect of the number of Cr–SiO2 pairs on absorption behavior. When the number of pairs increases from four to five, the average absorptivity decreases slightly, but the absorption bandwidth is notably broadened. Further increasing six pairs resulted in a marginal increase in bandwidth, while maintaining the average absorptivity. Moreover, a low-absorptivity dip at 360 nm was slightly mitigated, rising to approximately 0.900. Based on these insights, a six-pair metamaterial structure was chosen for further optimization. Utilizing COMSOL Multiphysics® simulation software (version 6.0), the absorber was successfully engineered to achieve high performance across an exceptionally broad spectral range, from 200 nm to 2160 nm. Under optimal design parameters, it exhibited an average absorptivity of 0.950, with absorptivity consistently exceeding 0.900 throughout this range. This demonstrates the absorber’s strong potential for efficient solar energy harvesting using a structurally simple and cost-effective design. Full article
Show Figures

Figure 1

16 pages, 3068 KB  
Article
Reconfigurable GeTe’s Planar RGB Resonator Filter–Absorber
by Israel Alves Oliveira, Vitaly F. Rodriguez-Esquerre and Igor L. Gomes de Souza
Crystals 2025, 15(9), 789; https://doi.org/10.3390/cryst15090789 - 3 Sep 2025
Viewed by 596
Abstract
This study presents a reconfigurable planar photonic device capable of dynamically switching between optical filter and absorber functionalities by exploiting the phase transition properties of GeTe, a chalcogenide phase-change material. The device adopts a Metal–Dielectric–PCM architecture composed of silver (Ag), silicon dioxide (SiO [...] Read more.
This study presents a reconfigurable planar photonic device capable of dynamically switching between optical filter and absorber functionalities by exploiting the phase transition properties of GeTe, a chalcogenide phase-change material. The device adopts a Metal–Dielectric–PCM architecture composed of silver (Ag), silicon dioxide (SiO2), and GeTe layers, each playing a distinct role: the silver layer governs the transmission and absorption efficiency, the SiO2 layer controls the resonance conditions, and the GeTe layer determines the device’s scattering behavior via its tunable optical losses. Numerical simulations revealed that the structure enables high RGB transmission in the amorphous state and broadband absorption in the crystalline state. By adjusting geometric parameters—especially the metallic thickness—the device exhibits finely tunable spectral responses under varying polarizations and incidence angles. These findings highlight the synergistic interplay between material functionality and layer configuration, positioning this platform as a compact and energy-efficient solution for applications in tunable photonics, optical sensing, and programmable metasurfaces. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

23 pages, 6275 KB  
Article
Effects of Hydrolysis Reaction and Abrasive Drag Force Accelerator on Enhancing Si-Wafer Polishing Rate and Improving Si-Wafer Surface Roughness
by Min-Uk Jeon, Pil-Su Kim, Man-Hyup Han, Se-Hui Lee, Hye-Min Lee, Su-Bin Kim, Jin-Hyung Park, Kyoo-Chul Cho, Jinsub Park and Jea-Gun Park
Nanomaterials 2025, 15(16), 1248; https://doi.org/10.3390/nano15161248 - 14 Aug 2025
Viewed by 708
Abstract
To satisfy the superior surface quality requirements in the fabrication of HBM (High-Bandwidth Memory) and 3D NAND Flash Memory, high-efficiency Si chemical mechanical planarization (CMP) is essential. In this study, a colloidal silica abrasive-based Si-wafer CMP slurry was developed to simultaneously achieve a [...] Read more.
To satisfy the superior surface quality requirements in the fabrication of HBM (High-Bandwidth Memory) and 3D NAND Flash Memory, high-efficiency Si chemical mechanical planarization (CMP) is essential. In this study, a colloidal silica abrasive-based Si-wafer CMP slurry was developed to simultaneously achieve a high polishing rate (≥10 nm/min) and low surface roughness (≤0.2 nm) without inducing CMP-induced scratches. The proposed Si-wafer CMP slurry incorporates two functional components: triammonium phosphate (TAP) as a hydrolysis reaction accelerator and hydroxyethyl cellulose (HEC) as an abrasive drag force accelerator. The polishing rate enhancement mechanism of TAP was analyzed by monitoring the OH mol concentration, surface adsorption behavior, and XPS spectra. The results showed that increasing the TAP concentration raised the OH mol concentration and converted Si–Si and Si–O–Si bonds to Si–OH via a hydrolysis reaction, thereby increasing the polishing rate. However, excessive hydrolysis also led to increased surface roughness. On the other hand, HEC influenced slurry viscosity, abrasive dispersibility, and drag force. At low HEC concentrations, increased abrasive drag force improved the polishing rate. At high concentrations, however, HEC formed a hindrance layer on the Si surface via hydrogen bonding and condensation reactions, reducing the effective contact area of abrasives and thus decreasing the polishing rate. By optimizing the concentrations of TAP (0.0037 wt%) and HEC (≤0.0024 wt%), the proposed slurry formulation achieved high-performance Si-wafer CMP, satisfying both surface roughness and polishing rate targets required for advanced memory packaging applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

15 pages, 3537 KB  
Article
High-Efficiency Broadband Selective Photothermal Absorbers Based on Multilayer Chromium Films
by Chu Li, Er-Tao Hu, Yu-Xiang Zheng, Song-You Wang, Yue-Mei Yang, Young-Pak Lee, Jun-Peng Guo, Qing-Yuan Cai, Wei-Bo Duan and Liang-Yao Chen
Crystals 2025, 15(6), 562; https://doi.org/10.3390/cryst15060562 - 14 Jun 2025
Viewed by 533
Abstract
Photothermal conversion is a pivotal energy transformation mechanism in solar energy systems. Achieving high-efficiency and broadband photothermal conversion within the solar radiation spectrum holds strategic significance in driving the innovative development of renewable energy technologies. In this study, a transmission matrix method was [...] Read more.
Photothermal conversion is a pivotal energy transformation mechanism in solar energy systems. Achieving high-efficiency and broadband photothermal conversion within the solar radiation spectrum holds strategic significance in driving the innovative development of renewable energy technologies. In this study, a transmission matrix method was employed to design an interference-type solar selective absorber based on multilayer Cr-SiO2 planar films, successfully achieving an average absorption of 94% throughout the entire solar spectral range. Further analysis indicates that this newly designed absorber shows excellent absorption performance even at a relatively large incident angle (up to 60°). Additionally, the newly designed absorber demonstrates lower polarization sensitivity, enabling efficient operation under complicated incident conditions. With its simple fabrication process and ease of preparation, the proposed absorber holds substantial potential for applications in photothermal conversion fields such as solar thermal collectors. Full article
(This article belongs to the Special Issue Preparation and Characterization of Optoelectronic Functional Films)
Show Figures

Figure 1

14 pages, 4885 KB  
Article
Monodisperse SiO2 Spheres: Efficient Synthesis and Applications in Chemical Mechanical Polishing
by Jinlong Ge, Yu Cao, Hui Han, Xiaoqi Jin, Jing Liu, Yuhong Jiao, Qiuqin Wang and Yan Gao
Nanomaterials 2025, 15(9), 665; https://doi.org/10.3390/nano15090665 - 27 Apr 2025
Viewed by 1069
Abstract
The atomic level polishing of a material surface affects the accuracy of devices and the application of materials. Silica slurries play an important role in chemical mechanical polishing (CMP) by polishing the material surface. In this study, an efficient and controllable Stöber approach [...] Read more.
The atomic level polishing of a material surface affects the accuracy of devices and the application of materials. Silica slurries play an important role in chemical mechanical polishing (CMP) by polishing the material surface. In this study, an efficient and controllable Stöber approach was developed to synthesize uniform monodisperse silica spheres with different cationic surfactants. The obtained silica spheres exhibited a regular shape with a particle size of 50–150 nm and were distributed evenly and narrowly. The highest surface specific area of the silica spheres was approximately 1155.9 m2/g, which was conducive to the polish process. The monodisperse SiO2 spheres were applied as abrasives in chemical mechanical polishing. The surface micrographs of silicon wafers during the CMP process were studied using atomic force microscopy (AFM). The results demonstrated that the surface roughness Ra values reduced from 1.07 nm to 0.979 nm and from 1.05 nm to 0.933 nm when using a CTAB-SiO2 microsphere as an abrasive. These results demonstrate the advantages of monodisperse SiO2 spheres as abrasive materials in chemical mechanical planarization processes. Full article
(This article belongs to the Topic Surface Science of Materials)
Show Figures

Figure 1

15 pages, 3554 KB  
Article
Study of ZrO2 Gate Dielectric with Thin SiO2 Interfacial Layer in 4H-SiC Trench MOS Capacitors
by Qimin Huang, Yunduo Guo, Anfeng Wang, Zhaopeng Bai, Lin Gu, Zhenyu Wang, Chengxi Ding, Yi Shen, Hongping Ma and Qingchun Zhang
Materials 2025, 18(8), 1741; https://doi.org/10.3390/ma18081741 - 10 Apr 2025
Cited by 2 | Viewed by 1119
Abstract
The transition of SiC MOSFET structure from planar to trench-based architectures requires the optimization of gate dielectric layers to improve device performance. This study utilizes a range of characterization techniques to explore the interfacial properties of ZrO2 and SiO2/ZrO2 [...] Read more.
The transition of SiC MOSFET structure from planar to trench-based architectures requires the optimization of gate dielectric layers to improve device performance. This study utilizes a range of characterization techniques to explore the interfacial properties of ZrO2 and SiO2/ZrO2 gate dielectric films, grown via atomic layer deposition (ALD) in SiC epitaxial trench structures to assess their performance and suitability for device applications. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements showed the deposition of smooth film morphologies with roughness below 1 nm for both ZrO2 and SiO2/ZrO2 gate dielectrics, while SE measurements revealed comparable physical thicknesses of 40.73 nm for ZrO2 and 41.55 nm for SiO2/ZrO2. X-ray photoelectron spectroscopy (XPS) shows that in SiO2/ZrO2 thin films, the binding energies of Zr 3d5/2 and Zr 3d3/2 peaks shift upward compared to pure ZrO2. Electrical characterization showed an enhancement of EBR (3.76 to 5.78 MV·cm−1) and a decrease of ION_EBR (1.94 to 2.09 × 10−3 A·cm−2) for the SiO2/ZrO2 stacks. Conduction mechanism analysis identified suppressed Schottky emission in the stacked film. This indicates that the incorporation of a thin SiO2 layer effectively mitigates the small bandgap offset, enhances the breakdown electric field, reduces leakage current, and improves device performance. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

16 pages, 2805 KB  
Article
Numerical Investigation of Perovskite/Silicon Heterojunction Tandem Solar Cell with a Dual-Functional Layer of MoOX
by Tian-Yu Lu, Jin Wang and Xiao-Dong Feng
Materials 2025, 18(7), 1438; https://doi.org/10.3390/ma18071438 - 24 Mar 2025
Viewed by 843
Abstract
This study proposed a novel perovskite/silicon heterojunction (SHJ) tandem device structure without an interlayer, represented as ITO/NiO/perovskite/SnO2/MoOX/i-a-Si:H/n-c-Si/i-a-Si:H/n-a-Si:H/Ag, which was investigated by Silvaco TCAD software. The recombination layer in this structure comprises the carrier transport layers of SnO2 and [...] Read more.
This study proposed a novel perovskite/silicon heterojunction (SHJ) tandem device structure without an interlayer, represented as ITO/NiO/perovskite/SnO2/MoOX/i-a-Si:H/n-c-Si/i-a-Si:H/n-a-Si:H/Ag, which was investigated by Silvaco TCAD software. The recombination layer in this structure comprises the carrier transport layers of SnO2 and MoOX, where MoOX serves dual functions, acting as the emitter for the SHJ bottom cell and as part of the recombination layer in the tandem cell. First, the effects of different recombination layers are analyzed, and the SnO2/MoOX layer demonstrates the best performance. Then, we systematically investigated the impact of the carrier concentration, interface defect density, thicknesses of the SnO2/MoOX layer, different hole transport layers (HTLs) for the top cell, absorption layer thicknesses, and perovskite defect density on device performance. The optimal carrier concentration in the recombination layer should exceed 5 × 1019 cm−3, the interface defect density should be below 1 × 1016 cm−2, and the thicknesses of SnO2/MoOX should be kept at 20 nm/20 nm. CuSCN has been found to be the optimal HTL for the top cell. When the silicon absorption layer is 200 μm, the perovskite layer thickness is 470 nm, and the defect density of the perovskite layer is 1011 cm−3, the planar structure can achieve the best performance of 32.56%. Finally, we studied the effect of surface texturing on the SHJ bottom cell, achieving a power conversion efficiency of 35.31% for the tandem cell. Our simulation results suggest that the simplified perovskite/SHJ tandem solar cell with a dual-functional MoOX layer has the potential to provide a viable pathway for developing high-efficiency tandem devices. Full article
(This article belongs to the Special Issue Recent Advances in Semiconductors for Solar Cell Devices)
Show Figures

Figure 1

11 pages, 15832 KB  
Article
A Pathway for the Integration of Novel Ferroelectric Thin Films on Non-Planar Photonic Integrated Circuits
by Enes Lievens, Kobe De Geest, Ewout Picavet, Liesbet Van Landschoot, Henk Vrielinck, Gilles Freddy Feutmba, Hannes Rijckaert, Klaartje De Buysser, Dries Van Thourhout, Peter Bienstman and Jeroen Beeckman
Micromachines 2025, 16(3), 334; https://doi.org/10.3390/mi16030334 - 13 Mar 2025
Cited by 1 | Viewed by 1221
Abstract
The heterogeneous integration of ferroelectric thin films on silicon- or silicon nitride-based platforms for photonic integrated circuits plays a crucial role in the development of nanophotonic thin film modulators. For this purpose, an ultrathin seed film was recently introduced as an integration method [...] Read more.
The heterogeneous integration of ferroelectric thin films on silicon- or silicon nitride-based platforms for photonic integrated circuits plays a crucial role in the development of nanophotonic thin film modulators. For this purpose, an ultrathin seed film was recently introduced as an integration method for ferroelectric thin films such as BaTiO3 and Pb(Zr,Ti)O3. One issue with this self-orienting seed film is that for non-planarized circuits, it fails to act as a template film for the thin films. To circumvent this problem, we propose a method of planarization without the need for wafer-scale chemical mechanical polishing by using hydrogen silsesquioxane as a precursor to forming amorphous silica, in order to create an oxide cladding similar to the thermal oxide often present on silicon-based platforms. Additionally, this oxide cladding is compatible with the high annealing temperatures usually required for the deposition of these novel ferroelectric thin films (600–800 °C). The thickness of this silica film can be controlled through a dry etch process, giving rise to a versatile platform for integrating nanophotonic thin film modulators on a wider variety of substrates. Using this method, we successfully demonstrate a hybrid BaTiO3-Si ring modulator with a high Pockels coefficient of rwg=155.57±10.91 pm V−1 and a half-wave voltage-length product of VπL=2.638±0.084 V cm, confirming the integration of ferroelectric thin films on an initially non-planar substrate. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

14 pages, 4571 KB  
Article
High-Breakdown and Low-Leakage 4H-SiC MOS Capacitor Based on HfO2/SiO2 Stacked Gate Dielectric in Trench Structures
by Qimin Huang, Yunduo Guo, Anfeng Wang, Lin Gu, Zhenyu Wang, Chengxi Ding, Yi Shen, Hongping Ma and Qingchun Zhang
Nanomaterials 2025, 15(5), 343; https://doi.org/10.3390/nano15050343 - 22 Feb 2025
Cited by 5 | Viewed by 2882
Abstract
The progression of SiC MOSFET technology from planar to trench structures requires optimized gate oxide layers within the trench to enhance device performance. In this study, we investigated the interface characteristics of HfO2 and SiO2/HfO2 gate dielectrics grown by [...] Read more.
The progression of SiC MOSFET technology from planar to trench structures requires optimized gate oxide layers within the trench to enhance device performance. In this study, we investigated the interface characteristics of HfO2 and SiO2/HfO2 gate dielectrics grown by atomic layer deposition (ALD) on SiC trench structures. The trench structure morphology was revealed using scanning electron microscopy (SEM). Atomic force microscopy (AFM) measurements showed that the roughness of both films was below 1nm. Spectroscopic ellipsometry (SE) indicated that the physical thicknesses of HfO2 and SiO2/HfO2 were 38.275 nm and 40.51 nm, respectively, demonstrating their comparable thicknesses. X-ray photoelectron spectroscopy (XPS) analysis of the gate dielectrics revealed almost identical Hf 4f core levels for both HfO2 and the SiO2/HfO2 composite dielectrics, suggesting that the SiO2 interlayer and the SiC substrate had minimal impact on the electronic structure of the HfO2 film. The breakdown electric field of the HfO2 film was recorded as 4.1 MV/cm, with a leakage current at breakdown of 1.1 × 10−3A/cm2. The SiO2/HfO2 stacked film exhibited significantly better performance, with a breakdown electric field of 6.5 MV/cm and a marked reduction in leakage current to 3.7 × 10−4 A/cm2. A detailed extraction and analysis of the leakage current mechanisms were proposed, and the data suggested that the introduction of thin SiO2 interfacial layers effectively mitigated small bandgap offset issues, significantly reducing leakage current and improving device performance. Full article
Show Figures

Figure 1

11 pages, 13085 KB  
Article
Mechanism of OH*-Modified 4H-SiC Surface with Scratches Based on ReaxFF MD Simulation
by Dongxiao Yan, Hui Huang, Mingpu Xue and Nian Duan
Micromachines 2025, 16(2), 184; https://doi.org/10.3390/mi16020184 - 3 Feb 2025
Viewed by 1332
Abstract
OH* generated through plasma catalysis offers several advantages, including a long survival time, high modification efficiency, and environmental friendliness. Consequently, a plasma-assisted polishing technology has rapidly developed. Previous studies exploring the interaction mechanism between OH* and 4H-SiC have often assumed flat surfaces. However, [...] Read more.
OH* generated through plasma catalysis offers several advantages, including a long survival time, high modification efficiency, and environmental friendliness. Consequently, a plasma-assisted polishing technology has rapidly developed. Previous studies exploring the interaction mechanism between OH* and 4H-SiC have often assumed flat surfaces. However, in the surface modification experiments on 4H-SiC, the actual surface morphology was not flat but contained numerous scratches. Therefore, this study investigated the interaction mechanism of OH* on an uneven surface using reactive force field molecular dynamics (ReaxFF MD) simulations. The results show that in the low-speed OH* modification process, the adsorption effect leads to a thicker modified layer at higher locations than at lower locations. The resulting modified layer can be removed by soft abrasive mechanical polishing to achieve surface flatness, but there will be a modified layer on the surface, which needs to be modified and polished several times. In contrast, during high-speed OH* modification, high-speed particle bombardment causes more Si-O bonds to diffuse into the scratches, resulting in the formation of a flat bonding layer with surface planarization achieved after a single polishing step. The interaction mechanism of OH* with the uneven surface at different speeds, as obtained through ReaxFF MD, provides a theoretical foundation for subsequent polishing experiments. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

10 pages, 2327 KB  
Article
Electric Field-Enhanced SERS Detection Using MoS2-Coated Patterned Si Substrate with Micro-Pyramid Pits
by Tsung-Shine Ko, Hsiang-Yu Hsieh, Chi Lee, Szu-Hung Chen, Wei-Chun Chen, Wei-Lin Wang, Yang-Wei Lin and Sean Wu
Nanomaterials 2024, 14(22), 1852; https://doi.org/10.3390/nano14221852 - 20 Nov 2024
Cited by 1 | Viewed by 1404
Abstract
This study utilized semiconductor processing techniques to fabricate patterned silicon (Si) substrates with arrays of inverted pyramid-shaped micro-pits by etching. Molybdenum trioxide (MoO3) was then deposited on these patterned Si substrates using a thermal evaporation system, followed by two-stage sulfurization in [...] Read more.
This study utilized semiconductor processing techniques to fabricate patterned silicon (Si) substrates with arrays of inverted pyramid-shaped micro-pits by etching. Molybdenum trioxide (MoO3) was then deposited on these patterned Si substrates using a thermal evaporation system, followed by two-stage sulfurization in a high-temperature furnace to grow MoS2 thin films consisting of only a few atomic layers. During the dropwise titration of Rhodamine 6G (R6G) solution, a longitudinal electric field was applied using a Keithley 2400 (Cleveland, OH, USA) source meter. Raman mapping revealed that under a 100 mV condition, the analyte R6G molecules were effectively confined within the pits. Due to its two-dimensional structure, MoS2 provides a high surface area and supports a surface-enhanced Raman scattering (SERS) charge transfer mechanism. The SERS results demonstrated that the intensity in the pits of the few-layer MoS2/patterned Si SERS substrate was approximately 274 times greater compared to planar Si, with a limit of detection reaching 10−5 M. The experimental results confirm that this method effectively resolves the issue of random distribution of analyte molecules during droplet evaporation, thereby enhancing detection sensitivity and stability. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Metamaterials)
Show Figures

Figure 1

15 pages, 11613 KB  
Article
Gate Oxide Reliability in Silicon Carbide Planar and Trench Metal-Oxide-Semiconductor Field-Effect Transistors Under Positive and Negative Electric Field Stress
by Limeng Shi, Jiashu Qian, Michael Jin, Monikuntala Bhattacharya, Shiva Houshmand, Hengyu Yu, Atsushi Shimbori, Marvin H. White and Anant K. Agarwal
Electronics 2024, 13(22), 4516; https://doi.org/10.3390/electronics13224516 - 18 Nov 2024
Cited by 6 | Viewed by 5216
Abstract
This work investigates the gate oxide reliability of commercial 1.2 kV silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) with planar and trench gate structures. The performance of threshold voltage (Vth) and gate leakage current [...] Read more.
This work investigates the gate oxide reliability of commercial 1.2 kV silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) with planar and trench gate structures. The performance of threshold voltage (Vth) and gate leakage current (Igss) in SiC MOSFETs is evaluated under positive and negative gate voltage stress. The oxide lifetimes of SiC planar and trench MOSFETs at 150 °C are measured using constant voltage Time-Dependent Dielectric Breakdown (TDDB) testing. From the test results, it is found that electron trapping and hole trapping in SiO2 caused by oxide electric field (Eox) stress affect the Vth of SiC MOSFETs. The saturation and turnaround behavior of the Vth shift during positive and negative gate voltage stresses indicates that the influence of charge trapping in the gate oxide varies with stress time. The Igss under positive and negative gate voltages depends on the tunneling barrier height for electrons and holes, respectively, which can be calculated using the Fowler–Nordheim (FN) tunneling mechanism. Moreover, the presence of near-interface traps (NITs) affects the barrier height for holes under negative gate voltages. The behavior of Vth shift and Igss under high-temperature gate bias reflects the charge trapping occurring in different regions of the gate oxide. In addition, compared to SiC planar MOSFETs, SiC trench MOSFETs with thicker gate oxide tend to exhibit higher lifetimes in TDDB tests. Full article
Show Figures

Figure 1

Back to TopTop