Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = Si-H bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5166 KiB  
Article
Investigation of a Volcanic Rock-Derived Coagulant for Water Purification: A Study of Its Preparation Process
by Lei Zhou, Zhangrui Yang, Xiaoyong Liu, Xiaoben Yang, Xuewen Wu, Yong Zhou and Guocheng Zhu
Water 2025, 17(15), 2279; https://doi.org/10.3390/w17152279 - 31 Jul 2025
Viewed by 134
Abstract
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. [...] Read more.
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. Further investigation into the influence of synthetic parameters, such as calcination temperature, reaction time, and alkali types, on the structure and performance of a volcanic rock-derived coagulant was conducted. Techniques including Scanning Electron Microscopy, Energy-Dispersive Spectroscopy, Fourier-Transform Infrared Spectroscopy, and X-Ray Diffraction were utilized to characterize it. Also, a ferron-complexation timed spectrophotometric method was used to study the distribution of aluminum species in the coagulant. Results indicated that the volcanic rock that was treated with acidic and alkaline solutions had the potential to form PSAC with Al-OH, Al-O-Si, Fe-OH, and Fe-O-Si bonds, which influenced the coagulation–flocculation efficiency. An acid leaching temperature of 90 °C, 8 mL of 2 mol/L NaOH, a reaction time of 0.5 h, and a reaction temperature of 60 °C were conducive to the preparation. A higher temperature could result in a higher proportion of Alb species, and, at 100 °C, the Ala, Alc, and Alb were 29%, 24%, and 47%, respectively, achieving a residual turbidity lower than 1 NTU at an appropriate dosage, as well as a reduction of over 0.1 to 0.018 in the level of UV254. The findings of this study provide a feasible method to prepare a flocculant using volcanic rock. Further application is expected to yield good results in wastewater/water treatment. Full article
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 281
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

23 pages, 6645 KiB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 444
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

23 pages, 4508 KiB  
Article
One-Week Hydration Characteristics of Silica-Alumina Based Cementitious Materials Composed of Phosphorous Slag: Phosphorus Involved in Calcium Alumino-Silicate Hydrate Gel
by Zipei Li, Yu Wang, Jiale Zhang, Yipu Wang, Na Zhang, Xiaoming Liu and Yinming Sun
Materials 2025, 18(14), 3360; https://doi.org/10.3390/ma18143360 - 17 Jul 2025
Viewed by 294
Abstract
Phosphorous slag is an industrial by-product generated in the process of producing yellow phosphorus by electric furnace, which occupies a substantial number of land resources and causes serious environmental pollution. The comprehensive utilization of phosphorous slag is a major topic relevant to the [...] Read more.
Phosphorous slag is an industrial by-product generated in the process of producing yellow phosphorus by electric furnace, which occupies a substantial number of land resources and causes serious environmental pollution. The comprehensive utilization of phosphorous slag is a major topic relevant to the sustainability of the yellow phosphorus industry. In this paper, we attempted to utilize phosphorous slag as a supplementary cementing material to prepare silica-aluminum based cementitious material (SAC-PHS). To determine how phosphorus influences the early-age hydration reaction process of silica-aluminum based cementitious material, three groups of samples, PHS20, PHS25, and PHS30, with better mechanical properties were selected to deeply investigate their one-week hydration characteristics. Characterization results showed that the main hydration products of SAC-PHS were C-A-S-H gels and ettringite. PHS25 specimen produced more C-A-S-H gels and ettringite than the other two samples after one-week hydration. Interestingly, the P/Si atomic ratio indicated that chemical bonds were formed between Si and P during the formation of C-A-S-H gels, which improved the strength of SAC-PHS. Our findings offer valuable insights for the application of phosphorous slag in construction and building materials and promote the efficient resource utilization of phosphorous residue. Full article
Show Figures

Figure 1

13 pages, 7635 KiB  
Article
Vacuum-Assembled ZIF-67/SiO2–PEI Thin-Film Nanocomposite Membrane with Ultrahigh Permeance for Textile Wastewater Treatment
by Li Xiao, Jinyu Liu, Fan Zhang, Feng Qin, Yikai Wang, Zikang Qin, Yahui Yang, Zhongde Dai, Junfeng Zheng and Bo Tang
Polymers 2025, 17(13), 1741; https://doi.org/10.3390/polym17131741 - 22 Jun 2025
Viewed by 550
Abstract
High permeance combined with high salt/dye separation efficiency is a prerequisite for achieving zero-liquid-discharge treatment of saline textile wastewater by membrane technology. Thin-film nanocomposite (TFN) membranes incorporating porous nanoparticles offer a promising route to overcome the permeability–selectivity trade-off of conventional polymer membranes. In [...] Read more.
High permeance combined with high salt/dye separation efficiency is a prerequisite for achieving zero-liquid-discharge treatment of saline textile wastewater by membrane technology. Thin-film nanocomposite (TFN) membranes incorporating porous nanoparticles offer a promising route to overcome the permeability–selectivity trade-off of conventional polymer membranes. In this study, a vacuum-assisted method was used to co-blend ZIF-67 and SiO2 nanoparticles, while branched polyethyleneimine (PEI) served as a cross-linking bridge, resulting in a high-performance TFN membrane for salt/dye separation. Acting as a molecular connector, PEI coordinated with ZIF-67 through metal–amine complexation and simultaneously formed hydrogen bonds with surface hydroxyl groups on SiO2, thereby linking ZIF-67 and SiO2. The resulting membrane exhibited good hydrophilicity and excellent dye separation performance (water flux = 359.8 L m−2 h−1 bar−1; Congo Red rejection = 99.2%) as well as outstanding selectivity in dye/salt mixtures (Congo Red/MgCl2 selectivity of 1094). The optimal ZIF@SiO2-PEI membrane maintained stable dye rejection over a wide range of trans-membrane pressures, initial concentrations, and pH values. These results reveal the huge potential of applying the ZIF@SiO2-PEI TFN membranes for resource recovery in sustainable textile wastewater systems. Full article
Show Figures

Graphical abstract

25 pages, 3478 KiB  
Article
Silicon Oxycarbide Thin Films Produced by Hydrogen-Induced CVD Process from Cyclic Dioxa-Tetrasilacyclohexane
by Agnieszka Walkiewicz-Pietrzykowska, Krzysztof Jankowski, Jan Kurjata, Rafał Dolot, Romuald Brzozowski, Joanna Zakrzewska and Paweł Uznanski
Materials 2025, 18(12), 2911; https://doi.org/10.3390/ma18122911 - 19 Jun 2025
Viewed by 535
Abstract
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide [...] Read more.
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide films with the given composition and properties from a new organosilicon precursor octamethyl-1,4-dioxatetrasilacyclohexane (2D2) and its macromolecular equivalent—poly(oxybisdimethylsily1ene) (POBDMS). Layers from 2D2 precursor with different SiOC:H structure, from polymeric to ceramic-like, were produced in the remote microwave hydrogen plasma by CVD method (RHP-CVD) on a heated substrate in the temperature range of 30–400 °C. SiOC:H polymer layers from POEDMS were deposited from solution by spin coating and then crosslinked in RHP via the breaking of the Si-Si silyl bonds initiated by hydrogen radicals. The properties of SiOC:H layers obtained by both methods were compared. The density of the cross-linked materials was determined by the gravimetric method, elemental composition by means of XPS, chemical structure by FTIR spectroscopy, and NMR spectroscopy (13C, 29Si). Photoluminescence analyses and ellipsometric measurements were also performed. Surface morphology was characterized by AFM. Based on the obtained results, a mechanism of initiation, growth, and cross-linking of the CVD layers under the influence of hydrogen radicals was proposed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

16 pages, 3346 KiB  
Article
Optimizing the PECVD Process for Stress-Controlled Silicon Nitride Films: Enhancement of Tensile Stress via UV Curing and Layered Deposition
by Jianping Ning, Chunjie Niu, Zhen Tang, Yue Sun, Hao Yan and Dayu Zhou
Coatings 2025, 15(6), 708; https://doi.org/10.3390/coatings15060708 - 12 Jun 2025
Viewed by 3092
Abstract
Silicon nitride (SiN) films deposited via plasma-enhanced chemical vapor deposition (PECVD) exhibit tunable tensile stress, which is critical for various microelectronic and optoelectronic applications. In this paper, the effects of silane (SiH4) flow rate during PECVD deposition, ultraviolet (UV) curing, and [...] Read more.
Silicon nitride (SiN) films deposited via plasma-enhanced chemical vapor deposition (PECVD) exhibit tunable tensile stress, which is critical for various microelectronic and optoelectronic applications. In this paper, the effects of silane (SiH4) flow rate during PECVD deposition, ultraviolet (UV) curing, and layered deposition on the tensile stress of SiN films are mainly investigated. The results reveal that increasing the SiH4 concentration raises hydrogen incorporation, which modifies internal stress dynamics. UV curing significantly increases tensile stress by breaking N-H and Si-H bonds, facilitating hydrogen desorption, and promoting Si-N-Si crosslinking. The optimal UV curing duration stabilizes tensile stress at approximately 1570 MPa, while excessive UV power alters hydrogen content dynamics, reducing stress. Additionally, layered deposition further amplifies stress enhancement, with films subjected to multiple deposition cycles exhibiting increased densification and crosslinking. The combined optimization of PECVD deposition parameters, UV curing, and layered deposition provides a robust strategy for tailoring SiN film stress, offering a versatile approach to engineering mechanical properties for advanced applications. Full article
Show Figures

Graphical abstract

18 pages, 2369 KiB  
Article
Heat-Induced Mn2+ and Fe2+ Oxidation in Heterophyllosilicates: Kupletskite and Kupletskite-(Cs)
by Elena S. Zhitova, Andrey A. Zolotarev, Rezeda M. Sheveleva, Roman Yu. Shendrik, Frank C. Hawthorne, Anton A. Nuzhdaev, Natalia S. Vlasenko, Ekaterina V. Kaneva and Victor N. Yakovenchuk
Minerals 2025, 15(6), 587; https://doi.org/10.3390/min15060587 - 30 May 2025
Viewed by 429
Abstract
The crystal–chemical behavior of two layered titanosilicate minerals with porous crystal structures, kupletskite, K2NaMn72+Ti2(Si4O12)2O2(OH)4F, and kupletskite-(Cs), Cs2NaMn72+Ti2(Si4O [...] Read more.
The crystal–chemical behavior of two layered titanosilicate minerals with porous crystal structures, kupletskite, K2NaMn72+Ti2(Si4O12)2O2(OH)4F, and kupletskite-(Cs), Cs2NaMn72+Ti2(Si4O12)2O2(OH)4F, was investigated under high-temperature conditions using single-crystal and powder X-ray diffraction; infrared and optical absorption spectroscopy and electron-microprobe analysis. Both minerals undergo topotactic transformation to dehydroxylated and oxidized high-temperature (HT) modifications at temperature above 500 °C while maintaining the basic bond topology of the astrophyllite structure-type. The high-temperature structures show contraction of the unit-cell parameters similar to that of Fe2+-dominant astrophyllite, indicating that Mn2+ oxidizes along with Fe2+ in M(2)–M(4) sites. The oxidation of Mn2+ is confirmed by the increase of the Mn3+-related absorption (in optical spectra) that is inversely correlated with the intensity of O–H bands in the infrared spectra. The Fe,Mn-oxidation is also evident by the contraction of the M(2), M(3), and M(4)O6 octahedra. The M(1)–O bond length increases slightly, indicating a preference for mono- and divalent cations to occupy the M(1) site in the heated structure; this may be due to site-selective oxidation and/or migration of unoxidized cations (as previously shown for lobanovite) to this site. The role of extra framework A-site cations (K, Cs) in thermal expansion of these minerals is discussed. Full article
(This article belongs to the Special Issue High-Pressure and High-Temperature Mineral Physics)
Show Figures

Figure 1

13 pages, 3697 KiB  
Article
Interfacial Chemical and Electrical Performance Study and Thermal Annealing Refinement for AlTiO/4H-SiC MOS Capacitors
by Yu-Xuan Zeng, Wei Huang, Hong-Ping Ma and Qing-Chun Zhang
Nanomaterials 2025, 15(11), 814; https://doi.org/10.3390/nano15110814 - 28 May 2025
Viewed by 386
Abstract
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process [...] Read more.
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process to form a composite AlTiO gate dielectric on a 4H-SiC substrate. TDMAT and TMA were the precursors selected and deposited at 200 °C, and the samples were Ar or N2 annealed at temperatures ranging from 300 °C to 700 °C. An XPS analysis suggested that the AlTiO film had been deposited with a high overall quality and the involvement of Ti atoms had increased the interfacial bonding with the substrate. The as-deposited MOS structure had band shifts of ΔEC = 1.08 eV and ΔEV = 2.41 eV. After annealing, the AlTiO bandgap increased by 0.85 eV at most, and better band alignment was attained. Leakage current and breakdown voltage characteristic investigations were conducted after Al electrode deposition. The leakage current density and electrical breakdown field of an MOS capacitor structure with a SiC substrate were ~10−3 A/cm2 and 6.3 MV/cm, respectively. After the annealing process, both the measures of the JV performance of the MOS capacitor had improved to ~10−6 A/cm2 and 7.2 MV/cm. The interface charge Neff of the AlTiO layer was 4.019 × 1010 cm−2. The AlTiO/SiC structure fabricated in this work proved the feasibility of adjusting the properties of single-component gate dielectric materials using the ALD method, and using a suitable thermal annealing process has great potential to improve the performance of the compound MOS dielectric layer. Full article
(This article belongs to the Special Issue Advanced Studies in Wide-Bandgap Nanomaterials and Devices)
Show Figures

Figure 1

18 pages, 4195 KiB  
Article
Study of the Process of Sorption of Iron and Copper from Sulfuric Acid in Their Joint Presence by Natural Zeolite
by Raushan Kaiynbayeva, Raissa Chernyakova, Gita Sultanbayeva, Nazym Kozhabekova, Umirzak Jussipbekov and Ersin Tussupkaliyev
Crystals 2025, 15(6), 494; https://doi.org/10.3390/cryst15060494 - 22 May 2025
Viewed by 366
Abstract
The most promising method for the purification of concentrated technical sulfuric acid is the purification sorption method, which is the most effective and innovative, using a natural sorbent. Study of the process of sorption of iron and copper cations from concentrated technical sulfuric [...] Read more.
The most promising method for the purification of concentrated technical sulfuric acid is the purification sorption method, which is the most effective and innovative, using a natural sorbent. Study of the process of sorption of iron and copper cations from concentrated technical sulfuric acid by a natural zeolite. The specific surface area of the zeolite isolated from reactive sulfuric acid is 4.781 m2/g. The true absorption volume in the zeolite after the purification of sulfuric acid decreases to a value of 147.0068 mL/g for a zeolite sample. The adsorption pore volume for the zeolite after the acid purification calculated from the obtained results is 0.229 mL/g. The physicochemical methods of analysis (NGR, IR, X-ray diffraction, DTA, porosimetry, electron microscopy) and chemical methods revealed that in concentrated sulfuric acid the Fe–O bonds of octahedrons and SiO bonds of tetrahedrons of the zeolite framework are stable. The sorption process was carried out under conditions of a room temperature of T = 25 °C, the ratio “zeolite: H2SO4” of 10:100, and a process time of 5–50 min. The specified concentration of the Fe and Cu cations was created by introducing the calculated amount of FeSO4·7H2O and CuSO4·5H2O, in order to identify the patterns of the sorption process of copper and iron in their joint presence (CFe > CCu; CFe = CCu). The regularities of sorption of iron and copper cations by zeolite in their joint presence on the model system “H2SO4–zeolite–Fe–Cu” were studied and selective sorption capacity of zeolite with respect to iron cations was revealed. The maximum degree of sorption of iron cations in concentrated sulfuric acid is achieved in 10–15 min and makes up 95% and that of copper 30.6%. The process of iron sorption from sulfuric acid occurs according to the types of ion isomorphism and ion exchange, as indicated by a very high number of sorbed Fe ions and the absence of their release (desorption) from the zeolite into the solution. The Cu cations are sorbed by zeolite from acid by the ion exchange method, which is confirmed by the physicochemical analysis methods. Full article
(This article belongs to the Special Issue Adsorption Capabilities of Porous Materials)
Show Figures

Figure 1

15 pages, 4639 KiB  
Article
Simulation of the Thermodynamic Properties and Hydrophobicity of Polydimethylsiloxane Modified by Grafting Nano-SiO2 with Different Silane Coupling Agents
by Yuzhang Xie, Weiju Dai, Jingyi Yan, Zuhao Wang and Chao Tang
Materials 2025, 18(10), 2323; https://doi.org/10.3390/ma18102323 - 16 May 2025
Cited by 1 | Viewed by 637
Abstract
Polydimethylsiloxane (PDMS) with good hydrophobicity and nano-SiO2 with excellent thermal stability and mechanical properties are used as a composite coating for cellulose insulating paper in oil-immersed transformers, which effectively reduces the moisture generated by the thermal aging process, thus prolonging each transformer’s [...] Read more.
Polydimethylsiloxane (PDMS) with good hydrophobicity and nano-SiO2 with excellent thermal stability and mechanical properties are used as a composite coating for cellulose insulating paper in oil-immersed transformers, which effectively reduces the moisture generated by the thermal aging process, thus prolonging each transformer’s service life. This study employed molecular dynamics simulations to investigate the effects of surface-modified nano-SiO2 with different silane coupling agents (KH570 and KH151) on the thermodynamic properties and hydrophobicity of PDMS. Four groups of anhydrous models were constructed, namely, PDMS, P-SiO2, P-570, and P-151, as well as four corresponding groups of water-containing models: PDMS/H2O, P-SiO2/H2O, P-570/H2O, and P-151/H2O. The results demonstrate that incorporating silane-coupled nano-SiO2 into PDMS enhances mechanical properties, FFV, CED, MSD, diffusion coefficient, interaction energy, and hydrogen bond count, with KH570-grafted composites exhibiting optimal thermomechanical performance and hydrophobicity. At a temperature of 343 K, KH570 modification increased the bulk modulus and CED by 26.5% and 31.0%, respectively, while reducing the water molecular diffusion coefficient by 24.7% compared to that of unmodified PDMS/SiO2 composites. The extended KH570 chains occupy additional free volume, forming a larger steric hindrance layer, restricting molecular chain mobility, suppressing hydrogen bond formation, and establishing a low energy surface. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

16 pages, 2877 KiB  
Article
From Aromatic Motifs to Cluster-Assembled Materials: Silicon–Lithium Nanoclusters for Hydrogen Storage Applications
by Williams García-Argote, Erika Medel, Diego Inostroza, Alejandro Vásquez-Espinal, José Solar-Encinas, Luis Leyva-Parra, Lina María Ruiz, Osvaldo Yañez and William Tiznado
Molecules 2025, 30(10), 2163; https://doi.org/10.3390/molecules30102163 - 14 May 2025
Viewed by 504
Abstract
Silicon–lithium clusters are promising candidates for hydrogen storage due to their lightweight composition, high gravimetric capacities, and favorable non-covalent binding characteristics. In this study, we employ density functional theory (DFT), global optimization (AUTOMATON and Kick–MEP), and Born–Oppenheimer molecular dynamics (BOMD) simulations to evaluate [...] Read more.
Silicon–lithium clusters are promising candidates for hydrogen storage due to their lightweight composition, high gravimetric capacities, and favorable non-covalent binding characteristics. In this study, we employ density functional theory (DFT), global optimization (AUTOMATON and Kick–MEP), and Born–Oppenheimer molecular dynamics (BOMD) simulations to evaluate the structural stability and hydrogen storage performance of key Li–Si systems. The exploration of their potential energy surface (PES) reveals that the true global minima of Li6Si6 and Li10Si10 differ markedly from those of the earlier Si–Li structures proposed as structural analogs of aromatic hydrocarbons such as benzene and naphthalene. Instead, these clusters adopt compact geometries composed of one or two Si4 (Td) units and a Si2 dimer, all stabilized by surrounding Li atoms. Motivated by the recurrence of the Si4Td motif, we explore oligomers of Li4Si4, which can be viewed as electronically transmuted analogues of P4, confirming the additive H2 uptake across dimer, trimer, and tetramer assemblies. Within the series of Si–Li clusters evaluated, the Li12Si5 sandwich complex, featuring a σ-aromatic Si510− ring encapsulated by two Li65+ moieties, achieves the highest hydrogen capacity, adsorbing 34 H2 molecules with a gravimetric density of 23.45 wt%. Its enhanced performance arises from the high density of accessible Li+ adsorption sites and the electronic stabilization afforded by delocalized σ-bonding. BOMD simulations at 300 and 400 K confirm their dynamic stability and reversible storage behavior, while analysis of the interaction regions confirms that hydrogen adsorption proceeds via weak, dispersion-driven physisorption. These findings clarify the structure–property relationships in Si–Li clusters and provide a basis for designing modular, lightweight, and thermally stable hydrogen storage materials. Full article
Show Figures

Graphical abstract

14 pages, 3406 KiB  
Article
Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT
by Nisarg Hirens Purabiarao, Kumar Vivek Gaurav, Shubham Sharma, Yoshito Ando and Shyam Sudhir Pandey
Electron. Mater. 2025, 6(2), 6; https://doi.org/10.3390/electronicmat6020006 - 7 May 2025
Viewed by 1111
Abstract
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, [...] Read more.
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, smooth, and free of charge-trapping defects. Our study reports the enhancement of OFET performance using large-area, uniform, and oriented thin films of regioregular poly[3-hexylthiophene] (RR-P3HT), prepared via the Floating Film Transfer Method (FTM) on octadecyltrichlorosilane (OTS) passivated SiO2 surfaces. SiO2 surfaces inherently possess dangling bonds that act as charge traps, but these can be effectively passivated through optimized surface treatments. OTS treatment has improved the optical anisotropy of thin films and the surface wettability of SiO2. Notably, using octadecene as a solvent during OTS passivation, as opposed to toluene, resulted in a significant enhancement of charge carrier transport. Specifically, passivation with OTS-F (10 mM OTS in octadecene at 100 °C for 48 h) led to a >150 times increase in mobility and a reduction in threshold voltage compared to OTS-A (5 mM OTS in toluene for 12 h at room temperature). Under optimal conditions, these FTM-processed RR-P3HT films achieved the best device performance, with a saturated mobility (μsat) of 0.18 cm2V−1s−1. Full article
Show Figures

Figure 1

10 pages, 8796 KiB  
Communication
Photocatalysis and Electrocatalysis Properties of a Keggin-Type Inorganic–Organic Hybrid SiW12O40@Ag
by Xin-Xin Hu, Tai-Dan Chen, Xiao-Jie Gong, Jiu-Yu Ji, Li-Ping Zhao, Wen-Xuan Xie and Kun Zhou
Inorganics 2025, 13(5), 132; https://doi.org/10.3390/inorganics13050132 - 25 Apr 2025
Viewed by 552
Abstract
An example of an inorganic–organic hybrid compound {[Ag4(SiW12O40)(HBTA)8][Ag4(SiW12O40)(HBTA)8(H2O)]}n·(1) modified by the Keggin-type [SiW12O40]4− polyoxoanion was synthesized [...] Read more.
An example of an inorganic–organic hybrid compound {[Ag4(SiW12O40)(HBTA)8][Ag4(SiW12O40)(HBTA)8(H2O)]}n·(1) modified by the Keggin-type [SiW12O40]4− polyoxoanion was synthesized hydrothermally, which was determined by single crystal X-ray diffraction. Two 1-dimensional (1D) chains are present in 1: chain a is connected by Ag···Ag interactions and chain b is connected by π···π stacking. Finally, they were extended into 2D and 3D supramolecular structures by hydrogen bonding. The photodegradation of methylene blue (MB) was investigated under visible light irradiation, and the degradation rate reached 99.4% within 200 min. In addition, 1 catalyzes the reduction of sodium nitrite and can be used as a potential electrocatalytic material. Full article
Show Figures

Figure 1

14 pages, 6527 KiB  
Article
Thickness-Tunable PDMS-Based SERS Sensing Substrates
by Diego P. Pacherrez Gallardo, Shu Kawamura, Ryo Shoji, Lina Yoshida and Binbin Weng
Sensors 2025, 25(9), 2690; https://doi.org/10.3390/s25092690 - 24 Apr 2025
Viewed by 640
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive analytical method with the powerful signal-molecule detection capability. Coupling with the polydimethylsiloxane (PDMS) material, SERS can be enabled on a polymeric substrate for fast-developing bio-compatible sensing applications. However, due to PDMS’s high viscosity, conventional PDMS-SERS [...] Read more.
Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive analytical method with the powerful signal-molecule detection capability. Coupling with the polydimethylsiloxane (PDMS) material, SERS can be enabled on a polymeric substrate for fast-developing bio-compatible sensing applications. However, due to PDMS’s high viscosity, conventional PDMS-SERS substrates are typically thick and stiff, limiting their freedom for engineering flexible micro/nano functioning devices. To address this issue, we propose to adopt a low viscosity decamethylcyclopentasiloxane (D5) solvent as a diluent solution. Via controlling the mixture ratio of D5 and PDMS and the spin-coating speed for deposition, this method resulted in a film of a well-defined thickness from sub-millimeter down to a 100 nm scale. Furthermore, thanks to the unsaturated Si-H chemical bonds in the PDMS curing agent, the PDMS film could effectively reduce the Ag+ ions to Ag nanoparticles (NPs) directly bonding onto the substrate surface uniformly. Via adjusting the size and density of the AgNPs through reaction temperature and time, strong SERS was achieved and verified using R6G with the detection limit down to 0.1 ppm, attributed to the AgNPs’ plasmonic enhancement effect. Full article
Show Figures

Figure 1

Back to TopTop