Thickness-Tunable PDMS-Based SERS Sensing Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Agents and Experimental Supplies
2.2. Preparation of Thickness Controllable PDMS Films
2.3. AgNPs Reduction to Enable the SERS Effect on PDMS Substrates
3. Results and Discussion
3.1. The Study of Thickness Control via Mixing Ratios and Spin-Coating Speeds
3.2. The Study of AgNPs Reduction Control via the Reaction Time and Temperature Parameters
3.3. The Raman Sensing Effect Verification of the SERS-PDMS Substrates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SERS | Surface-Enhanced Raman Spectroscopy |
PDMS | Polydimethylsiloxane |
LSPR | Localized surface Plasmon Resonance |
D5 | Decamethylcyclopentasiloxane |
EM | Electromagnetic Enhancement Mechanism |
CM | Chemical Enhancement Mechanism |
TEM | Transmission Electron Microscopy |
References
- Saletnik, A.; Saletnik, B.; Puchalski, C. Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues. Molecules 2021, 26, 1537. [Google Scholar] [CrossRef] [PubMed]
- Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A comprehensive review on Raman spectroscopy applications. Chemosensors 2021, 9, 262. [Google Scholar] [CrossRef]
- Kudelski, A. Analytical applications of Raman spectroscopy. Talanta 2008, 76, 1–8. [Google Scholar] [CrossRef]
- He, Q.; Yang, W.; Luo, W.; Wilhelm, S.; Weng, B. Label-free differentiation of cancer and non-cancer cells based on machine-learning-algorithm-assisted fast Raman imaging. Biosensors 2022, 12, 250. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, H.; Zhao, X.; Lv, K.; Zhu, T.; Xia, Y.; Yang, C.; Bai, C. Three-dimensional SERS sensor based on the sandwiched G@ AgNPs@ G/PDMS film. Talanta 2021, 233, 122481. [Google Scholar] [CrossRef]
- Ren, W.; Fang, Y.; Wang, E. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. Acs Nano 2011, 5, 6425–6433. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Zhang, K.; Song, Y.; Dong, B.; Wang, J.; Yan, M.; Sun, Q. Fabrication of Superhydrophobic–Hydrophilic Patterned Cu@ Ag Composite SERS Substrate via Femtosecond Laser. Nanomanufacturing Metrol. 2024, 7, 1. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Li, L.; Chin, W.S. Rapid fabrication of a flexible and transparent Ag nanocubes@ PDMS film as a SERS substrate with high performance. ACS Appl. Mater. Interfaces 2020, 12, 37538–37548. [Google Scholar] [CrossRef]
- Cardinal, M.F.; Vander Ende, E.; Hackler, R.A.; McAnally, M.O.; Stair, P.C.; Schatz, G.C.; Van Duyne, R.P. Expanding applications of SERS through versatile nanomaterials engineering. Chem. Soc. Rev. 2017, 46, 3886–3903. [Google Scholar] [CrossRef]
- Li, Z.; Xu, S.C.; Zhang, C.; Liu, X.Y.; Gao, S.S.; Hu, L.T.; Guo, J.; Ma, Y.; Jiang, S.Z.; Si, H.P. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@ pyramid Si. Sci. Rep. 2016, 6, 38539. [Google Scholar] [CrossRef] [PubMed]
- Trantidou, T.; Elani, Y.; Parsons, E.; Ces, O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst. Nanoeng. 2017, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Fang, J. Hydrophilic PEO-PDMS for microfluidic applications. J. Micromech. Microeng. 2012, 22, 025012. [Google Scholar] [CrossRef]
- Liu, M.; Sun, J.; Sun, Y.; Bock, C.; Chen, Q. Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J. Micromech. Microeng. 2009, 19, 035028. [Google Scholar] [CrossRef]
- Chen, H.Y.; McClelland, A.A.; Chen, Z.; Lahann, J. Solventless adhesive bonding using reactive polymer coatings. Anal. Chem. 2008, 80, 4119–4124. [Google Scholar] [CrossRef]
- Ariati, R.; Sales, F.; Souza, A.; Lima, R.A.; Ribeiro, J. Polydimethylsiloxane composites characterization and its applications: A review. Polymers 2021, 13, 4258. [Google Scholar] [CrossRef]
- González Calderón, J.A.; Contreras López, D.; Pérez, E.; Vallejo Montesinos, J. Polysiloxanes as polymer matrices in biomedical engineering: Their interesting properties as the reason for the use in medical sciences. Polym. Bull. 2020, 77, 2749–2817. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, J.; Li, C.; Li, Z.; Pan, J.; Liu, A.; Man, B.; Wu, T.; Xiu, X.; Zhang, C. SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles. Opt. Express 2018, 26, 21784–21796. [Google Scholar] [CrossRef]
- Repetto, D.; Giordano, M.C.; Foti, A.; Gucciardi, P.G.; Mennucci, C.; de Mongeot, F.B. SERS amplification by ultra-dense plasmonic arrays on self-organized PDMS templates. Appl. Surf. Sci. 2018, 446, 83–91. [Google Scholar] [CrossRef]
- Alyami, A.; Quinn, A.J.; Iacopino, D. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 2019, 201, 58–64. [Google Scholar] [CrossRef]
- Zhao, H.; Hasi, W.; Bao, L.; Liu, Y.; Han, S.; Lin, D. A silver self-assembled monolayer-decorated polydimethylsiloxane flexible substrate for in situ SERS detection of low-abundance molecules. J. Raman Spectrosc. 2018, 49, 1469–1477. [Google Scholar] [CrossRef]
- Kumar, P.; Khosla, R.; Soni, M.; Deva, D.; Sharma, S.K. A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template. Sens. Actuators B Chem. 2017, 246, 477–486. [Google Scholar] [CrossRef]
- Document Viewer. Available online: https://www.dow.com/en-us/document-viewer.html?docPath=/content/dam/dcc/documents/11/11-3184-01-sylgard-184-elastomer.pdf (accessed on 20 April 2025).
- Lisensky, G.C.; Campbell, D.J.; Beckman, K.J.; Calderon, C.E.; Doolan, P.W.; Ottosen, R.M.; Ellis, A.B. Replication and compression of surface structures with polydimethylsiloxane elastomer. J. Chem. Educ. 1999, 76, 537. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Hourlier, D. Heat treatment of commercial Polydimethylsiloxane PDMS precursors: Part I. Towards conversion of patternable soft gels into hard ceramics. Ceram. Int. 2019, 45, 6255–6262. [Google Scholar] [CrossRef]
- Cyclopentasiloxane (D5)—GW United Silicones. Available online: https://gwunitedsilicones.com/cyclopentasiloxane-d5/ (accessed on 20 April 2025).
- Sun, L.; Kurosawa, Y.; Ito, H.; Makishima, Y.; Kita, H.; Yoshida, T.; Suzuri, Y. Solution processing of alternating PDMS/SiOx multilayer for encapsulation of organic light emitting diodes. Org. Electron. 2019, 64, 176–180. [Google Scholar] [CrossRef]
- Mariani, S.; La Mattina, A.A.; Paghi, A.; Strambini, L.; Barillaro, G. Maskless Preparation of Spatially-Resolved Plasmonic Nanoparticles on Polydimethylsiloxane via In Situ Fluoride-Assisted Synthesis. Adv. Funct. Mater. 2021, 31, 2100774. [Google Scholar] [CrossRef]
- Paghi, A.; Corsi, M.; Corso, S.; Mariani, S.; Barillaro, G. In situ controlled and conformal coating of polydimethylsiloxane foams with silver nanoparticle networks with tunable piezo-resistive properties. Nanoscale Horizons 2022, 7, 425–436. [Google Scholar] [CrossRef]
- Swenson, H.; Stadie, N.P. Langmuir’s theory of adsorption: A centennial review. Langmuir 2019, 35, 5409–5426. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacherrez Gallardo, D.P.; Kawamura, S.; Shoji, R.; Yoshida, L.; Weng, B. Thickness-Tunable PDMS-Based SERS Sensing Substrates. Sensors 2025, 25, 2690. https://doi.org/10.3390/s25092690
Pacherrez Gallardo DP, Kawamura S, Shoji R, Yoshida L, Weng B. Thickness-Tunable PDMS-Based SERS Sensing Substrates. Sensors. 2025; 25(9):2690. https://doi.org/10.3390/s25092690
Chicago/Turabian StylePacherrez Gallardo, Diego P., Shu Kawamura, Ryo Shoji, Lina Yoshida, and Binbin Weng. 2025. "Thickness-Tunable PDMS-Based SERS Sensing Substrates" Sensors 25, no. 9: 2690. https://doi.org/10.3390/s25092690
APA StylePacherrez Gallardo, D. P., Kawamura, S., Shoji, R., Yoshida, L., & Weng, B. (2025). Thickness-Tunable PDMS-Based SERS Sensing Substrates. Sensors, 25(9), 2690. https://doi.org/10.3390/s25092690