Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = Shape Similar Orbits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4166 KB  
Article
Preliminary Study on the Accuracy Comparison Between 3D-Printed Bone Models and Naked-Eye Stereoscopy-Based Virtual Reality Models for Presurgical Molding in Orbital Floor Fracture Repair
by Masato Tsuchiya, Izumi Yasutake, Satoru Tamura, Satoshi Kubo and Ryuichi Azuma
Appl. Sci. 2025, 15(24), 12963; https://doi.org/10.3390/app152412963 - 9 Dec 2025
Viewed by 355
Abstract
Three-dimensional (3D) printing enables accurate implant pre-shaping in orbital reconstruction but is costly and time-consuming. Naked-eye stereoscopic displays (NEDs) enable virtual implant modeling without fabrication. This study aimed to compare the reproducibility and accuracy of NED-based virtual reality (VR) pre-shaping with conventional 3D-printed [...] Read more.
Three-dimensional (3D) printing enables accurate implant pre-shaping in orbital reconstruction but is costly and time-consuming. Naked-eye stereoscopic displays (NEDs) enable virtual implant modeling without fabrication. This study aimed to compare the reproducibility and accuracy of NED-based virtual reality (VR) pre-shaping with conventional 3D-printed models. Two surgeons pre-shaped implants for 11 unilateral orbital floor fractures using both 3D-printed and NED-based VR models with identical computed tomography data. The depth, area, and axis dimensions were measured, and reproducibility and agreement were assessed using intraclass correlation coefficients (ICCs), Bland–Altman analysis, and shape similarity metrics—Hausdorff distance (HD) and root mean square error (RMSE). Intra-rater ICCs were ≥0.80 for all parameters except depth in the VR model. The HD and RMSE reveal no significant differences between 3D (2.64 ± 0.85 mm; 1.02 ± 0.42 mm) and VR (3.14 ± 1.18 mm; 1.24 ± 0.53 mm). Inter-rater ICCs were ≥0.80 for the area and axes in both modalities, while depth remained low. Between modalities, no significant differences were found; HD and RMSE were 2.95 ± 0.94 mm and 1.28 ± 0.49 mm. The NED-based VR pre-shaping achieved reproducibility and dimensional agreement comparable to 3D printing, suggesting a feasible cost- and time-efficient alternative for orbital reconstruction. These preliminary findings suggest that NED-based preshaping may be feasible; however, larger studies are required to confirm whether VR can achieve performance comparable to 3D-printed models. Full article
(This article belongs to the Special Issue Virtual Reality (VR) in Healthcare)
Show Figures

Figure 1

15 pages, 2912 KB  
Article
Adsorption of Lanthanide Atoms on a Graphene Cluster Model Incorporating Stone–Wales Defect
by Vladimir A. Basiuk and Elena V. Basiuk
Surfaces 2025, 8(3), 63; https://doi.org/10.3390/surfaces8030063 - 29 Aug 2025
Cited by 2 | Viewed by 1364
Abstract
To study the adsorption of lanthanide (Ln) atoms on graphene containing a Stone–Wales defect, we used a cluster model (SWG) and performed calculations at the PBE-D2/DNP level of the density functional theory. Our previous study, where the above combination was complemented with the [...] Read more.
To study the adsorption of lanthanide (Ln) atoms on graphene containing a Stone–Wales defect, we used a cluster model (SWG) and performed calculations at the PBE-D2/DNP level of the density functional theory. Our previous study, where the above combination was complemented with the ECP pseudopotentials, was only partially successful due to the impossibility of calculating terbium-containing systems and a serious error found for the SWG complex with dysprosium. In the present study we employed the DSPP pseudopotentials and completely eliminated the latter two failures. We analyzed the optimized geometries of the full series of fifteen SWG + Ln complexes, along with their formation energies and electronic parameters, such as frontier orbital energies, atomic charges, and spins. In many regards, the two series of calculations show qualitatively similar features, such as roughly M-shaped curves of the adsorption energies and trends in the changes in charge and spin of the adsorbed Ln atoms, as well as the spin density plots. However, the quantitative results can differ significantly. For most characteristics we found no evident correlation with the lanthanide contraction. The only dataset where this phenomenon apparently manifests itself (albeit to a limited and irregular degree) is the changes in the closest LnC approaches. Full article
(This article belongs to the Special Issue Nanocarbons: Advances and Innovations)
Show Figures

Graphical abstract

17 pages, 4957 KB  
Article
A Novel Analytical Approach for Spacecraft Fly-Around Formation Design with a Low-Thrust Maneuver
by Xun Wang, Min Hu, Chaojun Xin and Shirui Zheng
Aerospace 2025, 12(5), 361; https://doi.org/10.3390/aerospace12050361 - 22 Apr 2025
Viewed by 804
Abstract
This paper investigates the fly-around formation between the servicer spacecraft and the target spacecraft. Inspired by the spacecraft orbital motion under the Earth’s gravity, an intuitive, analytical guidance law for spatial fly-around formation design with the low-thrust maneuver is proposed. Beginning with the [...] Read more.
This paper investigates the fly-around formation between the servicer spacecraft and the target spacecraft. Inspired by the spacecraft orbital motion under the Earth’s gravity, an intuitive, analytical guidance law for spatial fly-around formation design with the low-thrust maneuver is proposed. Beginning with the relative translational dynamics based on relative position and velocity, the control input of the guidance law is designed to contain two parts. The first part is the feed-forward term, which makes the relative dynamics a second-order integration model. The second part is the artificial gravity term, which has similar expressions to the Earth’s gravity, and includes the artificial gravitational coefficient and the vector of the artificial gravity center. The above two parameters can be designed to determine the size, shape, and period of the fly-around trajectory. Specifically, three kinds of fly-around trajectories are discussed in detail. The first two are the spatial ellipses with the target spacecraft locating at the focus and the center of the ellipses, respectively. The third is the spatial circle. The proposed method can be easily extended to the design of planar fly-around formation, which is very systematic and comprehensive, and the fuel consumption of the control input is specifically discussed. Numerical simulations are conducted to demonstrate the efficiency of the proposed method. Full article
Show Figures

Figure 1

19 pages, 637 KB  
Review
An Objective Classification Scheme for Solar-System Bodies Based on Surface Gravity
by Dimitris M. Christodoulou, Silas G. T. Laycock and Demosthenes Kazanas
Galaxies 2024, 12(6), 74; https://doi.org/10.3390/galaxies12060074 - 6 Nov 2024
Cited by 1 | Viewed by 2705
Abstract
We introduce succinct and objective definitions of the various classes of objects in the solar system. Unlike the formal definitions adopted by the International Astronomical Union in 2006, group separation is obtained from measured physical properties of the objects. Thus, this classification scheme [...] Read more.
We introduce succinct and objective definitions of the various classes of objects in the solar system. Unlike the formal definitions adopted by the International Astronomical Union in 2006, group separation is obtained from measured physical properties of the objects. Thus, this classification scheme does not rely on orbital/environmental factors that are subject to debate—the physical parameters are intrinsic properties of the objects themselves. Surface gravity g is the property that single-handedly differentiates (a) planets from all other objects (and it leaves no room for questioning the demotion of Pluto), and (b) the six largest (g>1 m s2) of the large satellites from dwarf planets. Large satellites are separated from small satellites by their sizes and masses/densities, which may serve as higher-order qualifiers for class membership. Size considerations are also sufficient for the classification of (i) main-belt asteroids (except possibly Ceres) as small solar-system bodies similar in physical properties to the small satellites; and (ii) a group of large Kuiper-belt objects as dwarf planets similar in physical properties to the large (but not the largest) satellites in our solar system. The selection criteria are simple and clear and reinforce the argument that body shape and environmental factors need not be considered in stipulating class membership of solar as well as extrasolar bodies. Full article
Show Figures

Figure 1

21 pages, 3696 KB  
Article
Exploration and Maintenance of Homeomorphic Orbit Revs in the Elliptic Restricted Three-Body Problem
by Kevin I. Alvarado and Sandeep K. Singh
Aerospace 2024, 11(5), 407; https://doi.org/10.3390/aerospace11050407 - 17 May 2024
Cited by 8 | Viewed by 3754
Abstract
A novel station-keeping strategy leveraging periodic revolutions of homeomorphic orbits in the Elliptic Restricted Three-Body Problem within the pulsating frame is presented. A systemic approach founded on arc-length continuation is presented for the discovery, computation, and classification of periodic revolutions that morph from [...] Read more.
A novel station-keeping strategy leveraging periodic revolutions of homeomorphic orbits in the Elliptic Restricted Three-Body Problem within the pulsating frame is presented. A systemic approach founded on arc-length continuation is presented for the discovery, computation, and classification of periodic revolutions that morph from their traditional circular restricted three-body counterparts to build an a priori dataset. The dataset is comprehensive in covering all possible geometric architectures of the restricted problem. Shape similarity is quantified using Hausdorff distance and works as a filter for the station-keeping algorithm in relation to appropriate target conditions. Finally, an efficient scheme to quantify impulsive orbit maintenance maneuvers that minimize the total fuel cost is presented. The proposed approach is salient in its generic applicability across any elliptic three-body system and any periodic orbit family. Finally, average annual station-keeping costs using the described methodology are quantified for selected “orbits of interest” in the cis-lunar and the Sun–Earth systems. The robustness and efficacy of the approach instill confidence in its applicability for realistic mission design scenarios. Full article
(This article belongs to the Special Issue Spacecraft Orbit Transfers)
Show Figures

Figure 1

37 pages, 768 KB  
Article
Theoretical Spectra of Lanthanides for Kilonovae Events: Ho I-III, Er I-IV, Tm I-V, Yb I-VI, Lu I-VII
by Sultana N. Nahar
Atoms 2024, 12(4), 24; https://doi.org/10.3390/atoms12040024 - 17 Apr 2024
Cited by 3 | Viewed by 2141
Abstract
The broad emission bump in the electromagnetic spectra observed following the detection of gravitational waves created during the kilonova event of the merging of two neutron stars in August 2017, named GW170817, has been linked to the heavy elements of lanthanides (Z = [...] Read more.
The broad emission bump in the electromagnetic spectra observed following the detection of gravitational waves created during the kilonova event of the merging of two neutron stars in August 2017, named GW170817, has been linked to the heavy elements of lanthanides (Z = 57–71) and a new understanding of the creation of heavy elements in the r-process. The initial spectral emission bump has a wavelength range of 3000–7000 Å, thus covering the region of ultraviolet (UV) to optical (O) wavelengths, and is similar to those seen for lanthanides. Most lanthanides have a large number of closely lying energy levels, which introduce extensive sets of radiative transitions that often form broad regions of lines of significant strength. The current study explores these broad features through the photoabsorption spectroscopy of 25 lanthanide ions, Ho I-III, Er I-IV, Tm I-V, Yb I-VI, and Lu I-VII. With excitation only to a few orbitals beyond the ground configurations, we find that most of these ions cover a large number of bound levels with open 4f orbitals and produce tens to hundreds of thousands of lines that may form one or multiple broad features in the X-ray to UV, O, and infrared (IR) regions. The spectra of 25 ions are presented, indicating the presence, shapes, and wavelength regions of these features. The accuracy of the atomic data used to interpret the merger spectra is an ongoing problem. The present study aims at providing improved atomic data for the energies and transition parameters obtained using relativistic Breit–Pauli approximation implemented in the atomic structure code SUPERSTRUCTURE and predicting possible features. The present data have been benchmarked with available experimental data for the energies, transition parameters, and Ho II spectrum. The study finds that a number of ions under the present study are possible contributors to the emission bump of GW170817. All atomic data will be made available online in the NORAD-Atomic-Data database. Full article
(This article belongs to the Special Issue Photoionization of Atoms)
Show Figures

Figure 1

23 pages, 10066 KB  
Article
Scattering Field Intensity and Orbital Angular Momentum Spectral Distribution of Vortex Electromagnetic Beams Scattered by Electrically Large Targets Comprising Different Materials
by Minghao Sun, Songhua Liu and Lixin Guo
Remote Sens. 2024, 16(5), 754; https://doi.org/10.3390/rs16050754 - 21 Feb 2024
Cited by 6 | Viewed by 3047
Abstract
In this study, we obtained the intensity and orbital angular momentum (OAM) spectral distribution of the scattering fields of vortex electromagnetic beams illuminating electrically large targets composed of different materials. We used the angular spectral decomposition method to decompose a vortex beam into [...] Read more.
In this study, we obtained the intensity and orbital angular momentum (OAM) spectral distribution of the scattering fields of vortex electromagnetic beams illuminating electrically large targets composed of different materials. We used the angular spectral decomposition method to decompose a vortex beam into plane waves in the spectral domain at different elevations and azimuths. We combined this method with the physical optics algorithm to calculate the scattering field distribution. The OAM spectra of the scattering field along different observation radii were analyzed using the spiral spectrum expansion method. The numerical results indicate that for beams with different parameters (such as polarization, topological charge, half-cone angle, and frequency) and targets with different characteristics (such as composition), the scattering field intensity distribution and OAM spectral characteristics varied considerably. When the beam parameters change, the results of scattering from different materials show similar changing trends. Compared with beams scattered by uncoated metal and dielectric targets, the scattering field of the coating target can better maintain the shape and OAM mode of beams from the incident field. The scattering characteristics of metal targets were the most sensitive to beam-parameter changes. The relationship between the beam parameters, target parameters, the scattering field intensity, and the OAM spectra of the scattering field was constructed, confirming that the spiral spectrum of the scattering field carries the target information. These findings can be used in remote sensing engineering to supplement existing radar imaging, laying the foundation for further identification of beam or target parameters. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

22 pages, 4320 KB  
Article
Water Oxidation over Au-Pd/TiO2 as a Substitute for Iridium-Based Catalysts
by Khaja Wahab and Hicham Idriss
Catalysts 2024, 14(1), 87; https://doi.org/10.3390/catal14010087 - 21 Jan 2024
Cited by 1 | Viewed by 2291
Abstract
Water oxidation is one of the most important reactions needed for a transition to a green economy. The reaction relies on extracting electrons from oxygen anions and is commonly studied using homogenous catalysts based on Ru or Ir metals. Because of Ir scarcity [...] Read more.
Water oxidation is one of the most important reactions needed for a transition to a green economy. The reaction relies on extracting electrons from oxygen anions and is commonly studied using homogenous catalysts based on Ru or Ir metals. Because of Ir scarcity and its relative instability in acidic environments, metals to replace it are sought after. In this study, we have synthesized Au-Pd-based catalysts deposited on TiO2 with different ratios in order to mimic IrO2 valence orbitals (Ir5d) by the hybrid valence orbitals of Au5d and Pd4d and compared their heterogeneous catalytic activity for the evolution of O2 from water in the presence of cerium ammonium nitrate (CAN). Au-Pd-based catalysts were found to be active at a particular nominal atomic ratio. At an atomic ratio of 1 Au to 2 Pd and 1 Au to 3 Pd, the catalysts were active and stable for oxygen production from water. Long-term runs up to 20,000 min still showed the expected stoichiometry between O2 production and CAN consumption (1 to 4). However, catalysts with a reverse ratio were not active. Also, the monometallic catalysts were found to be not active for the reaction. We link the reason for the activity of Au-Pd with this specific ratio to the shape and energy position of their valence band that might be similar to those of IrO2 particles. While the turnover numbers of the Au-Pd-based catalysts were found to be lower than those of IrO2-based catalysts, on the same support in a heterogenous system, there is considerable potential upon further optimization for these two metals to replace IrO2 for a water oxidation reaction. Full article
(This article belongs to the Special Issue Feature Papers in Catalytic Materials)
Show Figures

Figure 1

12 pages, 2827 KB  
Article
Comparative Analysis of Nickel–Phosphine Complexes with Cumulated Double Bond Ligands: Structural Insights and Electronic Interactions via ETS-NOCV and QTAIM Approaches
by Tímea R. Kégl and Tamás Kégl
Molecules 2024, 29(2), 324; https://doi.org/10.3390/molecules29020324 - 9 Jan 2024
Cited by 1 | Viewed by 2321
Abstract
This study presents a comprehensive analysis of nickel–phosphine complexes, specifically Ni(PH3)2(OCCH2), Ni(PH3)2(H2CCO), Ni(PH3)2(H2CCCH2), Ni(PH3)2(NNCH2), and Ni(PH3 [...] Read more.
This study presents a comprehensive analysis of nickel–phosphine complexes, specifically Ni(PH3)2(OCCH2), Ni(PH3)2(H2CCO), Ni(PH3)2(H2CCCH2), Ni(PH3)2(NNCH2), and Ni(PH3)2(η1-H2CNN). Utilizing ETS-NOCV analysis, we explored orbital energy decomposition and the Hirshfeld charges of the ligands, providing insights into the electronic structures and donor–acceptor interactions within these complexes. The interactions in the ketene and allene complexes exhibit similar deformation densities and NOCV orbital shapes to those calculated for Ni(PH3)2(NNCH2), indicating consistent interaction characteristics across these complexes. The total interaction energy for all η2 complexes is observed to be over 60 kcal/mol, slightly exceeding that of the analogous carbon dioxide complex reported earlier. Furthermore, the study highlights the stronger back-donation as compared to donor interactions across all η2 complexes. This is further corroborated by Hirshfeld analysis, revealing the charge distribution dynamics within the ligand fragments. The research offers new perspectives on the electron distribution and interaction energies in nickel–phosphine complexes, contributing to a deeper understanding of their catalytic and reactive behaviors. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

12 pages, 1382 KB  
Article
Similarity Classes of the Longest-Edge Trisection of Triangles
by Francisco Perdomo and Ángel Plaza
Axioms 2023, 12(10), 913; https://doi.org/10.3390/axioms12100913 - 25 Sep 2023
Viewed by 1441
Abstract
This paper studies the triangle similarity classes obtained by iterative application of the longest-edge trisection of triangles. The longest-edge trisection (3T-LE) of a triangle is obtained by joining the two points which divide the longest edge in three equal parts with the opposite [...] Read more.
This paper studies the triangle similarity classes obtained by iterative application of the longest-edge trisection of triangles. The longest-edge trisection (3T-LE) of a triangle is obtained by joining the two points which divide the longest edge in three equal parts with the opposite vertex. This partition, as well as the longest-edge bisection (2T-LE), does not degenerate, which means that there is a positive lower bound to the minimum angle generated. However, unlike what happens with the 2T-LE, the number of similarity classes appearing by the iterative application of the 3T-LE to a single initial triangle is not finite in general. There are only three exceptions to this fact: the right triangle with its sides in the ratio 1:2:3 and the other two triangles in its orbit. This result, although of a combinatorial nature, is proved here with the machinery of discrete dynamics in a triangle shape space with hyperbolic metric. It is also shown that for a point with an infinite orbit, infinite points of the orbit are in three circles with centers at the points with finite orbits. Full article
(This article belongs to the Section Mathematical Analysis)
Show Figures

Figure 1

16 pages, 2524 KB  
Article
All-Day Cloud Classification via a Random Forest Algorithm Based on Satellite Data from CloudSat and Himawari-8
by Yuanmou Wang, Chunmei Hu, Zhi Ding, Zhiyi Wang and Xuguang Tang
Atmosphere 2023, 14(9), 1410; https://doi.org/10.3390/atmos14091410 - 7 Sep 2023
Cited by 5 | Viewed by 2653
Abstract
It remains challenging to accurately classify complicated clouds owing to the various types of clouds and their distribution on multiple layers. In this paper, multi-band radiation information from the geostationary satellite Himawari-8 and the cloud classification product of the polar orbit satellite CloudSat [...] Read more.
It remains challenging to accurately classify complicated clouds owing to the various types of clouds and their distribution on multiple layers. In this paper, multi-band radiation information from the geostationary satellite Himawari-8 and the cloud classification product of the polar orbit satellite CloudSat from June to September 2018 are investigated. Based on sample sets matched by two types of satellite data, a random forest (RF) algorithm was applied to train a model, and a retrieval method was developed for cloud classification. With the use of this method, the sample sets were inverted and classified as clear sky, low clouds, middle clouds, thin cirrus, thick cirrus, multi-layer clouds and deep convection (cumulonimbus) clouds. The results indicate that the average accuracy for all cloud types during the day is 88.4%, and misclassifications mainly occur between low and middle clouds, thick cirrus clouds and cumulonimbus clouds. The average accuracy is 79.1% at night, with more misclassifications occurring between middle clouds, multi-layer clouds and cumulonimbus clouds. Moreover, Typhoon Muifa from 2022 was selected as a sample case, and the cloud type (CLT) product of an FY-4A satellite was used to examine the classification method. In the cloud system of Typhoon Muifa, a cumulonimbus area classified using the method corresponded well with a mesoscale convective system (MCS). Compared to the FY-4A CLT product, the classifications of ice-type (thick cirrus) and multi-layer clouds are effective, and the location, shape and size of these two varieties of cloud are similar. Full article
(This article belongs to the Special Issue Satellite Remote Sensing Applied in Atmosphere (2nd Edition))
Show Figures

Figure 1

15 pages, 3665 KB  
Article
Molecular Structure of Gaseous Oxopivalate Co(II): Electronic States of Various Multiplicities
by Nina I. Giricheva, Valery V. Sliznev, Andrey S. Alikhanyan, Ekaterina A. Morozova and Georgiy V. Girichev
Int. J. Mol. Sci. 2023, 24(17), 13224; https://doi.org/10.3390/ijms241713224 - 25 Aug 2023
Cited by 1 | Viewed by 1866
Abstract
Synchronous electron diffraction/mass spectrometry was used to study the composition and structure of molecular forms existing in a saturated vapor of cobalt(II) oxopivalate at T = 410 K. It was found that monomeric complexes Co4O(piv)6 dominate in the vapor. The [...] Read more.
Synchronous electron diffraction/mass spectrometry was used to study the composition and structure of molecular forms existing in a saturated vapor of cobalt(II) oxopivalate at T = 410 K. It was found that monomeric complexes Co4O(piv)6 dominate in the vapor. The complex geometry possesses the C3 symmetry with bond lengths Co–Oc = 1.975(5) Å and Co–O = 1.963(5) Å, as well as bond angles Oc–Co–O = 111.8(3)°, Co–Oc–Co = 110.4(6)°, O–Co–O = 107.1(3)° in the central OcCo4 fragment and four OcCoO3 fragments. The presence of an open 3d shell for each Co atom leads to the possibility of the existence of electronic states of the Co4O(piv)6 complex with Multiplicities 1, 3, 5, 7, 9, 11, and 13. For them, the CASSCF and XMCQDPT2 calculations predict similar energies, identical shapes of active orbitals, and geometric parameters, the difference between which is comparable with the error of determination by the electron diffraction experiment. QTAIM and NBO analysis show that the Co–Oc and Co–O bonds can be attributed to ionic (or coordination) bonds with a significant contribution of the covalent component. The high volatility and simple vapor composition make it possible to recommend cobalt (II) oxopivalate as precursors in the preparation of oxide films or coatings in the CVD technologies. The features of the electronic and geometric structure of the Co4O(piv)6 complex allows for the conclude that only a very small change in energy is required for the transition from antiferromagnetically to ferromagnetically coupled Co atoms. Full article
Show Figures

Figure 1

13 pages, 2146 KB  
Review
Symmetry and Electronic Properties of Metallic Nanoclusters
by Emil Roduner
Symmetry 2023, 15(8), 1491; https://doi.org/10.3390/sym15081491 - 27 Jul 2023
Cited by 2 | Viewed by 2332
Abstract
Spherical nanoclusters with countable member atoms and delocalized valence orbitals are superatoms with properties analogous to those of simple atoms. This is reflected, in particular, in their optical spectra and magnetic properties, in a similar sense to transition metal ions and complexes. Clusters [...] Read more.
Spherical nanoclusters with countable member atoms and delocalized valence orbitals are superatoms with properties analogous to those of simple atoms. This is reflected, in particular, in their optical spectra and magnetic properties, in a similar sense to transition metal ions and complexes. Clusters can be of low-spin or high-spin with considerable contributions to magnetism by the large cluster orbital magnetic moment. Due to the large radius of the clusters, they can be diamagnetic with an unusually high diamagnetic susceptibility. Gold and platinum, which in the bulk are non-magnetic, show pronounced superparamagnetism associated with their high-spin nature, and the magnetic moment can be trapped in symmetry-breaking environments so that hysteresis pertains far beyond room temperature. A significant deviation from hydrogen-like orbitals results from the shape of the confining potential, which has the effect that the orbital quantum number is not limited to values less than the principal quantum number n. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Quantum Mechanics)
Show Figures

Graphical abstract

12 pages, 3030 KB  
Article
Ternary XBe4H5 (X = Si, Ge, Sn, Pb) Clusters: Planar Tetracoordinate Si/Ge/Sn/Pb Species with 18 Valence Electrons
by Yong-Xia Li, Li-Xia Bai and Jin-Chang Guo
Molecules 2023, 28(14), 5583; https://doi.org/10.3390/molecules28145583 - 22 Jul 2023
Cited by 5 | Viewed by 2296
Abstract
As one of the important probes of chemical bonding, planar tetracoordinate carbon (ptC) compounds have been receiving much attention. Compared with ptC clusters, the heavier planar tetracoordinate silicon, germanium, tin, lead (ptSi/Ge/Sn/Pb) systems are scarcer and more exotic. The 18-valence-electron (ve)-counting is one [...] Read more.
As one of the important probes of chemical bonding, planar tetracoordinate carbon (ptC) compounds have been receiving much attention. Compared with ptC clusters, the heavier planar tetracoordinate silicon, germanium, tin, lead (ptSi/Ge/Sn/Pb) systems are scarcer and more exotic. The 18-valence-electron (ve)-counting is one important guide, though not the only rule, for the design of planar tetra-, penta-coordinate carbon and silicon clusters. The 18ve ptSi/Ge system is very scarce and needs to be expanded. Based on the isoelectronic principle and bonding similarity between the Al atom and the BeH unit, inspired by the previously reported ptSi global minimum (GM) SiAl42−, a series of ternary 18 ve XBe4H5 (X = Si, Ge, Sn, Pb) clusters were predicted with the ptSi/Ge/Sn/Pb centers. Extensive density functional theory (DFT) global minimum searches and high-level CCSD(T) calculations performed herein indicated that these ptSi/Ge/Sn/Pb XBe4H5 (X = Si, Ge, Sn, Pb) clusters were all true GMs on their potential energy surfaces. These GMs of XBe4H5 (X = Si, Ge, Sn, Pb) species possessed the beautiful fan-shaped structures: XBe4 unit can be stabilized by three peripheries bridging H and two terminal H atoms. It should be noted that XBe4H5 (X = Si, Ge, Sn, Pb) were the first ternary 18 ve ptSi/Ge/Sn/Pb species. The natural bond orbital (NBO), canonical molecular orbitals (CMOs) and adaptive natural densitpartitioning (AdNDP) analyses indicated that 18ve are ideal for these ptX clusters: delocalized one π and three σ bonds for the XBe4 core, three Be-H-Be 3c-2e and two Be-H σ bonds for the periphery. Additionally, 2π plus 6σ double aromaticity was found to be crucial for the stability of the ptX XBe4H5 (X = Si, Ge, Sn, Pb) clusters. The simulated photoelectron spectra of XBe4H5 (X = Si, Ge, Sn, Pb) clusters will provide theoretical basis for further experimental characterization. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

17 pages, 10681 KB  
Article
Anatomical, Histological and Histochemical Observations of the Eyelids and Orbital Glands in the Lowland Tapir (Tapirus terrestris Linnaeus, 1785) (Perissodactyla: Ceratomorpha)
by Joanna Klećkowska-Nawrot, Karolina Goździewska-Harłajczuk, Marta Kupczyńska, Katarzyna Kaleta-Kuratewicz, Piotr Kuropka and Karolina Barszcz
Animals 2023, 13(13), 2081; https://doi.org/10.3390/ani13132081 - 23 Jun 2023
Cited by 1 | Viewed by 2938
Abstract
The lowland tapir is one of four species belonging to the Tapiridae family of the Ceratomorpha suborder, similar to Rhinocerotidae. This study describes anatomy with morphometry, histology (hematoxylin and eosin, Masson-Goldner trichrome, Movat pentachrome, mucicarmine, picro-Mallory trichrome) and histochemistry (PAS, AB pH 1.0, [...] Read more.
The lowland tapir is one of four species belonging to the Tapiridae family of the Ceratomorpha suborder, similar to Rhinocerotidae. This study describes anatomy with morphometry, histology (hematoxylin and eosin, Masson-Goldner trichrome, Movat pentachrome, mucicarmine, picro-Mallory trichrome) and histochemistry (PAS, AB pH 1.0, AB pH 2.5; AB pH2.5/PAS and HDI) of the upper and lower eyelids, and superficial gland of the third eyelid with the third eyelid, deep gland of the third eyelid, and lacrimal gland. The aim of the work is to show the features of the above-mentioned structures typical only for Tapiridae, as well as to show the presence of similarities and differences between the families forming the order Perissodactyla. The eyelashes on the upper eyelid were long, while those of the lower eyelid were short and much less prominent. In the upper and lower eyelid sebaceous glands, a characteristic simple alveolar gland producing a mucus-like secretion and poorly developed tarsal glands were observed. The marginal zone of the posterior surface of the eyelids was covered by stratified columnar epithelium with 18–21 layers of nucleated cells, while the bulbar zone of these surfaces was covered by cubic multilayer epithelium with 6–11 non-keratinized layers of cells and with sparse goblet cells. In only lower eyelids, numerous lymphoid nodules, diffuse lymphocytes and high endothelial venules were observed. The superficial gland was an acinar complex which secreted mucous and contained plasma cells within the interlobular and interlobular connective tissue. The upper and lower branches of the third eyelid were the shape of a bent “caudal fin” and were composed of hyaline cartilage, and they contained conjunctiva associated lymphoid tissue (CALT). The deep gland was also an acinar complex producing a serous character and having numerous diffuse lymphocytes. The lacrimal gland was an acinar complex producing seromucous secretions and had numerous plasma cells located in the glandular interstitium. The results of our research indicate that the features of the anatomy of the eyelids and orbital region in the lowland tapir are also typical of the family Tapiridae, but also have features common to the families Equidae and Rhinocerotidae. We confirm the presence of poorly developed tarsal glands in both eyelids as well as presence of a palpebral part of the lacrimal gland in the upper eyelid, which is typical only to Tapirus terrestris. Full article
(This article belongs to the Special Issue Advances in Animal Anatomy Studies)
Show Figures

Figure 1

Back to TopTop