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Abstract: This paper studies the triangle similarity classes obtained by iterative application of the
longest-edge trisection of triangles. The longest-edge trisection (3T-LE) of a triangle is obtained by
joining the two points which divide the longest edge in three equal parts with the opposite vertex.
This partition, as well as the longest-edge bisection (2T-LE), does not degenerate, which means that
there is a positive lower bound to the minimum angle generated. However, unlike what happens
with the 2T-LE, the number of similarity classes appearing by the iterative application of the 3T-LE
to a single initial triangle is not finite in general. There are only three exceptions to this fact: the
right triangle with its sides in the ratio 1:

√
2:
√

3 and the other two triangles in its orbit. This result,
although of a combinatorial nature, is proved here with the machinery of discrete dynamics in a
triangle shape space with hyperbolic metric. It is also shown that for a point with an infinite orbit,
infinite points of the orbit are in three circles with centers at the points with finite orbits.

Keywords: longest-edge partition; trisection; triangulation

MSC: 65M50; 65N50; 65N30

1. Introduction

It is well known that numerical mesh generation and adaptive meshing or local
refinement of a given mesh are the main steps in many areas such as geometric modelling,
computer graphics, or the finite element method (FEM). Also, the geometry of the generated
elements is important for the numerical convergence of the method. The grid generation
as well as a proper local refinement or coarsening strategies are of the most importance to
find the solution strategy in these problems [1,2].

One of the possibilities to refine a given simplicial mesh is to employ some type of
partition. Partitions of simplices, triangles, or tetrahedra have been studied profusely, and
issuessuch as the non-degeneracy or stability condition as well as the conformity and the
nestedness of the refined meshes are usually addressed [3–6].

For the longest-edge bisection of triangles, the non-degeneracy was proved by Rosen-
berg and Stenger [7] and similar results have been presented recently for the longest-edge
trisection or in general for the longest n-section of triangles. See [8] and references therein.

The longest-edge trisection (3T-LE) of a triangle is obtained by joining the two equally
spaced points of the longest-edge with the opposite vertex. The present note studies the
triangle similarity classes that appear by the iterative application of the 3T-LE.

The 2T-LE of triangles has finite orbit always (see [9,10]). However, the number of
similarity classes appearing by the iterative application of the 3T-LE to a single initial
triangle is not finite in general. There are only three exceptions to this fact: the right triangle
with side lengths proportional to 1:

√
2:
√

3 and the other two triangles in its orbit. In this
paper, we prove this fact by the discrete dynamics in a space of triangular shapes endowed
with hyperbolic distance.
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2. Space of Triangular Shapes and the Hyperbolic Metric in the Space of
Triangular Shapes
2.1. Normalized Triangle Region or Space of Triangular Shapes

Since only the shape of triangles will be taken into account here, it is very convenient
to have a way to represent the shape of a triangle in a univocal and systematic way, in a
subset of the complex plane.

Let z1, z2, and z3 be three points in the complex plane such that at least two of them
are different. For example, let z1 6= z2. Then, the triangle with vertices z1, z2, and z3 has the
same shape as the triangle with vertices 0, 1, and z = z3−z1

z2−z1
. The real part and imaginary

part of complex z are called Bookstein’s coordinates [11,12]. See Figure 1.

Figure 1. To each triangle with vertices z1, z2, and z3 there is a similar triangle with vertices 0, 1, and
z = z3−z1

z2−z1
.

By means of Bookstein’s coordinates, we may use the complex plane as a space of
triangular shapes. An idea of this space of triangular shapes is shown in Figure 2, where
each triangle is drawn with its center of the base at the position corresponding to its
Bookstein’s coordinates. See Figure 2, which is similar to the one given in [13].

Figure 2. Each triangle is drawn with its center of the base at the position corresponding to its
Bookstein’s coordinates.

In Figure 2, equilateral triangles correspond to points 1
2 +

√
3

2 i and 1
2 −

√
3

2 i, points E
and F in the Figure. Right triangles are located on the lines with equations Re z = 0 and
Re z = 1 and on the circumference

∣∣∣z− 1
2

∣∣∣ = 1
2 . Isosceles triangles are on the line Re z = 1

2
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and on the circumferences |z| = 1 and |z− 1| = 1. Degenerate triangles have their vertices
on the line Im z = 0.

The upper semiplane may be subdivided into six regions by the line Re z = 1
2 and

the circumferences |z| = 1 and |z− 1| = 1. Since the permutation of the vertices of any
triangle does not change its shape, we may assign one point in each of these six regions of
the upper plane.

In order to achieve a bijective relation between any triangle shape and a point of a sub-
set of the complex plane, we have to chose one of these regions as a normalized region. By
using scaling, symmetries, translations, and rotations, we may associate with any given tri-
angle a normalized triangle similar to the former one. This normalized triangle has the two
vertices of the longest edge at points 0 and 1 of the real axes, and the opposite vertex to the
longest edge on the upper half plane and on the left of the line Re z = 1

2 . That is, the oppo-

site vertex to the longest edge is in the set Σ =
{

z ∈ C / Im z > 0, Re z ≤ 1
2 , |z− 1| ≤ 1

}
.

Then, there is a bijection between the points in Σ and the classes of similar triangles.
Re z = 1

2 .
Region Σ is called here the normalized region or space of triangular shapes. See Figure 3.

Figure 3. Normalized region Σ =
{

z ∈ C / Im z > 0, Re z ≤ 1
2 , |z− 1| ≤ 1

}
.

2.2. Introduction to the Hyperbolic Metric in the Space of Triangular Shapes

Let us consider on one hand two triangles both with Bookstein’s coordinates close to
the real axis and at a Euclidean distance δ. On the other hand, let us consider two other
triangles with Bookstein’s coordinates at the same Euclidean distance δ but far away from
the real axis. The same Euclidean distance δ is less important when the distance to the
real axis grows h; it is understandable to consider the hyperbolic distance between points
representing triangular shapes [13]. See Figure 4.

h

h

Figure 4. The importance of the distance δ between two points with the same base line depends on
the distance h to the real axis.

A more formal justification of the election of the hyperbolic distance may be found
in [14] and may be extended to higher dimensions.
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Let z = z1 + z2i and w = w1 +w2i in the upper semiplane of the respective Bookstein’s
coordinates of two triangles. The affine transformation applying 0, 1, z, respectively, to 0, 1,
w is a linear transformation, which may be written as a product of a column vector by the
upper triangular matrix

Λ =

(
1 w1−z1

z2
0 w2

z2

)
.

If w is a small perturbation of z, then w = z + dz, with w1 = z1 + dz1, and w2 = z2 + dz2.
See Figure 5.

Figure 5. Two points z and z + dz.

In that case, matrix Λ may be written as I + dΛ, where I is the 2× 2 identity matrix and

dΛ =
1
z2

(
0 dz1
0 dz2

)
.

In order to find the eigenvalues of Λ, we find first the eigenvalues of ΛTΛ. Since Λ is a
perturbation of the identity matrix, it follows that

(I + dΛ)T(I + dΛ) ≈ I + dΛT + dΛ,

after canceling less significant terms. Using the last expression, the characteristic equation
for the eigenvalues is written as

det
(

λI −
(

I + dΛT + dΛ
))

= 0.

The last equation is of the second degree in λ. The eigenvalues λ1 and λ2 of ΛTΛ are the
two roots of this equation and may be found explicitly as

1 +
dz2 ±

√
dz2

1 + dz2
2

z2
. (1)

Let λ1 be the largest eigenvalue and λ2 be the smallest one. Since z is in the upper upper
plane, coordinates z2 > 0. Therefore, λ1 corresponds to the sign + and λ2 to the sign − in
expression (1). Considering λ1 and λ2 infinitesimal variations of the unity, they may be
written as λ1 ≈ 1 + dλ1 and λ2 ≈ 1 + dλ2.

The eigenvalues of Λ are the square roots of the eigenvalues of ΛTΛ. They are also
perturbations of the unity that may be written as

α ≈
√

1 + dλ1 ≈ 1 +
dλ1

2
and β ≈

√
1 + dλ2 ≈ 1 +

dλ2

2
,

and therefore, ln
(

α

β

)
≈ dλ1

2
− dλ2

2
. By using the expression of λ1 and λ2, it is obtained

that the infinitesimal distance between two points with Bookstein’s coordinates z and z+ dz
is given by

ds =

√
dz2

1 + dz2
2

z2
,
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which may be recognized as the expression for the hyperbolic metric for the Poincare plane.

2.3. Poincare Model the the Hyperbolic Plane

Let H = {z ∈ C such that Im z > 0} is the upper semi-plane. Here, the distance is

defined by ds2 =
dx2 + dy2

y2 . For a continuous curve γ : [a, b] → H given by γ(t) =

(γ1(t), γ2(t)), its length with this metric is given by

`(γ) =
∫ b

a

√
(γ′1(t)

2) + (γ′2(t)
2)

γ2(t)
dt.

The hyperbolic distance between z1 and z2 is defined as the minimum of the lengths
of all paths joining points z1 and z2:

d(z1, z2) = inf{`(γ)/γ : [a, b]→ H, γ(a) = z1, γ(b) = z2}.

The last expression has all the properties of a distance in H, and d(z1, z2) = ln
(

b
a

)
. Note

that the semi-line γ∗(t) = x + ti for 0 < t < ∞ holds the distance between any two of
its points.

A curve that covers the minimum distance between any of its points is called a geodesic
curve. A transformation T : H→ H of the semi-plane H into itself is said to be an isometry
if it preserves the hyperbolic metric.

In the Poincare semi-plane, the geodesic lines or hyperbolic lines are the semi-lines
and the semi-circumferences that are the intersection with H of lines and circumferences
orthogonal to the line Im z = 0.

3. Complex Functions Associated with the 3T-LE in the Space of Triangular Shapes

Definition 1. Let ∆ be a normalized triangle with associated point z ∈ Σ. By the 3T-LE partition
applied to triangle ∆, three triangles are obtained. These triangles are called the left, middle, and
right triangle. The left triangle ∆L is the triangle with vertices 0, 1

3 , and z. The middle triangle ∆M

is the triangle with vertices 1
3 , 2

3 , and z. Finally the right triangle ∆R is the triangle with vertices 2
3 ,

1, and z.

Definition 2. The normalization of the triangle ∆L gives a complex number WL(z) ∈ Σ. (see
Figure 6). A complex function can be defined if this complex number is associated with z. In this
way, left function WL is defined as the function of the region Σ into itself with z 7→WL(z), where z
is the complex number associated with the initial triangle ∆. Functions WM and WR are associated,
respectively, with ∆M and ∆R and are defined similarly.

L

L
W (z)

z

L
D D

(a) (b)
0 01 12/31/3 1/2

MD RD

Figure 6. (a) 3T-LE partition of a triangle with the left triangle ∆L in gray. (b) Triangle ∆L once
normalized and WL(z).

Figure 6a shows the 3T-LE of a triangle where the left triangle ∆L is in gray, and
Figure 6b shows triangle ∆L and WL(z).
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In this way, the normalization process reduces the LE-trisection method to the discrete
dynamic in the space of triangles Σ associated with the three complex functions WL, WM,
and WR.

For the sake of completeness, the next Propositions show the boundaries for the
subsets where functions WL, WM, and WR are defined as well as their explicit expressions
in each subset. The different expressions for the piecewise functions WL, WM, and WR
depend on the relative position of the longest edge on each triangle.

Proposition 1. The boundary lines for the subregions of Σ, where functions WL, WM, and WR are
defined, are straight line Re z = 1

6 and circular arcs |z| = 1
3 ,
∣∣∣z− 1

3

∣∣∣ = 1
3 , and

∣∣z− 2
3

∣∣ = 1
3 .

Proof. These regions depend on the relative position of the edges of triangles ∆L, ∆M y ∆R
according to their length. The different possibilities are shown in Figure 7 and Table 1.

1
A B

C

DD
2

Figure 7. Regions where the three edges of the triangles ∆L, ∆M y ∆R have the same metric relations.
See also Table 1.

Table 1. Metric relations between the three edges of the triangle according to the location of the
opposite vertex to the longest-edge in each of the regions given in Figure 7.

I 1/3 AB ≤ CD1 , CD1 ≤ AC, CD1 ≤ CD2
II 1/3 AB ≤ AC ≤ CD1 ≤ CD2
III AC ≤ 1/3 AB ≤ CD1 ≤ CD2
IV CD1 ≤ 1/3 AB ≤ AC, 1/3 AB ≤ CD2
V AC ≤ CD1 ≤ 1/3 AB ≤ CD2
VI CD1 ≤ AC ≤ 1/3 AB ≤ CD2
VII CD1 ≤ CD2 ≤ 1/3 AB ≤ AC

Proposition 2. The different expressions for the piecewise functions WL, WM, and WR are as
shown in Figure 8.
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Figure 8. From left to right, respectively, expressions for functions WL, WM, and WR in each subregion.

It should be noted that the expressions in Figure 8 are isometries in the Poincare
semi-plane model for the hyperbolic plane.

Figure 9 shows how to deduce the expression of WR for a point z belonging to the
upper subregion given in Figure 8. In order to normalize the right triangle in gray in
Figure 9a, we apply first a translation in Figure 9b, then a rotation such that the longest
edge of the rotated triangle is on the opposite real axes in Figure 9c and finally a dilation
such that the longest edge is on segment [0, 1] in Figure 9d. The last expression is the value
WR(z) = −1

3z−3 .

Figure 9. Deduction of function WR for a point z belonging to the upper subregion given in Figure 8.

Proposition 3. Let W be any of the functions WL , WM, and WR. Then, W is invariant about the
reflections with respect to the geodesic lines which appear in its definition.

Proof. These lines are geodesics according to the Poincare half-plane model for the hyper-
bolic plane. We may talk therefore about reflection with respect to these lines, taking into
account that it means inversion in the case of a circumference or symmetry in the case of a
right line.
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4. Discrete Dynamic of the 3T-LE Partition in the Space of Triangles Σ

Definition 3. Let z ∈ Σ. The set of complex numbers obtained by iterative application of functions
WL, WM, and WR to z and its successors is named orbit of z by the 3T-LE partition, and it is denoted
by Γz. The cardinal of Γz will be denoted by |Γz|.

We will show in this section that there are exactly three points in the space of triangular
shapes with finite orbits. In addition, any other point will have an infinite orbit with infinite
points in three circles with centers at the points with finite orbits.

Proposition 4. If ω1 = 1
3 +

√
2

3 i, then its orbit is Γω1 = {ω1, ω2, ω3}, where ω2 = 1
3 +

√
2

6 i

and ω3 = 4
9 +

√
2

9 i.

Proof. It follows easily since WL(ω1) = ω1, WM(ω1) = ω1, WR(ω1) = ω2, WL(ω2) = ω1,
WM(ω2) = ω1, WR(ω2) = ω3, WL(ω3) = ω2, WM(ω3) = ω1, and WR(ω3) = ω3.

The orbits of points ω1, ω2, and ω3 are finite. These points correspond to the three
shapes of the triangles obtained from the standard paper size by 3T-LE. Any other orbit has
typical aspect showed in Figure 10: every point of the orbit is in circles around {ω1, ω2, ω3},
except perhaps a finite number of points.

Figure 10. Orbit after ten iterations of the 3T-LE of the triangle marked with a red point.

Some facts about the Poincare semi-plane model and the hyperbolic geometry are
naturally related to the discrete dynamic in the space of triangular shapes. See, for exam-
ple, [15–17]. Here, d is the Poincare hyperbolic distance in the semi-plane:

Definition 4. Let z1 and z2 be two points in the half-plane. Then, the hyperbolic distance between
them, d(z1, z2), is defined by the expression

cosh d = 1 +
|z1 − z2|2

2 · Im z1 · Im z2
. (2)

Our next goal is to prove that points ω1, ω2, and ω3 are the only ones with finite orbits.
One interesting property of functions WL, WM, and WR is the non-increasing property as
the following lemma establishes. For a proof of it, see [18].

Lemma 1. Let z1, z2 ∈ Σ and let W be WL, WM, or WR. Then, d(W(z1), W(z2)) ≤ d(z1, z2).
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Proposition 5. Circumferences C1, C2, and C3, respectively, of equations

C1 ≡
(

x− 1
3

)2
+

(
y− 1

2

)2
=

(
1
6

)2
,

C2 ≡
(

x− 1
3

)2
+

(
y− 1

4

)2
=

(
1

12

)2
,

C3 ≡
(

x− 4
9

)2
+

(
y− 1

6

)2
=

(
1

18

)2

have centers, respectively, as the points ω1 = 1
3 +

√
2

3 i, ω2 = 1
3 +

√
2

6 i, ω3 = 4
9 +

√
2

9 i. These
circumferences have radius ln

√
2 with the hyperbolic distance, and they are tangent to the boundary

lines of the regions defining functions WL, WM, and WR.

Proof. The proof follows by the definition of hyperbolic distance. See Figure 11. For
example, in circumference C1, the points at maximum and minimum height, respectively,
are 1

3 + 2
3 i, and 1

3 + 1
3 i. Therefore, according to the formula for the hyperbolic distance

(2), and the diameter of circumference C1 is D = ln 2. Let ω1 = 1
3 + y i be the center of

circumference C1. Then, the radius will be given by r = ln
(

y
2/3

)
= 1

2 ln 2, and hence,

y =
√

2
3 , so effectively ω1 is as in the proposition. Analogously, the radius and center for

circumferences C2 and C3 may be deduced. Notice that circumferences C1, C2, and C3 may
be written with the hyperbolic distance as d(z, ωi) = ln 2, respectively, for i = 1, 2, 3.

Figure 11. Hyperbolic circumferences C1, C2, and C3 with radius ln
√

2 and respective centers ω1, ω2,
and ω3.

Lemma 2 ([19] (page 40)). arccos
(

1√
n

)
is not a rational multiple of π for any odd number n ≥ 3.

The following proposition explains the characteristic circular formations of the orbits
of the 3T-LE.

Proposition 6. Let ω ∈ Σ with 0 < d(ω, ωi) = r < ln
√

2 for some i ∈ {1, 2, 3}. Then, the
orbit of ω, Γω, is dense in any circumference d(z, ωi) = r for i = 1, 2, 3.

Proof. WL, WM, and WR interchange the hyperbolic circles with radius ln
√

2 and centers
ωi for i ∈ {1, 2, 3}, or they are hyperbolic rotations in these circles. These rotations are not
rational multiples of 2π, and then any point ω, as in the hypothesis, has an orbit dense in
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the circumferences d(z, ωi) = r for i = 1, 2, 3. Notice that function WM is given by
−1

3z− 2
,

which corresponds to an hyperbolic rotation with center ω1. Since the derivative of WM at

ω1 is
−1
3

+
2
√

2
3

i, the angle of the hyperbolic rotation is α =
π

2
+ arctan

(
1

2
√

2

)
. Because

tan α = −2
√

2, cos(π − α) =
1
3

, π − α is not a rational multiple of π, because of Lemma 2
for n = 9 and also α is not a rational multiple of π.

Since α is not a rational multiple of π, if m 6= n, then Wn
M(ω) 6= Wm

M(ω). Therefore,
the orbit Γ(ω) is not finite. However, our goal is to prove that the orbit is dense in the
hyperbolic circle with center ω1 and radius r. Let L be the hyperbolic length of that circle,
and let z be such that d(z, ω1) = r. We have to prove that for every ε > 0 there is a
point in Γ(ω) such that its hyperbolic distance to z is less than ε. Let N > 0 such that
1/N < ε. Let us consider the points ω, WM(ω), Ww

M(ω), . . . , WN
M(ω), which are all different.

Since they are N + 1 points, two of them are in a hyperbolic circular arc of length L/N.
It follows that there exist 0 ≤ m < n ≤ N such that d(Wn

M(ω), Wm
M(ω)) < L/N < ε.

Therefore, the points ω, WM(ω), Ww
M(ω), . . . , WN

M(ω) are on a circle to a distance less than
ε each from the following because WM is an isometry. Hence, there exists j > 0 such that
d(z, W j(n−m)

M (ω)) < ε.

Proposition 7. Let z ∈ Σ with |Γ(z)| < ∞. Then, z = ωi for some i ∈ {1, 2, 3}.

Proof. Since the orbit Γ(z) is finite, the sequence z, WM(z), W2
M(z), . . . is cyclic, so there

exist N and p such that Wk
M(z) = Wk+p

M (z) for k ≥ N. If p = 1, then Wk
M(z) is a point

belonging to the subset of Σ invariant by WM, so z = ω1. Let us suppose that p ≥ 2, and p
is the lower integer with that property. Let yj = Wk+j−1

M (z) for j = 1, . . . , p different points.
By the non-increasing property of the distance

d(y1, ω1) ≤ d(y2, ω1) ≤ . . . ≤ d(yp, ω1) ≤ d(y1, ω1).

Then,
d(y1, ω1) = d(y2, ω1) = . . . = d(yp, ω1).

Therefore, y1, y2, . . . , yp are in the same region of definition of WM where there is ω1.
In that region, WM(z) = −1

3z−2 , which is a hyperbolic rotation with center ω1 and angle

α = π
2 + arctan

(
1

2
√

2

)
as in Proposition 6. But then α is not a rational multiple of π which

is a contradiction. Hence, there is an integer N such that WN
M(z) = ω1. Let us consider

the lower N with that property. If N = 0 or N = 1, then by using the expression of WM
it follows that z = ωi for some i ∈ {1, 2, 3}. Let us assume that N ≥ 2. Then, either
WN−1

M (z) = ω2 or WN−1
M (z) = ω3.

If WN−1
M (z) = ω2, then its pre-image WN−2

M (z) by WM is either 4
9 +

√
2

18 i or 2
9 +

√
2

9 i. In
both cases, it is not possible that the orbit is finite, because applying W5

M ◦WR a point is
obtained to a distance less than ln

√
2 to ω2. See Figure 12a,b, and Proposition 6 applies.

As a consequence, the orbit is dense in the circle and so it is not finite.
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R

R

Figure 12. Points 4
9 +

√
2

18 i and 2
9 +

√
2

9 i will have infinite orbits according to Proposition 6.

On the other hand, if WN−1
M (z) = ω3, then its pre-image WN−2

M (z) by WM is either
1
9 +

√
2

9 i or 13
27 +

√
2

27 i. Again, it is not possible that Γ(z) is finite, because applying in
both cases W2

M ◦WR a point is obtained to a distance less than ln
√

2 to ω3, and again,
Proposition 6 applies. See Figure 13a,b.

R

R

Figure 13. Points 1
9 +

√
2

9 i and 13
27 +

√
2

27 i will have infinite orbits according to Proposition 6.

5. Conclusions

In this paper, the similarity classes obtained by iterative application of the 3T-LE to an
initial triangle have been studied. It has been proved that the number of similarity classes
appearing by the iterative application of the 3T-LE to a single initial triangle is not finite in
general. There are only three exceptions to this fact: the right triangle with its sides in the
ratio 1:

√
2:
√

3 and the other two triangles in its orbit. This result, although of a combinatorial
nature, has been proved with the machinery of discrete dynamics in a triangle shape space
with the hyperbolic metric defined by the Poincare model in the upper semi-plane. It is
also shown that for a point with an infinite orbit, the infinite points of the orbit are in three
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circles with centers at the points with finite orbits. Similar approaches using this discrete
dynamics may be of interest to other triangle transformations. The extension to tetrahedral
partitions of a similar approach, to our knowledge, is an open question.

Author Contributions: The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bova, S.W.; Carey, G.F. Mesh generation/refinement using fractal concepts and iterated function systems. Internat. J. Numer. Meth.

Engrg. 1992, 33, 287–305. [CrossRef]
2. Carey, G.F. Computational Grids: Generation, Refinement and Solution Strategies; Taylor and Francis: Washington, DC, USA, 1997.
3. Brandts, J.; Korotov, S.; Kr̆íz̆ek, M. On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.

Comput. Math. Appl. 2008, 55, 2227–2233. [CrossRef]
4. Rivara, M.C. Mesh refinement based on the generalized bisection of simplices. SIAM J. Numer. Anal. 1984, 21, 604–613. [CrossRef]
5. Rivara, M.C.; Iribarren, G. The 4-triangles longest-side partition of triangles and linear refinement algorithms. Math. Compt. 1996,

65, 1485–1502. [CrossRef]
6. Stynes, M. On faster convergence of the bisection method for certain triangles. Math. Comp. 1979, 33, 717–721. [CrossRef]
7. Rosenberg, I.G.; Stenger, F. A lower bound on the angles of triangles constructed by bisecting the longest side. Math. Comp. 1975,

29, 390–395. [CrossRef]
8. Korotov, S.; Plaza, Á.; Suárez, J.P. Longest-edge n-section algorithms: Properties and open problems. J. Comput. Appl. Math. 2016,

293, 139–146. [CrossRef]
9. Adler, A. On the bisection method for triangles. Math. Comp. 1983, 40, 571–574. [CrossRef]
10. Perdomo, F.; Plaza, Á. Properties of the longest-edge bisection of triangles. Cent. Eur. J. Math. 2014, 12, 1796–1810.
11. Bookstein, F.L. The Measurement of Biological Shape and Shape Change; Springer: Berlin/Heidelberg, Germany, 1978.
12. Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1991.
13. Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis; Wiley: Hoboken, NJ, USA, 1998.
14. Small, C.G. The Statistical Theory of Shape; Springer: Berlin/Heidelberg, Germany, 1996.
15. Anderson, J.W. Hyperbolic Geometry; Springer: Berlin/Heidelberg, Germany, 2000.
16. Bonahon, F. Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots; American Mathematical Society: Princeton, NJ,

USA, 2009.
17. Cannon, J.W.; Floyd, W.J.; Kenyon, R.; Parry, W.R. Hyperbolic Geometry. In Flavors of Geometry; Cambridge University Press:

Cambridge, UK, 1997.
18. Perdomo, F.; Plaza, Á. Proving the non-degeneracy of the longest-edge trisection by a space of triangular shapes with hyperbolic

metric. Appl. Math. Comp. 2013, 221, 424–432. [CrossRef]
19. Aigner, M.; Ziegler, G.M. Proofs from the Book; Springer: Berlin/Heidelberg, Germany, 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/nme.1620330205
http://dx.doi.org/10.1016/j.camwa.2007.11.010
http://dx.doi.org/10.1137/0721042
http://dx.doi.org/10.1090/S0025-5718-96-00772-7
http://dx.doi.org/10.1090/S0025-5718-1979-0521285-4
http://dx.doi.org/10.1090/S0025-5718-1975-0375068-5
http://dx.doi.org/10.1016/j.cam.2015.03.046
http://dx.doi.org/10.1090/S0025-5718-1983-0689473-5
http://dx.doi.org/10.1016/j.amc.2013.06.075

	Introduction
	Space of Triangular Shapes and the Hyperbolic Metric in the Space of Triangular Shapes
	Normalized Triangle Region or Space of Triangular Shapes
	Introduction to the Hyperbolic Metric in the Space of Triangular Shapes
	Poincare Model the the Hyperbolic Plane

	Complex Functions Associated with the 3T-LE in the Space of Triangular Shapes
	Discrete Dynamic of the 3T-LE Partition in the Space of Triangles 
	Conclusions
	References

