Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,736)

Search Parameters:
Keywords = Sentinels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

23 pages, 4515 KiB  
Article
Monitoring Post-Fire Deciduous Shrub Cover Using Machine Learning and Multiscale Remote Sensing
by Hannah Trommer and Timothy Assal
Land 2025, 14(8), 1603; https://doi.org/10.3390/land14081603 (registering DOI) - 6 Aug 2025
Abstract
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in [...] Read more.
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in the eastern Jemez Mountains from 2019 to 2023 using topographic and Sentinel-2 satellite data and evaluated the impact of spatial scale on model performance. First, we built a 10 m and a 20 m random forest model. The 20 m model outperformed the 10 m model, achieving an R-squared value of 0.82 and an RMSE of 7.85, compared to the 10 m model (0.76 and 9.99, respectively). We projected the 20 m model to the other years of the study using imagery from the respective years, yielding yearly DFSC predictions. DFSC decreased from 2019 to 2022, coinciding with severe drought and a 2022 fire, followed by an increase in 2023, particularly within the 2022 fire footprint. Overall, DFSC trends showed an increase, with elevation being a key variable influencing these trends. This framework revealed vegetation dynamics in a semi-arid system and provided a close look at post-fire regeneration in deciduous resprouting shrubs and could be applied to similar systems. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

1226 KiB  
Proceeding Paper
Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing
by Paloma C. Toscan, Alcindo Neckel, Emanuelle Goellner, Marcos L. S. Oliveira and Eduardo N. B. Pereira
Eng. Proc. 2025, 94(1), 15; https://doi.org/10.3390/engproc2025094015 - 5 Aug 2025
Abstract
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first [...] Read more.
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first phase involves mapping pollutants and assessing European guidelines, traditional monitoring methods, and emerging tools such as sensors and satellite data. The findings indicate gaps in spatial coverage, emphasizing the importance of integrating data from Sentinel-3, Sentinel-5P, local sensors, and drones. These insights establish a foundation for the next phase, which involves predictive modeling of NBS, LST, and pollutants using machine learning techniques to support data-driven policy-making. Full article
Show Figures

Figure 1

25 pages, 4069 KiB  
Article
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have [...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

27 pages, 14923 KiB  
Article
Multi-Sensor Flood Mapping in Urban and Agricultural Landscapes of the Netherlands Using SAR and Optical Data with Random Forest Classifier
by Omer Gokberk Narin, Aliihsan Sekertekin, Caglar Bayik, Filiz Bektas Balcik, Mahmut Arıkan, Fusun Balik Sanli and Saygin Abdikan
Remote Sens. 2025, 17(15), 2712; https://doi.org/10.3390/rs17152712 - 5 Aug 2025
Abstract
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning [...] Read more.
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning method to evaluate the July 2021 flood in the Netherlands. The research developed 25 different feature scenarios through the combination of Sentinel-1, Landsat-8, and Radarsat-2 imagery data by using backscattering coefficients together with optical Normalized Difference Water Index (NDWI) and Hue, Saturation, and Value (HSV) images and Synthetic Aperture Radar (SAR)-derived Grey Level Co-occurrence Matrix (GLCM) texture features. The Random Forest (RF) classifier was optimized before its application based on two different flood-prone regions, which included Zutphen’s urban area and Heijen’s agricultural land. Results demonstrated that the multi-sensor fusion scenarios (S18, S20, and S25) achieved the highest classification performance, with overall accuracy reaching 96.4% (Kappa = 0.906–0.949) in Zutphen and 87.5% (Kappa = 0.754–0.833) in Heijen. For the flood class F1 scores of all scenarios, they varied from 0.742 to 0.969 in Zutphen and from 0.626 to 0.969 in Heijen. Eventually, the addition of SAR texture metrics enhanced flood boundary identification throughout both urban and agricultural settings. Radarsat-2 provided limited benefits to the overall results, since Sentinel-1 and Landsat-8 data proved more effective despite being freely available. This study demonstrates that using SAR and optical features together with texture information creates a powerful and expandable flood mapping system, and RF classification performs well in diverse landscape settings. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Flood Forecasting and Monitoring)
Show Figures

Figure 1

24 pages, 3027 KiB  
Article
Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy
by Maria Cristina Rapi, Joel Filipe, Laura Filippone Pavesi, Stefano Raimondi, Maria Filippa Addis, Maria Pia Franciosini and Guido Grilli
Animals 2025, 15(15), 2289; https://doi.org/10.3390/ani15152289 - 5 Aug 2025
Abstract
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died [...] Read more.
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died at the Wildlife Rescue Center in Vanzago, Lombardy, in 2024. Cloacal swabs were collected from 112 birds representing various ecological categories. A total of 157 Gram-negative bacteria were isolated and identified, including clinically relevant genera and species, such as Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Salmonella spp., Pseudomonas aeruginosa, and Acinetobacter baumannii. Antimicrobial susceptibility testing revealed resistance to first-line and critically important antimicrobials, including those exclusively authorized for human use. Notably, a phenotype compatible with Extended-Spectrum Beta-Lactamase (ESBL) production was detected in four out of ten (40%) K. pneumoniae isolates. In addition, 20 out of the 157 (12.7%) isolated bacteria phenotypically exhibited a resistance profile indicative of AmpC beta-lactamase (AmpC) production, including Enterobacter spp. and P. aeruginosa. Resistance patterns were particularly interesting in birds with carnivorous, scavenging, or migratory-associated behaviors. These findings highlight the role of wild birds in the ecology and dissemination of antimicrobial-resistant bacteria (ARB) and highlight the need for wildlife-based AMR monitoring programs as part of a One Health approach. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

14 pages, 1525 KiB  
Article
Fibrinogen-to-Albumin Ratio Predicts Acute Kidney Injury in Very Elderly Acute Myocardial Infarction Patients
by Xiaorui Huang, Haichen Wang and Wei Yuan
Biomedicines 2025, 13(8), 1909; https://doi.org/10.3390/biomedicines13081909 - 5 Aug 2025
Abstract
Background/Objectives: Acute kidney injury (AKI) is a common and severe complication in patients with acute myocardial infarction (AMI). Very elderly patients are at a heightened risk of developing AKI. Fibrinogen and albumin are well-known biomarkers of inflammation and nutrition, which are highly [...] Read more.
Background/Objectives: Acute kidney injury (AKI) is a common and severe complication in patients with acute myocardial infarction (AMI). Very elderly patients are at a heightened risk of developing AKI. Fibrinogen and albumin are well-known biomarkers of inflammation and nutrition, which are highly related to AKI. We aim to explore the predictive value of the fibrinogen-to-albumin ratio (FAR) for AKI in very elderly patients with AMI. Methods: A retrospective cohort of AMI patients ≥ 75 years old hospitalized at the First Affiliated Hospital of Xi’an Jiaotong University between January 2018 and December 2022 was established. Clinical data and medication information were collected through the biospecimen information resource center at the hospital. Univariate and multivariable logistic regression models were used to analyze the association between FAR and the risk of AKI in patients with AMI. FAR was calculated as the ratio of fibrinogen (FIB) to serum albumin (ALB) level (FAR = FIB/ALB). The primary outcome is acute kidney injury, which was diagnosed based on KDIGO 2012 criteria. Results: Among 1236 patients enrolled, 66.8% of them were male, the median age was 80.00 years (77.00–83.00), and acute kidney injury occurred in 18.8% (n = 232) of the cohort. Comparative analysis revealed significant disparities in clinical characteristics between patients with or without AKI. Patients with AKI exhibited a markedly higher prevalence of arrhythmia (51.9% vs. 28.1%, p < 0.001) and lower average systolic blood pressure (115.77 ± 25.96 vs. 122.64 ± 22.65 mmHg, p = 0.013). In addition, after adjusting for age, sex, history of hypertension, left ventricular ejection fraction (LVEF), and other factors, FAR remained an independent risk factor for acute kidney injury (OR = 1.47, 95%CI: 1.36–1.58). ROC analysis shows that FAR predicted stage 2–3 AKI with superior accuracy (AUC 0.94, NPV 98.6%) versus any AKI (AUC 0.79, NPV 93.0%), enabling risk-stratified management. Conclusions: FAR serves as both a high-sensitivity screening tool for any AKI and a high-specificity sentinel for severe AKI, with NPV-driven thresholds guiding resource allocation in the fragile elderly. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

8 pages, 5870 KiB  
Proceeding Paper
Classification of Urban Environments Using State-of-the-Art Machine Learning: A Path to Sustainability
by Tesfaye Tessema, Neda Azarmehr, Parisa Saadati, Dale Mortimer and Fabio Tosti
Eng. Proc. 2025, 94(1), 14; https://doi.org/10.3390/engproc2025094014 - 4 Aug 2025
Abstract
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires [...] Read more.
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires effective planning, maintenance, and continuous monitoring. To enhance traditional approaches, remote sensing is becoming a vital tool for city-wide observations. Publicly available large-scale data, combined with machine learning models, can improve our understanding. We explore the potential of Sentinel-2 to classify and extract meaningful features from urban landscapes. Using advanced machine learning techniques, we aim to develop a robust and scalable framework for classifying urban environments. The proposed models will assist in monitoring changes in green spaces across diverse urban settings, enabling timely and informed decisions to foster sustainable urban growth. Full article
Show Figures

Figure 1

11 pages, 217 KiB  
Article
Assessing Canine Parvovirus Vaccine Performance in Puppies with Maternally Derived Antibody: An Improved Study Design
by Jacqueline Pearce, Ellen Versmissen, David Sutton, Qi Cao and Ian Tarpey
Vaccines 2025, 13(8), 832; https://doi.org/10.3390/vaccines13080832 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Typically, studies aiming to assess the ability of canine parvovirus (CPV) vaccines to immunise puppies with maternally derived antibody (MDA) are undertaken using group-housed puppies. Since live attenuated vaccine virus is invariably shed in the faeces, this can result in repeated [...] Read more.
Background/Objectives: Typically, studies aiming to assess the ability of canine parvovirus (CPV) vaccines to immunise puppies with maternally derived antibody (MDA) are undertaken using group-housed puppies. Since live attenuated vaccine virus is invariably shed in the faeces, this can result in repeated oral re-exposure and puppies which failed to respond to the initial vaccination may respond instead to shed vaccine virus in the environment, thus artificially enhancing the efficacy of the vaccine. This problem can be avoided by adopting a pair-housed study design where one vaccinated pup is housed with one unvaccinated sentinel. Using this design, we examine the capability of four commercially available canine parvovirus vaccines to immunise MDA-positive pups. Methods: Thirty-four 6-week-old puppies born to vaccinated dams were divided into four vaccine groups with similar MDA ranges. Within each group puppies were paired based on matching MDA titres, and each pair was housed in separate biocontainment accommodation. In each pair, the pup with the highest MDA was vaccinated and the other left as an unvaccinated sentinel. All vaccinates were given a single dose of one of the vaccines. Vaccinates and sentinels were then bled every 2–4 days and CPV antibody was measured. Daily rectal swabs were also collected from all pups to identify any shed vaccinal CPV. Results: All the pups vaccinated with Nobivac DP PLUS seroconverted, with significantly higher antibody titres compared to the pups in other vaccine groups, all shed vaccine virus, and all bar one of the sentinel pups seroconverted. In the other groups, only vaccinated pups with lower levels of MDA seroconverted and shed vaccine virus but none of the sentinel pups seroconverted. Conclusions: Different canine parvovirus vaccines differ in their ability to replicate in and immunise puppies with MDA, the levels of which may vary widely between individuals. The shedding of vaccinal CPV is an important consideration when designing studies to demonstrate efficacy in MDA-positive puppies. Full article
(This article belongs to the Section Veterinary Vaccines)
22 pages, 4189 KiB  
Article
A Hierarchical Path Planning Framework of Plant Protection UAV Based on the Improved D3QN Algorithm and Remote Sensing Image
by Haitao Fu, Zheng Li, Jian Lu, Weijian Zhang, Yuxuan Feng, Li Zhu, He Liu and Jian Li
Remote Sens. 2025, 17(15), 2704; https://doi.org/10.3390/rs17152704 - 4 Aug 2025
Abstract
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a [...] Read more.
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a Mixture-of-Experts mechanism with a Bi-directional Long Short-Term Memory model. This design enhances the efficiency and robustness of UAV path planning in agricultural environments. Building upon this algorithm, a hierarchical coverage path planning framework is developed. Multi-level task maps are constructed using crop information extracted from Sentinel-2 remote sensing imagery. Additionally, a dynamic energy consumption model and a progressive composite reward function are incorporated to further optimize UAV path planning in complex farmland conditions. Simulation experiments reveal that in the two-level scenario, the MoE-D3QN algorithm achieves a coverage efficiency of 0.8378, representing an improvement of 37.84–63.38% over traditional algorithms and 19.19–63.38% over conventional reinforcement learning methods. The redundancy rate is reduced to 3.23%, which is 38.71–41.94% lower than traditional methods and 4.46–42.77% lower than reinforcement learning counterparts. In the three-level scenario, MoE-D3QN achieves a coverage efficiency of 0.8261, exceeding traditional algorithms by 52.13–71.45% and reinforcement learning approaches by 10.15–50.2%. The redundancy rate is further reduced to 5.26%, which is significantly lower than the 57.89–92.11% observed with traditional methods and the 15.57–18.98% reported for reinforcement learning algorithms. These findings demonstrate that the MoE-D3QN algorithm exhibits high-quality planning performance in complex farmland environments, indicating its strong potential for widespread application in precision agriculture. Full article
Show Figures

Figure 1

13 pages, 487 KiB  
Review
Optimizing Inguinal Lymph Node Dissection for Penile Cancer: A Pathway to Improve Outcomes and Complications—A Narrative Review
by Federico Eskenazi, Luis G. Medina, Roberto Soto Suarez, Laura Fumero, Alegría C. Lusinchi Delfino, Keval Patel, Marcos Tobias Machado, Randall Lee and Rene Sotelo
Complications 2025, 2(3), 20; https://doi.org/10.3390/complications2030020 - 4 Aug 2025
Abstract
Penile cancer is a rare malignancy, with approximately 2100 cases diagnosed annually in the United States. The 5-year overall survival rate varies significantly depending on the node involvement status, at 79% in node-negative disease versus 51% for patients with inguinal metastasis. Inguinal lymph [...] Read more.
Penile cancer is a rare malignancy, with approximately 2100 cases diagnosed annually in the United States. The 5-year overall survival rate varies significantly depending on the node involvement status, at 79% in node-negative disease versus 51% for patients with inguinal metastasis. Inguinal lymph nodes are involved in micrometastatic disease in up to one out of four patients. Early inguinal lymph node dissection (ILND) has been shown to provide a survival advantage, which is why many patients undergo inguinal lymph node dissection for diagnostic and therapeutic purposes. Unfortunately, ILND is associated with high morbidity rates, which have led to potential overtreatment and decreased quality of life in the penile cancer population. Several advancements have been made to mitigate these challenges, such as dynamic sentinel node dissection, modifications to the technique or surgical templates, the introduction of minimally invasive procedures, and changes to the postoperative pathway. This manuscript examines the evolution in managing the inguinal lymph nodes in penile cancer, its associated complications, and effective strategies for their prevention and management. Full article
Show Figures

Figure 1

17 pages, 12127 KiB  
Article
Shoreline Response to Hurricane Otis and Flooding Impact from Hurricane John in Acapulco, Mexico
by Luis Valderrama-Landeros, Iliana Pérez-Espinosa, Edgar Villeda-Chávez, Rafael Alarcón-Medina and Francisco Flores-de-Santiago
Coasts 2025, 5(3), 28; https://doi.org/10.3390/coasts5030028 - 4 Aug 2025
Abstract
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23 [...] Read more.
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23 September 2024), Hurricane John—a Category 2 storm—caused severe flooding despite its lower intensity, primarily due to its unusual trajectory and prolonged rainfall. Digital shoreline analysis of PlanetScope images (captured one month before and after Hurricane Otis) revealed that the southern coast of Acapulco, specifically Zona Diamante—where the major seafront hotels are located—experienced substantial shoreline erosion (94 ha) and damage. In the northwestern section of the study area, the Coyuca Bar experienced the most dramatic geomorphological change in surface area. This was primarily due to the complete disappearance of the bar on October 26, which resulted in a shoreline retreat of 85 m immediately after the passage of Hurricane Otis. Sentinel-1 Synthetic Aperture Radar (SAR) showed that Hurricane John inundated 2385 ha, four times greater than Hurricane Otis’s flooding (567 ha). The retrofitted QGIS methodology demonstrated high reliability when compared to limited in situ local reports. Given the increased frequency of intense hurricanes, these methods and findings will be relevant in other coastal areas for monitoring and managing local communities affected by severe climate events. Full article
Show Figures

Figure 1

20 pages, 16139 KiB  
Article
XCH4 Spatiotemporal Variations in a Natural-Gas-Exploiting Basin with Intensive Agriculture Activities Using Multiple Remote Sensing Datasets: Case from Sichuan Basin, China
by Tengnan Wang and Yunpeng Wang
Remote Sens. 2025, 17(15), 2695; https://doi.org/10.3390/rs17152695 - 4 Aug 2025
Viewed by 108
Abstract
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset [...] Read more.
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset of column-averaged dry-air mole fraction of methane (XCH4) over the Sichuan Basin and adjacent regions was built by integrating multi-satellite remote sensing data (SCIAMACHY, GOSAT, Sentinel-5P), which was calibrated using ground station data. The results show a strong correlation and consistency (R = 0.88) between the ground station and satellite observations. The atmospheric CH4 concentration of the Sichuan Basin showed an overall higher level (around 20 ppb) than that of the whole of China and an increasing trend in the rates, from around 2.27 ppb to 10.44 ppb per year between 2003 and 2021. The atmospheric CH4 concentration of the Sichuan Basin also exhibits clear seasonal changes (higher in the summer and autumn and lower in the winter and spring) with a clustered geographical distribution. Agricultural activities and natural gas extraction contribute significantly to atmospheric methane concentrations in the study area, which should be considered in carbon emission management. This study provides an effective way to investigate the spatiotemporal distribution of atmospheric CH4 concentration and related factors at a regional scale with natural and human influences using multi-source satellite remote sensing data. Full article
Show Figures

Figure 1

48 pages, 16562 KiB  
Article
Dense Matching with Low Computational Complexity for   Disparity Estimation in the Radargrammetric Approach of SAR Intensity Images
by Hamid Jannati, Mohammad Javad Valadan Zoej, Ebrahim Ghaderpour and Paolo Mazzanti
Remote Sens. 2025, 17(15), 2693; https://doi.org/10.3390/rs17152693 - 3 Aug 2025
Viewed by 153
Abstract
Synthetic Aperture Radar (SAR) images and optical imagery have high potential for extracting digital elevation models (DEMs). The two main approaches for deriving elevation models from SAR data are interferometry (InSAR) and radargrammetry. Adapted from photogrammetric principles, radargrammetry relies on disparity model estimation [...] Read more.
Synthetic Aperture Radar (SAR) images and optical imagery have high potential for extracting digital elevation models (DEMs). The two main approaches for deriving elevation models from SAR data are interferometry (InSAR) and radargrammetry. Adapted from photogrammetric principles, radargrammetry relies on disparity model estimation as its core component. Matching strategies in radargrammetry typically follow local, global, or semi-global methodologies. Local methods, while having higher accuracy, especially in low-texture SAR images, require larger kernel sizes, leading to quadratic computational complexity. Conversely, global and semi-global models produce more consistent and higher-quality disparity maps but are computationally more intensive than local methods with small kernels and require more memory (RAM). In this study, inspired by the advantages of local matching algorithms, a computationally efficient and novel model is proposed for extracting corresponding pixels in SAR-intensity stereo images. To enhance accuracy, the proposed two-stage algorithm operates without an image pyramid structure. Notably, unlike traditional local and global models, the computational complexity of the proposed approach remains stable as the input size or kernel dimensions increase while memory consumption stays low. Compared to a pyramid-based local normalized cross-correlation (NCC) algorithm and adaptive semi-global matching (SGM) models, the proposed method maintains good accuracy comparable to adaptive SGM while reducing processing time by up to 50% relative to pyramid SGM and achieving a 35-fold speedup over the local NCC algorithm with an optimal kernel size. Validated on a Sentinel-1 stereo pair with a 10 m ground-pixel size, the proposed algorithm yields a DEM with an average accuracy of 34.1 m. Full article
29 pages, 9514 KiB  
Article
Kennaugh Elements Allow Early Detection of Bark Beetle Infestation in Temperate Forests Using Sentinel-1 Data
by Christine Hechtl, Sarah Hauser, Andreas Schmitt, Marco Heurich and Anna Wendleder
Forests 2025, 16(8), 1272; https://doi.org/10.3390/f16081272 - 3 Aug 2025
Viewed by 174
Abstract
Climate change is generally having a negative impact on forest health by inducing drought stress and favouring the spread of pest species, such as bark beetles. The terrestrial monitoring of bark beetle infestation is very time-consuming, especially in the early stages, and therefore [...] Read more.
Climate change is generally having a negative impact on forest health by inducing drought stress and favouring the spread of pest species, such as bark beetles. The terrestrial monitoring of bark beetle infestation is very time-consuming, especially in the early stages, and therefore not feasible for extensive areas, emphasising the need for a comprehensive approach based on remote sensing. Although numerous studies have researched the use of optical data for this task, radar data remains comparatively underexplored. Therefore, this study uses the weekly and cloud-free acquisitions of Sentinel-1 in the Bavarian Forest National Park. Time series analysis within a Multi-SAR framework using Random Forest enables the monitoring of moisture content loss and, consequently, the assessment of tree vitality, which is crucial for the detection of stress conditions conducive to bark beetle outbreaks. High accuracies are achieved in predicting future bark beetle infestation (R2 of 0.83–0.89). These results demonstrate that forest vitality trends ranging from healthy to bark beetle-affected states can be mapped, supporting early intervention strategies. The standard deviation of 0.44 to 0.76 years indicates that the model deviates on average by half a year, mainly due to the uncertainty in the reference data. This temporal uncertainty is acceptable, as half a year provides a sufficient window to identify stressed forest areas and implement targeted management actions before bark beetle damage occurs. The successful application of this technique to extensive test sites in the state of North Rhine-Westphalia proves its transferability. For the first time, the results clearly demonstrate the expected relationship between radar backscatter expressed in the Kennaugh elements K0 and K1 and bark beetle infestation, thereby providing an opportunity for the continuous and cost-effective monitoring of forest health from space. Full article
(This article belongs to the Section Forest Health)
Show Figures

Graphical abstract

Back to TopTop