Fibrinogen-to-Albumin Ratio Predicts Acute Kidney Injury in Very Elderly Acute Myocardial Infarction Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions and Outcome
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Cohort
3.2. Comparison of Biochemical Indicators in the Study Cohort
3.3. FAR Affects the Development of Acute Kidney Injury
3.4. ROC Analysis of FAR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Included Group (n = 1236) | Excluded Group (n = 200) | p |
---|---|---|---|
Age, year | 80.3 ± 3.8 | 81.5 ± 2.6 | 0.562 |
Male, n (%) | 813 (65.8%) | 136 (68.0%) | 0.235 |
Hx of HTN, n (%) | 713 (57.7%) | 109 (54.5%) | 0.716 |
Hx of stroke, n (%) | 132 (10.7%) | 22 (11.0%) | 0.213 |
Hx of T2DM, n (%) | 306 (24.8%) | 53 (26.5%) | 0.554 |
Family history of AMI | 26 (2.1%) | 8 (4.0%) | 0.337 |
Smoke, n (%) | 260 (21.0%) | 46 (23.0%) | 0.754 |
Drinking, n (%) | 89 (7.2%) | 16 (8.0%) | 0.445 |
Avg SBp, mmHg | 113.9 ± 15.5 | 118.2 ± 13.1 | 0.298 |
Avg DBp, mmHg | 66.2 ± 8.7 | 67.5 ± 7.6 | 0.579 |
AKI, n (%) | 232 (18.8%) | 34 (17.0%) | 0.412 |
AKI Stage | FAR Cutoff | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | AUC (95% CI) |
---|---|---|---|---|---|---|
Overall AKI | 4.61 | 78.2 (72.1, 83.5) | 67.0 (61.8, 71.9) | 35.4 (30.2, 41.0) | 93.0 (89.6, 95.5) | 0.79 (0.75, 0.82) |
KIDGO stage 2–3 AKI | 7.41 | 78.9 (70.4, 85.8) | 93.8 (90.7, 96.1) | 43.9 (36.8, 51.3) | 98.6 (96.8, 99.5) | 0.94 (0.92, 0.97) |
References
- Mezhonov, E.M.; Vialkina, I.A.; Vakulchik, K.A.; Shalaev, S.V. Acute kidney injury in patients with ST-segment elevation acute myocardial infarction: Predictors and outcomes. Saudi. J. Kidney Dis. Transpl. 2021, 32, 318–327. [Google Scholar] [CrossRef]
- Xu, F.B.; Cheng, H.; Yue, T.; Ye, N.; Zhang, H.J.; Chen, Y.P. Derivation and validation of a prediction score for acute kidney injury secondary to acute myocardial infarction in Chinese patients. BMC Nephrol. 2019, 20, 195. [Google Scholar] [CrossRef]
- Shacham, Y. Acute kidney injury in acute myocardial infarction—A never-ending story? Int. J. Cardiol. 2019, 283, 64–65. [Google Scholar] [CrossRef]
- Pickering, J.W.; Blunt, I.R.H.; Than, M.P. Acute Kidney Injury and mortality prognosis in Acute Coronary Syndrome patients: A meta-analysis. Nephrology 2018, 23, 237–246. [Google Scholar] [CrossRef]
- Cosentino, N.; Resta, M.L.; Somaschini, A.; Campodonico, J.; Lucci, C.; Moltrasio, M.; Bonomi, A.; Cornara, S.; Camporotondo, R.; Demarchi, A.; et al. Acute kidney injury and in-hospital mortality in patients with ST-elevation myocardial infarction of different age groups. Int. J. Cardiol. 2021, 344, 8–12. [Google Scholar] [CrossRef]
- Dodson, J.A.; Hajduk, A.; Curtis, J.; Geda, M.; Krumholz, H.M.; Song, X.; Tsang, S.; Blaum, C.; Miller, P.; Parikh, C.R.; et al. Acute Kidney Injury Among Older Patients Undergoing Coronary Angiography for Acute Myocardial Infarction: The SILVER-AMI Study. Am. J. Med. 2019, 132, e817–e826. [Google Scholar] [CrossRef]
- Ricci, Z.; Romagnoli, S. Acute Kidney Injury: Diagnosis and Classification in Adults and Children. Contrib. Nephrol. 2018, 193, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Yan, Y.; Gu, S.; Mao, K.; Zhang, J.; Huang, P.; Zhou, Z.; Chen, Z.; Zheng, S.; Liang, J.; et al. A Novel Inflammation-Based Prognostic Score: The Fibrinogen/Albumin Ratio Predicts Prognoses of Patients after Curative Resection for Hepatocellular Carcinoma. J. Immunol. Res. 2018, 2018, 4925498. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Zhao, Y.; He, Y. Fibrinogen Level Predicts Outcomes in Critically Ill Patients with Acute Exacerbation of Chronic Heart Failure. Dis. Markers 2021, 2021, 6639393. [Google Scholar] [CrossRef]
- Ancion, A.; Allepaerts, S.; Robinet, S.; Oury, C.; Pierard, L.A.; Lancellotti, P. Serum albumin level and long-term outcome in acute heart failure. Acta. Cardiol. 2019, 74, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Muhtaroğlu, A.; Çapoğlu, R.; Uygur, F.A.; Harmantepe, A.T.; Bayhan, Z.; Gönüllü, E. FAR Ratio as Prognostic Biomarker in AMI. SN Compr. Clin. Med. 2023, 5, 109. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, C.; Zhang, Q.; Hu, Z.; Ji, K.; Qian, L. Association between fibrinogen-to-albumin ratio and prognosis of patients with heart failure. Eur. J. Clin. Investig. 2023, 53, e14049. [Google Scholar] [CrossRef]
- Li, B.; Deng, H.; Lei, B.; Chen, L.; Zhang, X.; Sha, D. The prognostic value of fibrinogen to albumin ratio in malignant tumor patients: A meta-analysis. Front. Oncol. 2022, 12, 985377. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron. Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Wang, Q.; Hu, S.; Wang, Y.; Masoudi, F.A.; Spertus, J.A.; Krumholz, H.M.; Jiang, L. ST-segment elevation myocardial infarction in China from 2001 to 2011 (the China PEACE-Retrospective Acute Myocardial Infarction Study): A retrospective analysis of hospital data. Lancet 2015, 385, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, N.; Ishihara, M.; Noguchi, T.; Nakanishi, M.; Arakawa, T.; Asaumi, Y.; Kumasaka, L.; Kanaya, T.; Nagai, T.; Fujino, M.; et al. Early development of acute kidney injury is an independent predictor of in-hospital mortality in patients with acute myocardial infarction. J. Cardiol. 2017, 69, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.B.; Tao, Y.; Yang, M. Assessing the influence of acute kidney injury on the mortality in patients with acute myocardial infarction: A clinical trail. Ren. Fail. 2018, 40, 75–84. [Google Scholar] [CrossRef]
- Chalikias, G.; Serif, L.; Kikas, P.; Thomaidis, A.; Stakos, D.; Makrygiannis, D.; Chatzikyriakou, S.; Papoulidis, N.; Voudris, V.; Lantzouraki, A.; et al. Long-term impact of acute kidney injury on prognosis in patients with acute myocardial infarction. Int. J. Cardiol. 2019, 283, 48–54. [Google Scholar] [CrossRef]
- Heung, M.; Steffick, D.E.; Zivin, K.; Gillespie, B.W.; Banerjee, T.; Hsu, C.Y.; Powe, N.R.; Pavkov, M.E.; Williams, D.E.; Saran, R.; et al. Acute Kidney Injury Recovery Pattern and Subsequent Risk of CKD: An Analysis of Veterans Health Administration Data. Am. J. Kidney Dis. 2016, 67, 742–752. [Google Scholar] [CrossRef]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012, 81, 442–448. [Google Scholar] [CrossRef]
- Shacham, Y.; Leshem-Rubinow, E.; Gal-Oz, A.; Topilsky, Y.; Steinvil, A.; Keren, G.; Roth, A.; Arbel, Y. Association of left ventricular function and acute kidney injury among ST-elevation myocardial infarction patients treated by primary percutaneous intervention. Am. J. Cardiol. 2015, 115, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Nie, S.; Liu, Z.; Chen, C.; Xu, G.; Zha, Y.; Qian, J.; Liu, B.; Han, S.; Xu, A.; et al. Epidemiology and Clinical Correlates of AKI in Chinese Hospitalized Adults. Clin. J. Am. Soc. Nephrol. 2015, 10, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.; Plati, A.; Mazzullo, T.; Fasoli, G.; De Mauri, A.; Grosjean, F.; Mangione, F.; Castoldi, F.; Serpieri, N.; Cornacchia, F.; et al. Renal function and functional reserve in healthy elderly individuals. J. Nephrol. 2007, 20, 617–625. [Google Scholar] [PubMed]
- Rosner, M.H.; La Manna, G.; Ronco, C. Acute Kidney Injury in the Geriatric Population. Contrib. Nephrol. 2018, 193, 149–160. [Google Scholar] [CrossRef]
- Çetin, M.; Erdoğan, T.; Kırış, T.; Özer, S.; Yılmaz, A.S.; Durak, H.; Aykan, A.; Şatıroğlu, Ö. Predictive value of fibrinogen-to-albumin ratio in acute coronary syndrome. Herz 2020, 45, 145–151. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Luan, H.; Luo, C.; Kamila, K.; Zheng, T.; Tian, G. Predictive impact of fibrinogen-to-albumin ratio (FAR) for left ventricular dysfunction in acute coronary syndrome: A cross-sectional study. Eur. J. Med. Res. 2023, 28, 68. [Google Scholar] [CrossRef]
- He, D.; Jiao, Y.; Yu, T.; Song, J.; Wen, Z.; Wu, J.; Duan, W.; Sun, N.; Sun, Z.; Sun, Z. Prognostic value of fibrinogen-to-albumin ratio in predicting 1-year clinical progression in patients with non-ST elevation acute coronary syndrome undergoing percutaneous coronary intervention. Exp. Ther. Med. 2019, 18, 2972–2978. [Google Scholar] [CrossRef] [PubMed]
- Rungsakulkij, N.; Tangtawee, P.; Suragul, W.; Muangkaew, P.; Mingphruedhi, S.; Aeesoa, S. Correlation of serum albumin and prognostic nutritional index with outcomes following pancreaticoduodenectomy. World J. Clin. Cases. 2019, 7, 28–38. [Google Scholar] [CrossRef]
- Hansrivijit, P.; Yarlagadda, K.; Cheungpasitporn, W.; Thongprayoon, C.; Ghahramani, N. Hypoalbuminemia is associated with increased risk of acute kidney injury in hospitalized patients: A meta-analysis. J. Crit. Care. 2021, 61, 96–102. [Google Scholar] [CrossRef]
- Walsh, M.; Devereaux, P.J.; Garg, A.X.; Kurz, A.; Turan, A.; Rodseth, R.N.; Cywinski, J.; Thabane, L.; Sessler, D.I. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: Toward an empirical definition of hypotension. Anesthesiology 2013, 119, 507–515. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, Y.; Wang, Z.; Wei, Z.; Zhang, Y.; Li, Y.; Xie, K. The blood pressure targets in sepsis patients with acute kidney injury: An observational cohort study of multiple ICUs. Front. Immunol. 2022, 13, 1060612. [Google Scholar] [CrossRef] [PubMed]
Stage | Serum SCr | Urine Volume |
---|---|---|
1 | An increase to 1.5–1.9 times the baseline value, or an increase of ≥0.3 mg/dL (26.5 μmol/L) | urine output < 0.5 mL/(kg·h) lasting for 6–12 h. |
2 | An increase to 2.0–2.9 times the baseline value | urine output < 0.5 mL/(kg·h) lasting for ≥12 h. |
3 | An increase to 3.0 times the baseline value, or an increase of ≥4.0 mg/dL (353.6 μmol/L) | urine output < 0.5 mL/(kg·h) lasting for ≥24 h, or anuria for ≥12 h. |
Variables | T1 (FAR < 3.48) n = 412 | T2 (3.48 ≤ FAR ≤ 5.10) n = 412 | T3 (FAR > 5.10) n = 412 | p |
---|---|---|---|---|
Age, year | 80.3 ± 3.7 | 80.4 ± 3.8 | 80.2 ± 3.7 | 0.682 |
Male, n (%) | 253 (61.4%) | 317 (66.7%) | 243 (62.6%) | 0.273 |
Hx of HTN, n (%) | 212 (56.8%) | 276 (58.1%) | 225 (58.0%) | 0.924 |
Hx of stroke, n (%) | 31 (8.3%) | 55 (11.6%) | 46 (11.9%) | 0.206 |
Hx of T2DM, n (%) | 92 (24.7%) | 112 (23.6%) | 102 (26.3%) | 0.656 |
Family history of AMI | 5 (2.4%) | 12 (4.0%) | 9 (3.4%) | 0.643 |
Arrhythmia, n (%) | 20 (5.4%) | 32 (6.7%) | 24 (6.2%) | 0.710 |
Smoke, n (%) | 66 (32.2%) | 118 (39.1%) | 76 (29.1%) | 0.038 |
Drinking, n (%) | 26 (12.7%) | 43 (14.2%) | 20 (22.5%) | 0.044 |
Avg SBp, mmHg | 115.8 ± 15.0 | 113.6 ± 15.3 | 112.5 ± 15.9 | 0.398 |
Avg DBp, mmHg | 66.6 ± 8.1 | 66.1 ± 9.0 | 66.1 ± 8.9 | 0.568 |
AKI, n (%) | 20 (4.9%) | 78 (18.9%) | 134 (32.5%) | <0.001 |
KDIGO stage, n (%) | <0.001 | |||
1 | 19 (4.6%) | 62 (15.0%) | 79 (19.2%) | |
2–3 | 1 (0.3%) | 16 (3.4%) | 55 (14.2%) |
Variables | T1 (FAR < 3.48) n = 412 | T2 (3.48 ≤ FAR ≤ 5.10) n = 412 | T3 (FAR > 5.10) n = 412 | p |
---|---|---|---|---|
BMI, kg/m2 | 23.80 ± 3.16 | 23.92 ± 3.74 | 23.14 ± 3.79 | 0.139 |
T3, nmol/L | 1.06 ± 0.61 | 1.01 ± 0.28 | 0.95 ± 0.34 | 0.018 |
T4, nmol/L | 7.48 ± 2.00 | 7.35 ± 2.09 | 7.20 ± 2.62 | 0.328 |
Hcy, mmol/L | 18.00 (14.10, 27.20) | 18.10 (14.30, 26.40) | 19.60 (15.63, 27.03) | <0.001 |
LDL-C, mmol/L | 2.35 ± 0.89 | 2.38 ± 0.88 | 2.31 ± 0.88 | 0.585 |
CHOE, mmol/L | 4.09 ± 1.13 | 4.08 ± 1.06 | 3.92 ± 1.08 | 0.070 |
HbA1c, % | 6.23 ± 1.34 | 6.52 ± 1.53 | 6.75 ± 1.70 | <0.001 |
cTnT, ng/mL | 0.42 (0.08, 1.31) | 0.54 (0.11, 1.66) | 0.64 (0.12, 2.07) | 0.043 |
NT-proBNP, pg/mL | 659.25 (249.48, 1821.25) | 844.30 (248.35, 2300.25) | 1860.00 (563.53, 5356.25) | <0.001 |
LAC, mmol/L | 2.311 ± 1.17 | 2.59 ± 1.95 | 2.54 ± 1.95 | 0.177 |
AB, mmol/L | 23.54 ± 1.93 | 23.36 ± 2.56 | 22.66 ± 3.29 | 0.001 |
pH, mmol/L | 7.41 ± 0.05 | 7.41 ± 0.05 | 7.39 ± 0.06 | 0.003 |
CK-MB, U/L | 35.2 (16.2, 100.6) | 29.8 (15.0, 88.7) | 29.7 (14.4, 74.4) | 0.639 |
CK, U/L | 304.0 (118.0, 1012.0) | 220.0 (106.0, 786.0) | 250.5 (107.5, 735.3) | 0.519 |
P−, mmol/L | 0.87 ± 0.38 | 0.95 ± 0.36 | 1.07 ± 0.45 | <0.001 |
Mg2+, mmol/L | 0.97 ± 0.13 | 0.99 ± 0.14 | 1.01 ± 0.16 | 0.001 |
Ca2+, mmol/L | 2.21 ± 0.19 | 2.24 ± 0.16 | 2.19 ± 0.18 | 0.001 |
Cys-C, mg/L | 0.94 ± 0.34 | 1.04 ± 0.39 | 1.40 ± 0.88 | <0.001 |
GLU, mmol/L | 7.73 ± 4.02 | 8.56 ± 4.20 | 9.44 ± 5.26 | <0.001 |
D-D, mg/L | 1.24 ± 5.28 | 1.42 ± 4.59 | 2.51 ± 6.76 | 0.006 |
hs-CRP, mg/L | 3.37 ± 3.67 | 3.72 ± 2.69 | 8.46 ± 4.51 | 0.410 |
Neu, 109/L | 7.11 ± 3.59 | 7.43 ± 3.43 | 8.17 ± 4.26 | 0.000 |
Lym, 109/L | 1.48 ± 0.86 | 1.54 ± 0.91 | 1.44 ± 0.76 | 0.198 |
HGB, g/L | 138.30 ± 19.37 | 138.06 ± 19.13 | 130.22 ± 22.13 | <0.001 |
RDW, % | 13.04 ± 1.07 | 13.18 ± 1.10 | 13.36 ± 1.11 | <0.001 |
AST, U/L | 50.0 (27.0, 128.0) | 46.0 (27.0, 103.0) | 48.5 (26.3, 102.5) | 0.155 |
ALT, U/L | 34.0 (23.0, 53.2) | 33.0 (22.0, 50.0) | 35.0 (22.3, 57.5) | 0.004 |
LVEF, % | 51.6 ± 10.9 | 51.6 ± 11.5 | 48.6 ± 12.5 | 0.003 |
LVSD, mm | 50.78 ± 8.44 | 51.31 ± 7.46 | 52.37 ± 7.21 | 0.018 |
LVDD, mm | 37.33 ± 6.84 | 37.33 ± 7.46 | 39.04 ± 8.03 | 0.087 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | |
FAR | 1.465 (1.362, 1.577) | 0.000 | 1.415 (1.313, 1.525) | 0.000 | 1.539 (1.352, 1.750) | 0.000 |
Age, year | 0.990 (0.940, 1.042) | 0.701 | - | - | ||
Male, n (%) | 0.881 (0.589, 1.317) | 0.000 | - | - | ||
HX of Hypertension | 0.651 (0.440, 0.965) | 0.032 | 0.630 (0.425, 0.933) | 0.021 | - | |
HX of T2DM | 1.210 (0.777, 1.882) | 0.399 | - | - | ||
K+ | - | 1.657 (1.161, 2.366) | 0.005 | |||
RDW | - | 1.214 (1.049, 1.404) | 0.009 | |||
P− | - | - | 1.262 (0.521, 3.056) | 0.606 | ||
apoA | - | - | 6.869 (1.351, 34.927) | 0.020 | ||
LVEF | - | - | 0.954 (0.927, 0.981) | 0.001 | ||
T3 | - | - | 0.589 (0.202, 1.718) | 0.332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Wang, H.; Yuan, W. Fibrinogen-to-Albumin Ratio Predicts Acute Kidney Injury in Very Elderly Acute Myocardial Infarction Patients. Biomedicines 2025, 13, 1909. https://doi.org/10.3390/biomedicines13081909
Huang X, Wang H, Yuan W. Fibrinogen-to-Albumin Ratio Predicts Acute Kidney Injury in Very Elderly Acute Myocardial Infarction Patients. Biomedicines. 2025; 13(8):1909. https://doi.org/10.3390/biomedicines13081909
Chicago/Turabian StyleHuang, Xiaorui, Haichen Wang, and Wei Yuan. 2025. "Fibrinogen-to-Albumin Ratio Predicts Acute Kidney Injury in Very Elderly Acute Myocardial Infarction Patients" Biomedicines 13, no. 8: 1909. https://doi.org/10.3390/biomedicines13081909
APA StyleHuang, X., Wang, H., & Yuan, W. (2025). Fibrinogen-to-Albumin Ratio Predicts Acute Kidney Injury in Very Elderly Acute Myocardial Infarction Patients. Biomedicines, 13(8), 1909. https://doi.org/10.3390/biomedicines13081909