Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,778)

Search Parameters:
Keywords = Selective Feature Attention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5851 KB  
Article
Bolt Anchorage Defect Identification Based on Ultrasonic Guided Wave and Deep Learning
by Hui Xing, Weiguo Di, Xiaoyun Sun, Mingming Wang and Chaobo Li
Sensors 2025, 25(20), 6431; https://doi.org/10.3390/s25206431 - 17 Oct 2025
Viewed by 179
Abstract
As a critical supporting component in geotechnical engineering structures such as bridges, tunnels, and highways, the anchorage quality of bolts directly impacts their structural safety. The ultrasonic guided wave method is a popular method for the non-destructive testing of anchorage quality. However, noise [...] Read more.
As a critical supporting component in geotechnical engineering structures such as bridges, tunnels, and highways, the anchorage quality of bolts directly impacts their structural safety. The ultrasonic guided wave method is a popular method for the non-destructive testing of anchorage quality. However, noise from complex field environments, modal mixing caused by anchoring interface reflections, and dispersion effects make it challenging to directly extract defect features from guided wave signals in the time or frequency domains. To address these challenges, this study proposes a solution based on the combination of the guided wave time–frequency spectrum and the gated attention residual network (GA-ResNet). The GA-ResNet introduces a gating mechanism to balance spatial attention and channel attention, and it is used for anchoring model type recognition. Experiments were conducted on four types of anchorage models, and the time–frequency spectrum was selected to be the input feature. The results demonstrate that the GA-ResNet can effectively predict the anchorage bolt defect type and prevent potential safety accidents. Full article
Show Figures

Figure 1

20 pages, 719 KB  
Article
Quantum-Driven Chaos-Informed Deep Learning Framework for Efficient Feature Selection and Intrusion Detection in IoT Networks
by Padmasri Turaka and Saroj Kumar Panigrahy
Technologies 2025, 13(10), 470; https://doi.org/10.3390/technologies13100470 - 17 Oct 2025
Viewed by 147
Abstract
The rapid development of the Internet of Things (IoT) poses significant problems in securing heterogeneous, massive, and high-volume network traffic against cyber threats. Traditional intrusion detection systems (IDSs) are often found to be poorly scalable, or are ineffective computationally, because of the presence [...] Read more.
The rapid development of the Internet of Things (IoT) poses significant problems in securing heterogeneous, massive, and high-volume network traffic against cyber threats. Traditional intrusion detection systems (IDSs) are often found to be poorly scalable, or are ineffective computationally, because of the presence of redundant or irrelevant features, and they suffer from high false positive rates. Addressing these limitations, this study proposes a hybrid intelligent model that combines quantum computing, chaos theory, and deep learning to achieve efficient feature selection and effective intrusion classification. The proposed system offers four novel modules for feature optimization: chaotic swarm intelligence, quantum diffusion modeling, transformer-guided ranking, and multi-agent reinforcement learning, all of which work with a graph-based classifier enhanced with quantum attention mechanisms. This architecture allows as much as 75% feature reduction, while achieving 4% better classification accuracy and reducing computational overhead by 40% compared to the best-performing models. When evaluated on benchmark datasets (NSL-KDD, CICIDS2017, and UNSW-NB15), it shows superior performance in intrusion detection tasks, thereby marking it as a viable candidate for scalable and real-time IoT security analytics. Full article
Show Figures

Figure 1

27 pages, 5792 KB  
Article
Optimized Hybrid Deep Learning Framework for Short-Term Power Load Interval Forecasting via Improved Crowned Crested Porcupine Optimization and Feature Mode Decomposition
by Shucheng Luo, Xiangbin Meng, Xinfu Pang, Haibo Li and Zedong Zheng
Algorithms 2025, 18(10), 659; https://doi.org/10.3390/a18100659 - 17 Oct 2025
Viewed by 67
Abstract
This paper presents an optimized hybrid deep learning model for power load forecasting—QR-FMD-CNN-BiGRU-Attention—that integrates similar day selection, load decomposition, and deep learning to address the nonlinearity and volatility of power load data. Firstly, the original data are classified using Gaussian Mixture Clustering optimized [...] Read more.
This paper presents an optimized hybrid deep learning model for power load forecasting—QR-FMD-CNN-BiGRU-Attention—that integrates similar day selection, load decomposition, and deep learning to address the nonlinearity and volatility of power load data. Firstly, the original data are classified using Gaussian Mixture Clustering optimized by ICPO (ICPO-GMM), and similar day samples consistent with the predicted day category are selected. Secondly, the load data are decomposed into multi-scale components (IMFs) using feature mode decomposition optimized by ICPO (ICPO-FMD). Then, with the IMFs as targets, the quantile interval forecasting is trained using the CNN-BiGRU-Attention model optimized by ICPO. Subsequently, the forecasting model is applied to the features of the predicted day to generate interval forecasting results. Finally, the model’s performance is validated through comparative evaluation metrics, sensitivity analysis, and interpretability analysis. The experimental results show that compared with the comparative algorithm presented in this paper, the improved model has improved RMSE by at least 39.84%, MAE by 26.12%, MAPE by 45.28%, PICP and MPIW indicators by at least 3.80% and 2.27%, indicating that the model not only outperforms the comparative model in accuracy, but also exhibits stronger adaptability and robustness in complex load fluctuation scenarios. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
21 pages, 538 KB  
Article
Evaluation of GPU-Accelerated Edge Platforms for Stochastic Simulations: Performance and Energy Efficiency Analysis
by Pilsung Kang
Mathematics 2025, 13(20), 3305; https://doi.org/10.3390/math13203305 - 16 Oct 2025
Viewed by 195
Abstract
With the increasing emphasis on energy-efficient computing, edge devices accelerated by graphics processing units (GPUs) are gaining attention for their potential in scientific workloads. These platforms support compute-intensive simulations under strict energy and resource constraints, yet their computational efficiency across architectures remains an [...] Read more.
With the increasing emphasis on energy-efficient computing, edge devices accelerated by graphics processing units (GPUs) are gaining attention for their potential in scientific workloads. These platforms support compute-intensive simulations under strict energy and resource constraints, yet their computational efficiency across architectures remains an open question. This study evaluates the performance of GPU-based edge platforms for executing the stochastic simulation algorithm (SSA), a widely used and inherently compute-intensive method for modeling biochemical and physical systems. Execution time, floating point throughput, and the trade-offs between cost and power consumption are analyzed, with a focus on how variations in core count, clock speed, and architectural features impact SSA scalability. Experimental results show that the Jetson Orin NX consistently outperforms Xavier NX and Orin Nano in both speed and efficiency, reaching up to 4.86 million iterations per second while operating under a 20 W power envelope. At the largest workload scale, it achieves 2102.7 ms/W in energy efficiency and 105.3 ms/USD in cost-performance—substantially better than the other Jetson devices. These findings highlight the architectural considerations necessary for selecting edge GPUs for scientific computing and offer practical guidance for deploying compute-intensive workloads beyond artificial intelligence (AI) applications. Full article
(This article belongs to the Special Issue Advances in High-Performance Computing, Optimization and Simulation)
Show Figures

Figure 1

22 pages, 6497 KB  
Article
Semantic Segmentation of High-Resolution Remote Sensing Images Based on RS3Mamba: An Investigation of the Extraction Algorithm for Rural Compound Utilization Status
by Xinyu Fang, Zhenbo Liu, Su’an Xie and Yunjian Ge
Remote Sens. 2025, 17(20), 3443; https://doi.org/10.3390/rs17203443 - 15 Oct 2025
Viewed by 171
Abstract
In this study, we utilize Gaofen-2 satellite remote sensing images to optimize and enhance the extraction of feature information from rural compounds, addressing key challenges in high-resolution remote sensing analysis: traditional methods struggle to effectively capture long-distance spatial dependencies for scattered rural compounds. [...] Read more.
In this study, we utilize Gaofen-2 satellite remote sensing images to optimize and enhance the extraction of feature information from rural compounds, addressing key challenges in high-resolution remote sensing analysis: traditional methods struggle to effectively capture long-distance spatial dependencies for scattered rural compounds. To this end, we implement the RS3Mamba+ deep learning model, which introduces the Mamba state space model (SSM) into its auxiliary branching—leveraging Mamba’s sequence modeling advantage to efficiently capture long-range spatial correlations of rural compounds, a critical capability for analyzing sparse rural buildings. This Mamba-assisted branch, combined with multi-directional selective scanning (SS2D) and the enhanced STEM network framework (replacing single 7 × 7 convolution with two-stage 3 × 3 convolutions to reduce information loss), works synergistically with a ResNet-based main branch for local feature extraction. We further introduce a multiscale attention feature fusion mechanism that optimizes feature extraction and fusion, enhances edge contour extraction accuracy in courtyards, and improves the recognition and differentiation of courtyards from regions with complex textures. The feature information of courtyard utilization status is finally extracted using empirical methods. A typical rural area in Weifang City, Shandong Province, is selected as the experimental sample area. Results show that the extraction accuracy reaches an average intersection over union (mIoU) of 79.64% and a Kappa coefficient of 0.7889, improving the F1 score by at least 8.12% and mIoU by 4.83% compared with models such as DeepLabv3+ and Transformer. The algorithm’s efficacy in mitigating false alarms triggered by shadows and intricate textures is particularly salient, underscoring its potential as a potent instrument for the extraction of rural vacancy rates. Full article
Show Figures

Figure 1

28 pages, 32292 KB  
Article
Contextual Feature Fusion-Based Keyframe Selection Using Semantic Attention and Diversity-Aware Optimization for Video Summarization
by Chitrakala S and Aparyay Kumar
Symmetry 2025, 17(10), 1737; https://doi.org/10.3390/sym17101737 - 15 Oct 2025
Viewed by 183
Abstract
Training-free video summarization tackles the challenge of selecting the most informative keyframes from a video without relying on costly training or complex deep models. This work introduces C2FVS-DPP (Contextual Feature Fusion Video Summarization with Determinantal Point Process), a lightweight framework that [...] Read more.
Training-free video summarization tackles the challenge of selecting the most informative keyframes from a video without relying on costly training or complex deep models. This work introduces C2FVS-DPP (Contextual Feature Fusion Video Summarization with Determinantal Point Process), a lightweight framework that generates concise video summaries by jointly modeling semantic importance, visual diversity, temporal structure, and symmetry. The design centers on a symmetry-aware fusion strategy, where appearance, motion, and semantic cues are aligned in a unified embedding space, and on a reward-guided optimization logic that balances representativeness and diversity. Specifically, appearance features from ResNet-50, motion cues from optical flow, and semantic representations from BERT-encoded BLIP captions are fused into a contextual embedding. A Transformer encoder assigns importance scores, followed by shot boundary detection and K-Medoids clustering to identify candidate keyframes. These candidates are refined through a reward-based re-ranking mechanism that integrates semantic relevance, representativeness, and visual uniqueness, while a Determinantal Point Process (DPP) enforces globally diverse selection under a keyframe budget. To enable reliable evaluation, enhanced versions of the SumMe and TVSum50 datasets were curated to reduce redundancy and increase semantic density. On these curated benchmarks, C2FVS-DPP achieves F1-scores of 0.22 and 0.43 and fidelity scores of 0.16 and 0.40 on SumMe and TVSum50, respectively, surpassing existing models on both metrics. In terms of compression ratio, the framework records 0.9959 on SumMe and 0.9940 on TVSum50, remaining highly competitive with the best-reported values of 0.9981 and 0.9983. These results highlight the strength of C2FVS-DPP as an inference-driven, symmetry-aware, and resource-efficient solution for video summarization. Full article
Show Figures

Figure 1

19 pages, 4569 KB  
Article
NeuroNet-AD: A Multimodal Deep Learning Framework for Multiclass Alzheimer’s Disease Diagnosis
by Saeka Rahman, Md Motiur Rahman, Smriti Bhatt, Raji Sundararajan and Miad Faezipour
Bioengineering 2025, 12(10), 1107; https://doi.org/10.3390/bioengineering12101107 - 15 Oct 2025
Viewed by 438
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia. This disease significantly impacts cognitive functions and daily activities. Early and accurate diagnosis of AD, including the preliminary stage of mild cognitive impairment (MCI), is critical for effective patient care and treatment development. [...] Read more.
Alzheimer’s disease (AD) is the most prevalent form of dementia. This disease significantly impacts cognitive functions and daily activities. Early and accurate diagnosis of AD, including the preliminary stage of mild cognitive impairment (MCI), is critical for effective patient care and treatment development. Although advancements in deep learning (DL) and machine learning (ML) models improve diagnostic precision, the lack of large datasets limits further enhancements, necessitating the use of complementary data. Existing convolutional neural networks (CNNs) effectively process visual features but struggle to fuse multimodal data effectively for AD diagnosis. To address these challenges, we propose NeuroNet-AD, a novel multimodal CNN framework designed to enhance AD classifcation accuracy. NeuroNet-AD integrates Magnetic Resonance Imaging (MRI) images with clinical text-based metadata, including psychological test scores, demographic information, and genetic biomarkers. In NeuroNet-AD, we incorporate Convolutional Block Attention Modules (CBAMs) within the ResNet-18 backbone, enabling the model to focus on the most informative spatial and channel-wise features. We introduce an attention computation and multimodal fusion module, named Meta Guided Cross Attention (MGCA), which facilitates effective cross-modal alignment between images and meta-features through a multi-head attention mechanism. Additionally, we employ an ensemble-based feature selection strategy to identify the most discriminative features from the textual data, improving model generalization and performance. We evaluate NeuroNet-AD on the Alzheimer’s Disease Neuroimaging Initiative (ADNI1) dataset using subject-level 5-fold cross-validation and a held-out test set to ensure robustness. NeuroNet-AD achieved 98.68% accuracy in multiclass classification of normal control (NC), MCI, and AD and 99.13% accuracy in the binary setting (NC vs. AD) on the ADNI dataset, outperforming state-of-the-art models. External validation on the OASIS-3 dataset further confirmed the model’s generalization ability, achieving 94.10% accuracy in the multiclass setting and 98.67% accuracy in the binary setting, despite variations in demographics and acquisition protocols. Further extensive evaluation studies demonstrate the effectiveness of each component of NeuroNet-AD in improving the performance. Full article
Show Figures

Graphical abstract

22 pages, 3532 KB  
Article
Dual Weakly Supervised Anomaly Detection and Unsupervised Segmentation for Real-Time Railway Perimeter Intrusion Monitoring
by Donghua Wu, Yi Tian, Fangqing Gao, Xiukun Wei and Changfan Wang
Sensors 2025, 25(20), 6344; https://doi.org/10.3390/s25206344 - 14 Oct 2025
Viewed by 228
Abstract
The high operational velocities of high-speed trains present constraints on their onboard track intrusion detection systems for real-time capture and analysis, encompassing limited computational resources and motion image blurring. This emphasizes the critical necessity of track perimeter intrusion monitoring systems. Consequently, an intelligent [...] Read more.
The high operational velocities of high-speed trains present constraints on their onboard track intrusion detection systems for real-time capture and analysis, encompassing limited computational resources and motion image blurring. This emphasizes the critical necessity of track perimeter intrusion monitoring systems. Consequently, an intelligent monitoring system employing trackside cameras is constructed, integrating weakly supervised video anomaly detection and unsupervised foreground segmentation, which offers a solution for monitoring foreign objects on high-speed train tracks. To address the challenges of complex dataset annotation and unidentified target detection, weakly supervised learning detection is proposed to track foreign object intrusions based on video. The pretraining of Xception3D and the integration of multiple attention mechanisms have markedly enhanced the feature extraction capabilities. The Top-K sample selection alongside the amplitude score/feature loss function effectively discriminates abnormal from normal samples, incorporating time-smoothing constraints to ensure detection consistency across consecutive frames. Once abnormal video frames are identified, a multiscale variational autoencoder is proposed for the positioning of foreign objects. A downsampling/upsampling module is optimized to increase feature extraction efficiency. The pixel-level background weight distribution loss function is engineered to jointly balance background authenticity and noise resistance. Ultimately, the experimental results indicate that the video anomaly detection model achieved an AUC of 0.99 on the track anomaly detection dataset and processes 2 s video segments in 0.41 s. The proposed foreground segmentation algorithm achieved an F1 score of 0.9030 in the track anomaly dataset and 0.8375 on CDnet2014, with 91 Frames per Second, confirming its efficacy. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

26 pages, 2158 KB  
Review
Advancing Non-Small-Cell Lung Cancer Management Through Multi-Omics Integration: Insights from Genomics, Metabolomics, and Radiomics
by Martina Pierri, Giovanni Ciani, Maria Chiara Brunese, Gianluigi Lauro, Stefania Terracciano, Maria Iorizzi, Valerio Nardone, Maria Giovanna Chini, Giuseppe Bifulco, Salvatore Cappabianca and Alfonso Reginelli
Diagnostics 2025, 15(20), 2586; https://doi.org/10.3390/diagnostics15202586 - 14 Oct 2025
Viewed by 374
Abstract
The integration of multi-omics technologies is transforming the landscape of cancer management, offering unprecedented insights into tumor biology, early diagnosis, and personalized therapy. This review provides a comprehensive overview of the current state of omics approaches, with a particular focus on the application [...] Read more.
The integration of multi-omics technologies is transforming the landscape of cancer management, offering unprecedented insights into tumor biology, early diagnosis, and personalized therapy. This review provides a comprehensive overview of the current state of omics approaches, with a particular focus on the application of genomics, NMR-based metabolomics, and radiomics in non-small cell lung cancer (NSCLC). Genomics currently represents one of the most established omics technologies in oncology, as it enables the identification of genetic alterations that drive tumor initiation, progression, and therapeutic response. Interestingly, genomic analyses have revealed that many tumors harbor mutations in genes encoding metabolic enzymes, thus establishing a tight connection between genomics and tumor metabolism. In parallel, metabolomics profiling—by capturing the metabolic phenotype of tumors—has, in recent years, identified specific biomarkers associated with tumor burden, progression, and prognosis. Such findings have catalyzed growing interest in metabolomics as a complementary approach to better characterize cancer biology and discover novel diagnostic and therapeutic targets. Moreover, radiomics, through the extraction of quantitative features from standard imaging modalities, captures tumor heterogeneity and contributes predictive information on tumor biology, treatment response, and clinical outcomes. As a non-invasive and widely available technique, radiomics has the potential to support longitudinal monitoring and individualized treatment planning. Both metabolomics and radiomics, when integrated with genomic data, could support a more comprehensive understanding of NSCLC and pave the way for the development of non-invasive, predictive models and personalized therapeutic strategies. In addition, we explore the specific contributions of these technologies in enhancing clinical decision-making for lung cancer patients, with particular attention to their potential in early diagnosis, treatment selection, and real-time monitoring. Full article
Show Figures

Figure 1

19 pages, 4172 KB  
Article
Deep Learning Application of Fruit Planting Classification Based on Multi-Source Remote Sensing Images
by Jiamei Miao, Jian Gao, Lei Wang, Lei Luo and Zhi Pu
Appl. Sci. 2025, 15(20), 10995; https://doi.org/10.3390/app152010995 - 13 Oct 2025
Viewed by 196
Abstract
With global climate change, urbanization, and agricultural resource limitations, precision agriculture and crop monitoring are crucial worldwide. Integrating multi-source remote sensing data with deep learning enables accurate crop mapping, but selecting optimal network architectures remains challenging. To improve remote sensing-based fruit planting classification [...] Read more.
With global climate change, urbanization, and agricultural resource limitations, precision agriculture and crop monitoring are crucial worldwide. Integrating multi-source remote sensing data with deep learning enables accurate crop mapping, but selecting optimal network architectures remains challenging. To improve remote sensing-based fruit planting classification and support orchard management and rural revitalization, this study explored feature selection and network optimization. We proposed an improved CF-EfficientNet model (incorporating FGMF and CGAR modules) for fruit planting classification. Multi-source remote sensing data (Sentinel-1, Sentinel-2, and SRTM) were used to extract spectral, vegetation, polarization, terrain, and texture features, thereby constructing a high-dimensional feature space. Feature selection identified 13 highly discriminative bands, forming an optimal dataset, namely the preferred bands (PBs). At the same time, two classification datasets—multi-spectral bands (MS) and preferred bands (PBs)—were constructed, and five typical deep learning models were introduced to compare performance: (1) EfficientNetB0, (2) AlexNet, (3) VGG16, (4) ResNet18, (5) RepVGG. The experimental results showed that the EfficientNetB0 model based on the preferred band performed best in terms of overall accuracy (87.1%) and Kappa coefficient (0.677). Furthermore, a Fine-Grained Multi-scale Fusion (FGMF) and a Condition-Guided Attention Refinement (CGAR) were incorporated into EfficientNetB0, and the traditional SGD optimizer was replaced with Adam to construct the CF-EfficientNet architecture. The results indicated that the improved CF-EfficientNet model achieved high performance in crop classification, with an overall accuracy of 92.6% and a Kappa coefficient of 0.830. These represent improvements of 5.5 percentage points and 0.153, compared with the baseline model, demonstrating superiority in both classification accuracy and stability. Full article
Show Figures

Figure 1

16 pages, 2334 KB  
Article
A Comprehensive Image Quality Evaluation of Image Fusion Techniques Using X-Ray Images for Detonator Detection Tasks
by Lynda Oulhissane, Mostefa Merah, Simona Moldovanu and Luminita Moraru
Appl. Sci. 2025, 15(20), 10987; https://doi.org/10.3390/app152010987 - 13 Oct 2025
Viewed by 140
Abstract
Purpose: Luggage X-rays suffer from low contrast, material overlap, and noise; dual-energy imaging reduces ambiguity but creates colour biases that impair segmentation. This study aimed to (1) employ connotative fusion by embedding realistic detonator patches into real X-rays to simulate threats and enhance [...] Read more.
Purpose: Luggage X-rays suffer from low contrast, material overlap, and noise; dual-energy imaging reduces ambiguity but creates colour biases that impair segmentation. This study aimed to (1) employ connotative fusion by embedding realistic detonator patches into real X-rays to simulate threats and enhance unattended detection without requiring ground-truth labels; (2) thoroughly evaluate fusion techniques in terms of balancing image quality, information content, contrast, and the preservation of meaningful features. Methods: A total of 1000 X-ray luggage images and 150 detonator images were used for fusion experiments based on deep learning, transform-based, and feature-driven methods. The proposed approach does not need ground truth supervision. Deep learning fusion techniques, including VGG, FusionNet, and AttentionFuse, enable the dynamic selection and combination of features from multiple input images. The transform-based fusion methods convert input images into different domains using mathematical transforms to enhance fine structures. The Nonsubsampled Contourlet Transform (NSCT), Curvelet Transform, and Laplacian Pyramid (LP) are employed. Feature-driven image fusion methods combine meaningful representations for easier interpretation. Singular Value Decomposition (SVD), Principal Component Analysis (PCA), Random Forest (RF), and Local Binary Pattern (LBP) are used to capture and compare texture details across source images. Entropy (EN), Standard Deviation (SD), and Average Gradient (AG) assess factors such as spatial resolution, contrast preservation, and information retention and are used to evaluate the performance of the analysed methods. Results: The results highlight the strengths and limitations of the evaluated techniques, demonstrating their effectiveness in producing sharpened fused X-ray images with clearly emphasized targets and enhanced structural details. Conclusions: The Laplacian Pyramid fusion method emerges as the most versatile choice for applications demanding a balanced trade-off. This is evidenced by its overall multi-criteria balance, supported by a composite (geometric mean) score on normalised metrics. It consistently achieves high performance across all evaluated metrics, making it reliable for detecting concealed threats under diverse imaging conditions. Full article
Show Figures

Figure 1

17 pages, 1106 KB  
Article
Calibrated Global Logit Fusion (CGLF) for Fetal Health Classification Using Cardiotocographic Data
by Mehret Ephrem Abraha and Juntae Kim
Electronics 2025, 14(20), 4013; https://doi.org/10.3390/electronics14204013 - 13 Oct 2025
Viewed by 175
Abstract
Accurate detection of fetal distress from cardiotocography (CTG) is clinically critical but remains subjective and error-prone. In this research, we present a leakage-safe Calibrated Global Logit Fusion (CGLF) framework that couples TabNet’s sparse, attention-based feature selection with XGBoost’s gradient-boosted rules and fuses their [...] Read more.
Accurate detection of fetal distress from cardiotocography (CTG) is clinically critical but remains subjective and error-prone. In this research, we present a leakage-safe Calibrated Global Logit Fusion (CGLF) framework that couples TabNet’s sparse, attention-based feature selection with XGBoost’s gradient-boosted rules and fuses their class probabilities through global logit blending followed by per-class vector temperature calibration. Class imbalance is addressed with SMOTE–Tomek for TabNet and one XGBoost stream (XGB–A), and class-weighted training for a second stream (XGB–B). To prevent information leakage, all preprocessing, resampling, and weighting are fitted only on the training split within each outer fold. Out-of-fold (OOF) predictions from the outer-train split are then used to optimize blend weights and fit calibration parameters, which are subsequently applied once to the corresponding held-out outer-test fold. Our calibration-guided logit fusion (CGLF) matches top-tier discrimination on the public Fetal Health dataset while producing more reliable probability estimates than strong standalone baselines. Under nested cross-validation, CGLF delivers comparable AUROC and overall accuracy to the best tree-based model, with visibly improved calibration and slightly lower balanced accuracy in some splits. We also provide interpretability and overfitting checks via TabNet sparsity, feature stability analysis, and sufficiency (k95) curves. Finally, threshold tuning under a balanced-accuracy floor preserves sensitivity to pathological cases, aligning operating points with risk-aware obstetric decision support. Overall, CGLF is a calibration-centric, leakage-controlled CTG pipeline that is interpretable and suited to threshold-based clinical deployment. Full article
(This article belongs to the Special Issue Advances in Algorithm Optimization and Computational Intelligence)
Show Figures

Figure 1

31 pages, 9234 KB  
Article
A Dual-Branch Framework Integrating the Segment Anything Model and Semantic-Aware Network for High-Resolution Cropland Extraction
by Dujuan Zhang, Yiping Li, Yucai Shen, Hengliang Guo, Haitao Wei, Jian Cui, Gang Wu, Tian He, Lingling Wang, Xiangdong Liu and Shan Zhao
Remote Sens. 2025, 17(20), 3424; https://doi.org/10.3390/rs17203424 - 13 Oct 2025
Viewed by 247
Abstract
Accurate spatial information of cropland is crucial for precision agricultural management and ensuring national food security. High-resolution remote sensing imagery combined with deep learning algorithms provides a promising approach for extracting detailed cropland information. However, due to the diverse morphological characteristics of croplands [...] Read more.
Accurate spatial information of cropland is crucial for precision agricultural management and ensuring national food security. High-resolution remote sensing imagery combined with deep learning algorithms provides a promising approach for extracting detailed cropland information. However, due to the diverse morphological characteristics of croplands across different agricultural landscapes, existing deep learning methods encounter challenges in precise boundary localization. The advancement of large-scale vision models has led to the emergence of the Segment Anything Model (SAM), which has demonstrated remarkable performance on natural images and attracted considerable attention in the field of remote sensing image segmentation. However, when applied to high-resolution cropland extraction, SAM faces limitations in semantic expressiveness and cross-domain adaptability. To address these issues, this study proposes a dual-branch framework integrating SAM and a semantically aware network (SAM-SANet) for high-resolution cropland extraction. Specifically, a semantically aware branch based on a semantic segmentation network is applied to identify cropland areas, complemented by a boundary-constrained SAM branch that directs the model’s attention to boundary information and enhances cropland extraction performance. Additionally, a boundary-aware feature fusion module and a prompt generation and selection module are incorporated into the SAM branch for precise cropland boundary localization. The former aggregates multi-scale edge information to enhance boundary representation, while the latter generates prompts with high relevance to the boundary. To evaluate the effectiveness of the proposed approach, we construct three cropland datasets named GID-CD, JY-CD and QX-CD. Experimental results on these datasets demonstrated that SAM-SANet achieved mIoU scores of 87.58%, 91.17% and 71.39%, along with mF1 scores of 93.54%, 95.35% and 82.21%, respectively. Comparative experiments with mainstream semantic segmentation models further confirmed the superior performance of SAM-SANet in high-resolution cropland extraction. Full article
Show Figures

Figure 1

22 pages, 4807 KB  
Article
Adapting Gated Axial Attention for Microscopic Hyperspectral Cholangiocarcinoma Image Segmentation
by Jianxia Xue, Xiaojing Chen and Soo-Hyung Kim
Electronics 2025, 14(20), 3979; https://doi.org/10.3390/electronics14203979 - 11 Oct 2025
Viewed by 147
Abstract
Accurate segmentation of medical images is essential for clinical diagnosis and treatment planning. Hyperspectral imaging (HSI), with its rich spectral information, enables improved tissue characterization and structural localization compared with traditional grayscale or RGB imaging. However, the effective modeling of both spatial and [...] Read more.
Accurate segmentation of medical images is essential for clinical diagnosis and treatment planning. Hyperspectral imaging (HSI), with its rich spectral information, enables improved tissue characterization and structural localization compared with traditional grayscale or RGB imaging. However, the effective modeling of both spatial and spectral dependencies remains a significant challenge, particularly in small-scale medical datasets. In this study, we propose GSA-Net, a 3D segmentation framework that integrates Gated Spectral-Axial Attention (GSA) to capture long-range interband dependencies and enhance spectral feature discrimination. The GSA module incorporates multilayer perceptrons (MLPs) and adaptive LayerScale mechanisms to enable the fine-grained modulation of spectral attention across feature channels. We evaluated GSA-Net on a hyperspectral cholangiocarcinoma (CCA) dataset, achieving an average Intersection over Union (IoU) of 60.64 ± 14.48%, Dice coefficient of 74.44 ± 11.83%, and Hausdorff Distance of 76.82 ± 42.77 px. It outperformed state-of-the-art baselines. Further spectral analysis revealed that informative spectral bands are widely distributed rather than concentrated, and full-spectrum input consistently outperforms aggressive band selection, underscoring the importance of adaptive spectral attention for robust hyperspectral medical image segmentation. Full article
(This article belongs to the Special Issue Image Segmentation, 2nd Edition)
Show Figures

Figure 1

14 pages, 4878 KB  
Article
Near-Surface Temperature Prediction Based on Dual-Attention-BiLSTM
by Wentao Xie, Mei Du, Chengbo Li and Guangxin Du
Atmosphere 2025, 16(10), 1175; https://doi.org/10.3390/atmos16101175 - 10 Oct 2025
Viewed by 258
Abstract
Current temperature prediction methods often focus on time-series information while neglecting the contributions of different meteorological factors and the context of varying time steps. Accordingly, this study developed a Dual-Attention-BiLSTM (a bidirectional long short-term memory network with dual attention mechanisms) network model, which [...] Read more.
Current temperature prediction methods often focus on time-series information while neglecting the contributions of different meteorological factors and the context of varying time steps. Accordingly, this study developed a Dual-Attention-BiLSTM (a bidirectional long short-term memory network with dual attention mechanisms) network model, which integrates a bidirectional long short-term memory (BiLSTM) network model with random forest-based feature selection and two self-designed attention mechanisms. A sensitivity analysis was conducted to evaluate the influence of the attention mechanisms. This study focuses on Shijiazhuang City, China, which has a temperate continental monsoon climate with significant seasonal and daily variations. The data were sourced from ERA5-Land, comprising hourly near-surface temperature and related meteorological variables for the year of 2022. The results indicate that integrating the two attention mechanisms significantly improves the model’s prediction performance compared to using BiLSTM alone. The mean absolute error between simulation results ranges from 0.80 °C to 1.08 °C, with a reduction of 0.17 °C to 0.39 °C, and the root mean square error ranges from 1.17 °C to 1.37 °C, with a reduction of 0.12 °C to 0.22 °C. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop