Bolt Anchorage Defect Identification Based on Ultrasonic Guided Wave and Deep Learning
Abstract
1. Introduction
2. The Relevant and Proposed Method
2.1. Continuous Wavelet Transform
2.2. GA-ResNet Model
2.2.1. Model Overall Architecture
2.2.2. Gated Attention Residual Block
3. Experiments
3.1. Ultrasonic Guided Wave Test for Bolt Anchorage System
3.1.1. Test Design and Implementation
3.1.2. Ultrasonic Guided Wave Signal Analysis
3.2. Dataset Construction
4. Results and Discussion
4.1. Comparison of Different Models
4.2. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zatar, W.; Xiao, F.; Chen, G.; Nghiem, H. Assessment of the Conditions of Anchor Bolts Grouted with Resin and Cement Through Impact-Echo Testing and Advanced Spectrum Analysis. Buildings 2025, 15, 399. [Google Scholar] [CrossRef]
- Yan, S.; Yu, Q.L.; Du, H.T.; Song, B.C.; Yan, H. Performance and Failure Pattern on Enlarged Bottom Anchor Bolt under Pullout Loading. Appl. Mech. Mater. 2014, 448–453, 1701–1706. [Google Scholar] [CrossRef]
- Liu, X.; Sun, F.; Kong, F.G.; Guo, J. Experimental Investigation on Mechanical Behavior of Anchor and Shotcrete Support System Under Axial Pull-Out Action. Geotech. Geol. Eng. 2022, 40, 383–393. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, F.; Li, C.; Guo, H.; Yin, S.; Liu, Y.; Li, Q. Shear Stress Distribution of Fully Grouted Rockbolts under Tensile Loads. Int. J. Geomech. 2025, 25. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Li, G. Research on the Self-Drilling Anchor Pull-Out Test Model and the Stability of an Anchored Slope. Appl. Sci. 2025, 15, 5132. [Google Scholar] [CrossRef]
- Beard, M.D.; Lowe, M.J.S. Non-destructive testing of rock bolts using guided ultrasonic waves. Int. J. Rock Mech. Min. Sci. 2003, 40, 527–536. [Google Scholar] [CrossRef]
- He, W.; Wang, C.; Shi, W.-F.; Ning, J.-G.; Zhao, K. Research on ultrasonic guided wave detection technology of anchor bar anchorage quality. Trans. Beijing Inst. Technol. 2017, 37, 567–572, 578. [Google Scholar]
- Lei, M.; Li, W.; Luo, M.; Song, G. An automatic extraction algorithm for measurement of installed rock bolt length based on stress wave reflection. Measurement 2018, 122, 563–572. [Google Scholar] [CrossRef]
- Lee, I.M.; Han, S.I.; Kim, H.J.; Yu, J.D.; Min, B.K.; Lee, J.S. Evaluation of rock bolt integrity using Fourier and wavelet transforms. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2012, 28, 304–314. [Google Scholar] [CrossRef]
- Hao, Y.; Wu, Y.; Li, P.; Tao, J.; Teng, Y.; Hao, G. Non-destructive inspection on anchorage defect of hollow grouted rock bolt using wavelet transform analysis. Eurasip J. Image Video Process. 2018, 2018, 146. [Google Scholar] [CrossRef]
- Jianhui, Y.; Xin, Q.; Xiufeng, T.; Wenzhen, W.; Qinting, W. Assessment of Anchoring Quality and Defects of Mortar Bolt based on Wavelet Analysis. Ind. Constr. 2014, 44, 157–161. [Google Scholar]
- Li, Z.; Zheng, L.; Chen, C.; Long, Z.; Wang, Y. Ultrasonic Detection Method for Grouted Defects in Grouted Splice Sleeve Connector Based on Wavelet Pack Energy. Sensors 2019, 19, 1642. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Yang, H.; Yu, W.; Xin-ran, X. Experiment Research on Grouting Anchor Bar Quality Using Nondestructive Testing Technology. Coal Eng. 2019, 6, 18. [Google Scholar]
- Lee, J.-S.; Yu, J.-D. Application of built-in microphone of smartphone for inspecting unbonded length of fully grouted rock bolt. Tunn. Undergr. Space Technol. 2024, 146, 105646. [Google Scholar] [CrossRef]
- Liu, Y.; Bai, Y.; Hu, N.; Luo, B.; Zhang, G. Intelligent prediction of rock bolt debonding employing the fractal theory and relevance vector machine (FT-RVM) with piezoceramic transducers. Smart Mater. Struct. 2024, 33, 115016. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, L.; Peng, M.; Liu, C.; Fengjuan, T.; Chunsheng, L. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis. J. Appl. Geophys. 2018, 151, 47–65. [Google Scholar] [CrossRef]
- Fan, K.; Yan, A.; Liu, S.; Zhang, C.; Feng, Y.; Fu, M.; He, D. Ultrasonic guided wave nondestructive testing of anchorage quality of rebar resin bolt based on EMD-PCA. Sci. Rep. 2025, 15, 15239. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zheng, H.; Wang, Z.; Bian, J.; Wang, M. Non-destructive test method of rock bolt based on D-S evidence and spectral kurtosis. Int. J. Comput. Appl. Technol. 2018, 57, 167. [Google Scholar] [CrossRef]
- Guo, C.; Xie, X.; Yang, Z.; Zhang, Z. Bolt Detection Signal Analysis Method Based on ICEEMD. Shock Vib. 2018, 2018 Pt 4, 1590983. [Google Scholar] [CrossRef]
- Li, C.; Li, C.M.; Han, Q.H.; Liu, W.R.; Cao, J.G.; Li, H.; Wang, Y.K. Research on the Method of Calculating Anchorage Flaw Length Based on the Propagation Characteristics of Bolt Excitation Stress Waves. Symmetry 2025, 17, 221. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Li, C.; Feng, R.; Gao, X.; Bai, J.; Nie, B. A novel method of computation for anchorage length based on the propagation characteristics of anchor excitation stress wave. Nondestruct. Test. Eval. 2025, 40, 3693–3728. [Google Scholar] [CrossRef]
- Sun, X.Y.; Kang, F.N.; Wang, M.M.; Bian, J.P.; Cheng, J.L.; Zou, D.H. Improved probabilistic neural network PNN and its application to defect recognition in rock bolts. Int. J. Mach. Learn. Cybern. 2016, 7, 909–919. [Google Scholar] [CrossRef]
- Di, W.; Wang, M.; Sun, X.; Han, G.; Xing, H. Identification of bolt anchorage defects based on Elman neural network optimised by improved chicken swarm optimisation algorithm. Insight Non-Destr. Test. Cond. Monit. 2020, 62, 588–597. [Google Scholar] [CrossRef]
- Yu, J.D.; Yoon, H.K. A study on influential rock properties for predicting the longitudinal wave velocity in a rock bolt: Numerical and machine learning approaches. Int. J. Rock Mech. Min. Sci. 2024, 179, 105788. [Google Scholar] [CrossRef]
- Yu, J.D.; Park, G.; Kim, D.J.; Yoon, H.K. Prediction of longitudinal wave speed in rock bolt coupled with Multilayer Neural Network (MNN) algorithm. Smart Struct. Syst. 2024, 34, 17–23. [Google Scholar]
- Han, G.; Lv, S.C.; Tao, Z.G.; Sun, X.Y.; Du, B.W. Evaluation of Bolt Corrosion Degree Based on Non-Destructive Testing and Neural Network. Appl. Sci. 2024, 14, 5069. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018, arXiv:1608.06993. [Google Scholar]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R. Searching for MobileNetV3; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. In Proceedings of the 8th International Conference on Machine Learning, Virtual Events, 18–24 July 2021. [Google Scholar]
Name | Defect Length L1/m | Defect Length L2/m | Location of Grouting Defect/m | Description |
---|---|---|---|---|
Model 1 | - | - | - | No defect |
Model 2 | 0.1 | - | 1.1 | Single small defect |
Model 3 | 0.1 | 0.1 | 0.3/1.1 | Two small defects |
Model 4 | 0.5 | - | 0.7 | Single large defect |
Materials | Sand | Cement | Water | Large Grave | Small Grave |
---|---|---|---|---|---|
Concrete 1 | 6.7 | 5.3 | 1.6 | 6.1 | 4.1 |
Concrete 2 | 4 | 2 | 1 | - | - |
Name | Received Guide Wave | First Wave Time/ms | Reflection Time from Front Face/ms | Reflection Time from Bottom End/ms | Velocity of Free Bolt/m·s−1 | Velocity of Anchorage Section/m·s−1 |
---|---|---|---|---|---|---|
Model 1 | First | 0.0801 | 0.2599 | 0.9799 | 5228.0 | 4166.7 |
Second | 0.1302 | 0.3100 | 1.0400 | 5228.0 | 4109.6 | |
Model 2 | First | 0.0901 | 0.2599 | 0.9403 | 5535.9 | 4409.2 |
Second | 0.0901 | 0.2503 | 0.9403 | 5867.7 | 4347.8 | |
Model 3 | First | 0.1507 | 0.3300 | 1.0604 | 5242.6 | 4107.3 |
Second | 0.0801 | 0.2604 | 0.9298 | 5213.5 | 4481.6 | |
Model 4 | First | 0.1202 | 0.3099 | 0.9604 | 4955.2 | 4611.8 |
Second | 0.3204 | 0.5007 | 1.1702 | 5213.5 | 4480.9 |
Method | Accuracy Ratio | Precision Ratio | F1 Score |
---|---|---|---|
ResNet-18 | 90.00 | 91.04 | 90.09 |
DenseNet | 92.50 | 92.98 | 92.53 |
MobileNetV3-S | 96.88 | 97.22 | 96.93 |
EfficientNetV2-S | 95.63 | 95.67 | 95.62 |
GA-ResNet | 98.75 | 98.77 | 98.75 |
Method | Accuracy Ratio | Precision Ratio | F1 Score |
---|---|---|---|
GA-ResNet w/o GA | 96.25 | 96.33 | 96.26 |
GA-ResNet w/o SA | 95.00 | 95.18 | 95.00 |
GA-ResNet w/o CA | 95.63 | 95.73 | 95.64 |
GA-ResNet | 98.75 | 98.77 | 98.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, H.; Di, W.; Sun, X.; Wang, M.; Li, C. Bolt Anchorage Defect Identification Based on Ultrasonic Guided Wave and Deep Learning. Sensors 2025, 25, 6431. https://doi.org/10.3390/s25206431
Xing H, Di W, Sun X, Wang M, Li C. Bolt Anchorage Defect Identification Based on Ultrasonic Guided Wave and Deep Learning. Sensors. 2025; 25(20):6431. https://doi.org/10.3390/s25206431
Chicago/Turabian StyleXing, Hui, Weiguo Di, Xiaoyun Sun, Mingming Wang, and Chaobo Li. 2025. "Bolt Anchorage Defect Identification Based on Ultrasonic Guided Wave and Deep Learning" Sensors 25, no. 20: 6431. https://doi.org/10.3390/s25206431
APA StyleXing, H., Di, W., Sun, X., Wang, M., & Li, C. (2025). Bolt Anchorage Defect Identification Based on Ultrasonic Guided Wave and Deep Learning. Sensors, 25(20), 6431. https://doi.org/10.3390/s25206431