Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,694)

Search Parameters:
Keywords = Se2S6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
56 pages, 1035 KiB  
Review
Trace Elements—Role in Joint Function and Impact on Joint Diseases
by Łukasz Bryliński, Katarzyna Brylińska, Filip Woliński, Jolanta Sado, Miłosz Smyk, Olga Komar, Robert Karpiński, Marcin Prządka and Jacek Baj
Int. J. Mol. Sci. 2025, 26(15), 7493; https://doi.org/10.3390/ijms26157493 (registering DOI) - 2 Aug 2025
Abstract
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a [...] Read more.
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a serious social problem. Risk factors for the development of these diseases include overweight and obesity, gender, and intestinal microbiome disorders. Another factor that is considered to influence joint diseases is trace elements. Under normal conditions, elements such as iron (Fe), copper (Cu), cobalt (Co), iodine (I), manganese (Mn), zinc (Zn), silver (Ag), cadmium (Cd), mercury (Hg), lead (Pb), nickel (Ni) selenium (Se), boron (B), and silicon (Si) are part of enzymes involved in reactions that determine the proper functioning of cells, regulate redox metabolism, and determine the maturation of cells that build joint components. However, when the normal concentration of the above-mentioned elements is disturbed and toxic elements are present, dangerous joint diseases can develop. In this article, we focus on the role of trace elements in joint function. We describe the molecular mechanisms that explain their interaction with chondrocytes, osteocytes, osteoblasts, osteoclasts, and synoviocytes, as well as their proliferation, apoptosis, and extracellular matrix synthesis. We also focus on the role of these trace elements in the pathogenesis of joint diseases: rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), and systemic lupus erythematosus (SLE). We describe the roles of increased or decreased concentrations of individual elements in the pathogenesis and development of joint diseases and their impact on inflammation and disease progression, referring to molecular mechanisms. We also discuss their potential application in the treatment of joint diseases. Full article
Show Figures

Figure 1

23 pages, 667 KiB  
Article
Understanding Value Propositions and Perceptions of Sharing Economy Platforms Between South Korea and the United States: A Content Analysis and Topic Modeling Approach
by Jing Gu, Da Yeon Kim, Seungwoo Chun and Jin Suk Lee
Sustainability 2025, 17(15), 7028; https://doi.org/10.3390/su17157028 (registering DOI) - 2 Aug 2025
Abstract
The sharing economy (SE) has rapidly expanded to become a key component of the global economy. However, as SE platforms evolve, a growing disconnect may exist between the value propositions companies emphasize and the values consumers actually perceive. Do the value frames communicated [...] Read more.
The sharing economy (SE) has rapidly expanded to become a key component of the global economy. However, as SE platforms evolve, a growing disconnect may exist between the value propositions companies emphasize and the values consumers actually perceive. Do the value frames communicated by SE companies align with those perceived as important by consumers, and how does this alignment differ across cultural contexts such as South Korea and the U.S.? Drawing on two complementary studies, we examine value alignment between SE companies and consumers in South Korea and the U.S. Study 1 employs content analysis of marketing messages from 246 SE platforms across five sectors, identifying the core value propositions emphasized. Study 2 applied structural topic modeling (STM) to consumer reviews from major SE platforms in both countries, focusing on three sectors: accommodation, service exchanges, and second-hand transactions. The findings reveal that SE companies in both countries primarily emphasize functional and economic values, with U.S. companies placing greater additional emphasis on emotional and social values than their South Korean counterparts. Similarly, consumers in both countries value functional, emotional, and economic aspects, showing general alignment with company marketing communications. However, South Korean consumers tended to emphasize functional and economic values more, while U.S. consumers were relatively more oriented toward emotional and social values. Notably, sustainability, widely regarded as a core principle of the SE, was not strongly emphasized by either companies or consumers. These findings contribute to the theoretical understanding of value dynamics in the SE and offer practical implications for developing culturally informed and value-driven marketing strategies. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 (registering DOI) - 1 Aug 2025
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

23 pages, 854 KiB  
Article
Adopting Generative AI in Future Classrooms: A Study of Preservice Teachers’ Intentions and Influencing Factors
by Yang Liu, Qiu Wang and Jing Lei
Behav. Sci. 2025, 15(8), 1040; https://doi.org/10.3390/bs15081040 - 31 Jul 2025
Viewed by 45
Abstract
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity [...] Read more.
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity using Khanmigo, a domain-specific AI platform for K-12 education, PTs explored AI-supported instructional tasks. Post-activity data were analyzed using PLS-SEM. The results showed that perceived usefulness (PU), perceived ease-of-use (PEU), and self-efficacy (SE) significantly predicted behavioral intention (BI) to adopt GenAI, with SE also influencing both PU and PEU. Conversely, personal innovativeness in IT and perceived cyber risk showed insignificant effects on BI or PU. The findings underscored the evolving dynamics of TAM constructs in GenAI contexts and highlighted the need to reconceptualize ease-of-use and risk within AI-mediated environments. Practically, the study emphasized the importance of preparing PTs not only to operate AI tools but also to critically interpret and co-design them. These insights inform both theoretical models and teacher education strategies, supporting the ethical and pedagogically meaningful integration of GenAI in K-12 education. Theoretical and practical implications are discussed. Full article
(This article belongs to the Special Issue Artificial Intelligence and Educational Psychology)
Show Figures

Figure 1

11 pages, 219 KiB  
Article
Altitude-Linked Distribution Patterns of Serum and Hair Mineral Elements in Healthy Yak Calves from Ganzi Prefecture
by Chenglong Xia, Yao Pan, Jianping Wu, Dengzhu Luorong, Qingting Yu, Zhicai Zuo, Yue Xie, Xiaoping Ma, Lan Lan and Hongrui Guo
Vet. Sci. 2025, 12(8), 718; https://doi.org/10.3390/vetsci12080718 (registering DOI) - 31 Jul 2025
Viewed by 55
Abstract
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five [...] Read more.
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five regions in Ganzi Prefecture, located at elevations ranging from 3100 to 4100 m. Hair and serum samples from 35 calves were analyzed for 11 essential elements (Na, K, Ca, Mg, S, Cu, Fe, Mn, Zn, Co, and Se). The results revealed widespread deficiencies. Key deficiencies were identified: hair Na and Co were significantly below references value (p < 0.05), and Se was consistently deficient across all regions, with deficiency rates ranging from 35.73% to 56.57%. Serum Mg and Cu were generally deficient (Mg deficiency > 26% above 3800 m). S, Mn (low detection), and Co were also suboptimal. Serum selenium deficiency was notably severe in lower-altitude areas (≤59.07%). Significant correlations with altitude were observed: hair sodium levels decreased with increasing altitude (r = −0.72), while hair manganese (r = 0.88) and cobalt (r = 0.65) levels increased. Serum magnesium deficiency became more pronounced at higher elevations (r = 0.58), whereas selenium deficiency in serum was more severe at lower altitudes (r = −0.61). These findings indicate prevalent multi-element deficiencies in yak calves that are closely linked to altitude and are potentially influenced by soil mineral composition and feeding practices, as suggested by previous studies. The study underscores the urgent need for region-specific nutritional standards and altitude-adapted mineral supplementation strategies to support optimal yak health and development. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
14 pages, 283 KiB  
Article
Teens, Tech, and Talk: Adolescents’ Use of and Emotional Reactions to Snapchat’s My AI Chatbot
by Gaëlle Vanhoffelen, Laura Vandenbosch and Lara Schreurs
Behav. Sci. 2025, 15(8), 1037; https://doi.org/10.3390/bs15081037 - 30 Jul 2025
Viewed by 133
Abstract
Due to technological advancements such as generative artificial intelligence (AI) and large language models, chatbots enable increasingly human-like, real-time conversations through text (e.g., OpenAI’s ChatGPT) and voice (e.g., Amazon’s Alexa). One AI chatbot that is specifically designed to meet the social-supportive needs of [...] Read more.
Due to technological advancements such as generative artificial intelligence (AI) and large language models, chatbots enable increasingly human-like, real-time conversations through text (e.g., OpenAI’s ChatGPT) and voice (e.g., Amazon’s Alexa). One AI chatbot that is specifically designed to meet the social-supportive needs of youth is Snapchat’s My AI. Given its increasing popularity among adolescents, the present study investigated whether adolescents’ likelihood of using My AI, as well as their positive or negative emotional experiences from interacting with the chatbot, is related to socio-demographic factors (i.e., gender, age, and socioeconomic status (SES)). A cross-sectional study was conducted among 303 adolescents (64.1% girls, 35.9% boys, 1.0% other, 0.7% preferred not to say their gender; Mage = 15.89, SDage = 1.69). The findings revealed that younger adolescents were more likely to use My AI and experienced more positive emotions from these interactions than older adolescents. No significant relationships were found for gender or SES. These results highlight the potential for age to play a critical role in shaping adolescents’ engagement with AI chatbots on social media and their emotional outcomes from such interactions, underscoring the need to consider developmental factors in AI design and policy. Full article
16 pages, 23912 KiB  
Article
First-Principles Study on the Modulation of Schottky Barrier in Graphene/Janus MoSSe Heterojunctions by Interface Contact and Electric Field Effects
by Zhe Zhang, Jiahui Li, Xiaopei Xu and Guodong Shi
Nanomaterials 2025, 15(15), 1174; https://doi.org/10.3390/nano15151174 - 30 Jul 2025
Viewed by 161
Abstract
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by [...] Read more.
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by the contact of different atom planes of Janus MoSSe (JMoSSe) and graphene (Gr), and regulate the Schottky barrier of the Gr/JMoSSe heterojunction by the number of layers and the electric field. Due to the difference in atomic electronegativity and surface work function (WF), the Gr/JSMoSe heterojunction formed by the contact of S atoms with Gr exhibits an n-type Schottky barrier, whereas the Gr/JSeMoS heterojunction formed by the contact of the Se atoms with Gr reveals a p-type Schottky barrier. Increasing the number of layers of JMoSSe allows the Gr/JMoSSe heterojunction to achieve the transition from Schottky contact to Ohmic contact. Moreover, under the control of an external electric field, the Gr/JMoSSe heterojunction can realize the transition among n-type Schottky barrier, p-type Schottky barrier, and Ohmic contact. The physical mechanism of the layer number and electric field modulation effect is analyzed in detail by the change in the interface electron charge transfer. Our results will contribute to the design and application of nanoelectronics and optoelectronic devices based on Gr/JMoSSe heterojunctions in the future. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

30 pages, 5307 KiB  
Article
Self-Normalizing Multi-Omics Neural Network for Pan-Cancer Prognostication
by Asim Waqas, Aakash Tripathi, Sabeen Ahmed, Ashwin Mukund, Hamza Farooq, Joseph O. Johnson, Paul A. Stewart, Mia Naeini, Matthew B. Schabath and Ghulam Rasool
Int. J. Mol. Sci. 2025, 26(15), 7358; https://doi.org/10.3390/ijms26157358 - 30 Jul 2025
Viewed by 169
Abstract
Prognostic markers such as overall survival (OS) and tertiary lymphoid structure (TLS) ratios, alongside diagnostic signatures like primary cancer-type classification, provide critical information for treatment selection, risk stratification, and longitudinal care planning across the oncology continuum. However, extracting these signals solely from sparse, [...] Read more.
Prognostic markers such as overall survival (OS) and tertiary lymphoid structure (TLS) ratios, alongside diagnostic signatures like primary cancer-type classification, provide critical information for treatment selection, risk stratification, and longitudinal care planning across the oncology continuum. However, extracting these signals solely from sparse, high-dimensional multi-omics data remains a major challenge due to heterogeneity and frequent missingness in patient profiles. To address this challenge, we present SeNMo, a self-normalizing deep neural network trained on five heterogeneous omics layers—gene expression, DNA methylation, miRNA abundance, somatic mutations, and protein expression—along with the clinical variables, that learns a unified representation robust to missing modalities. Trained on more than 10,000 patient profiles across 32 tumor types from The Cancer Genome Atlas (TCGA), SeNMo provides a baseline that can be readily fine-tuned for diverse downstream tasks. On a held-out TCGA test set, the model achieved a concordance index of 0.758 for OS prediction, while external evaluation yielded 0.73 on the CPTAC lung squamous cell carcinoma cohort and 0.66 on an independent 108-patient Moffitt Cancer Center cohort. Furthermore, on Moffitt’s cohort, baseline SeNMo fine-tuned for TLS ratio prediction aligned with expert annotations (p < 0.05) and sharply separated high- versus low-TLS groups, reflecting distinct survival outcomes. Without altering the backbone, a single linear head classified primary cancer type with 99.8% accuracy across the 33 classes. By unifying diagnostic and prognostic predictions in a modality-robust architecture, SeNMo demonstrated strong performance across multiple clinically relevant tasks, including survival estimation, cancer classification, and TLS ratio prediction, highlighting its translational potential for multi-omics oncology applications. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

12 pages, 5121 KiB  
Article
Design of an Energy Selective Surface Employing Dual-Resonant Circuit Topology
by Honglin Zhang, Jihong Zhang, Song Zha, Huan Jiang, Tao Zhou, Chenxi Liu and Peiguo Liu
Electronics 2025, 14(15), 3029; https://doi.org/10.3390/electronics14153029 - 30 Jul 2025
Viewed by 100
Abstract
A dual-polarization energy selective surface (ESS) with low insertion loss (IL) and high shielding effectiveness (SE) based on a dual-resonant equivalent circuit topology was proposed for high-intensity radiation field (HIRF) protection in this paper. The design principle was elucidated through an equivalent circuit [...] Read more.
A dual-polarization energy selective surface (ESS) with low insertion loss (IL) and high shielding effectiveness (SE) based on a dual-resonant equivalent circuit topology was proposed for high-intensity radiation field (HIRF) protection in this paper. The design principle was elucidated through an equivalent circuit model and translated into a physical ESS implementation. It consists of two resonant rings, vertically arranged and loaded with diodes, along with two lumped capacitors. Simulation and measurement results demonstrate that the IL is less than 3 dB when in the OFF state in a working frequency band, and the SE exceeds 20 dB when in the ON state. Moreover, the ESS’s dual-polarization, low cost, and easy-to-design characteristics hold great promise for broad applications in protecting communication and radar systems in complex electromagnetic environments. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

15 pages, 2248 KiB  
Article
Effects of Treadmill Exercise on Gut Microbiota in Alzheimer’s Disease Model Mice and Wild-Type Mice
by Zhe Zhao, Xingqing Wu, Wenfeng Liu, Lan Zheng and Changfa Tang
Microorganisms 2025, 13(8), 1765; https://doi.org/10.3390/microorganisms13081765 - 29 Jul 2025
Viewed by 191
Abstract
There is a growing body of research showing that Alzheimer’s disease (AD) is related to enteric dysbacteriosis. Exercise can be effective in alleviating AD, but the effects that exercise has on the gut microbiota in AD patients needs to be further studied. Through [...] Read more.
There is a growing body of research showing that Alzheimer’s disease (AD) is related to enteric dysbacteriosis. Exercise can be effective in alleviating AD, but the effects that exercise has on the gut microbiota in AD patients needs to be further studied. Through this study, we aimed to investigate the differences in the diversity of gut microorganisms between AD model mice and wild-type mice and the effect that treadmill exercise has on the composition of the gut microbiota in both types of mice. C57BL/6 wild-type mice were randomly divided into a sedentary control group (WTC) and an exercise group (WTE); APP/PS1 double transgenic mice were also randomly divided into a sedentary control group (ADC) and an exercise group (ADE). After the control group remained sedentary for 12 weeks and a 12-week treadmill exercise intervention was adopted for the exercise group, the rectal contents were collected so that they could undergo V3-V4 16S rDNA sequencing, and a comparative analysis of the microbial composition and diversity was also performed. The alpha diversity of the gut microbiota in AD mice was lower than that in wild-type mice, but exercise increased the gut microbial diversity in both types of mice. At the phylum level, the dominant microorganisms in all four groups of mice were Bacteroidetes and Firmicutes. There was an increase in the Bacteroidetes phylum in AD mice. Treadmill exercise reduced the abundance of Bacteroidetes in both groups of mice, whereas the abundance of Firmicutes increased. At the genus level, Muribaculaceae, the Lachnospiraceae_NK4A136_group, Alloprevotella, and Alistipes were in relatively high abundance. Muribaculaceae and Alloprevotella were in greater abundance in AD mice than in wild-type mice, but both decreased after treadmill exercise. Through performing linear discriminant analysis effect size (LEfSe), we found that the dominant strains in AD mice were Campilobacterota, Helicobacteraceae, Escherichia–Shigella, and other malignant bacteria, whereas exercise resulted in an increase in probiotics among the dominant strains in both types of mice. Although gut microbial diversity decreases and malignant bacteria increase in AD mice, treadmill exercise can increase gut microbial diversity and lead to the development of dominant strains of probiotics in both types of mice. These findings provide a basis for applying exercise as a treatment for AD. Full article
Show Figures

Figure 1

30 pages, 4377 KiB  
Article
Feeding Chicory–Plantain Silage and/or Se Yeast Does Not Improve Streptococcus uberis-Induced Subclinical Mastitis in Lactating Sheep
by Hunter R. Ford, Joseph Klopfenstein, Serkan Ates, Sebastiano Busato, Erminio Trevisi and Massimo Bionaz
Dairy 2025, 6(4), 40; https://doi.org/10.3390/dairy6040040 - 29 Jul 2025
Viewed by 181
Abstract
The objective of this study was to evaluate the effects of feeding a combination of chicory–plantain silage and supplementing Se yeast on the response of early-lactating ewes to induce subclinical mastitis. Polypay ewes (n = 32) were fed either chicory–plantain silage or [...] Read more.
The objective of this study was to evaluate the effects of feeding a combination of chicory–plantain silage and supplementing Se yeast on the response of early-lactating ewes to induce subclinical mastitis. Polypay ewes (n = 32) were fed either chicory–plantain silage or grass silage and supplemented with 3.6 mg Se yeast/ewe/day for approximately 2 months prior to the infusion of S. uberis into both mammary glands (i.e., intramammary infection or IMI). The ewes had a typical subclinical mastitis response with an 8-fold increase in milk somatic cell count within 24 h post-IMI, a decrease in milk yield, and changes in all milk components measured. The ewes experienced a mild systemic inflammation post-IMI as determined by an increase in rectal temperature and decrease in feed and water intake and, in blood, by an increase in the concentration of ceruloplasmin, haptoglobin, and myeloperoxidase and a decrease in paraoxonase, Zn, advanced oxidation protein products, and hematocrit with no effect on pro-inflammatory cytokines. No effect of silage type, likely due to a low concentration of secondary compounds, or Se supplementation was detected in response to IMI. In summary, the subclinical mastitis model used was effective in mounting an inflammatory response, although this was mild; however, feeding chicory–plantain silage with a low concentration of secondary compounds and supplementing Se yeast had no significant effect on the response of ewes to mammary infection. Full article
(This article belongs to the Section Dairy Animal Nutrition and Welfare)
Show Figures

Figure 1

23 pages, 5813 KiB  
Article
Integrated Lighting and Solar Shading Strategies for Energy Efficiency, Daylighting and User Comfort in a Library Design Proposal
by Egemen Kaymaz and Banu Manav
Buildings 2025, 15(15), 2669; https://doi.org/10.3390/buildings15152669 - 28 Jul 2025
Viewed by 137
Abstract
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades [...] Read more.
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades (77% southwest, 81% northeast window-to-wall ratio), an open-plan layout, and situated within an unobstructed low-rise campus environment. Trade-offs between daylight availability, heating, cooling, lighting energy use, and visual and thermal comfort are evaluated through integrated lighting (DIALux Evo), climate-based daylight (CBDM), and energy simulations (DesignBuilder, EnergyPlus, Radiance). Fifteen solar shading configurations—including brise soleil, overhangs, side fins, egg crates, and louvres—are evaluated alongside a daylight-responsive LED lighting system that meets BS EN 12464-1:2021. Compared to the reference case’s unshaded glazing, optimal design significantly improves building performance: a brise soleil with 0.4 m slats at 30° reduces annual primary energy use by 28.3% and operational carbon emissions by 29.1% and maintains thermal comfort per ASHRAE 55:2023 Category II (±0.7 PMV; PPD < 15%). Daylight performance achieves 91.5% UDI and 2.1% aSE, with integrated photovoltaics offsetting 129.7 kWh/m2 of grid energy. This integrated strategy elevates the building’s energy class under national benchmarks while addressing glare and overheating in the original design. Full article
(This article belongs to the Special Issue Lighting in Buildings—2nd Edition)
Show Figures

Figure 1

14 pages, 1354 KiB  
Article
Layered Structures Based on Ga2O3/GaS0.98Se0.02 for Gas Sensor Applications
by Veaceslav Sprincean, Mihail Caraman, Tudor Braniste and Ion Tiginyanu
Surfaces 2025, 8(3), 53; https://doi.org/10.3390/surfaces8030053 - 28 Jul 2025
Viewed by 220
Abstract
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O [...] Read more.
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O3 nanowires/nanoribbons with inclusions of Ga2S3 and Ga2Se3 microcrystallites were obtained by thermal treatment of GaS0.98Se0.02 slabs in air enriched with water vapors. The microstructure, crystalline quality, and elemental composition of the obtained samples were investigated using electron microscopy, X-ray diffraction, and Raman spectroscopy. The obtained structures show promising results as active elements in gas sensor applications. Vapors of methanol (CH3OH), ethanol (C2H5OH), and acetone (CH3-CO-CH3) were successfully detected using the nanostructured samples. The electrical signal for gas detection was enhanced under UV light irradiation. The saturation time of the sensor depends on the intensity of the UV radiation beam. Full article
Show Figures

Figure 1

10 pages, 3514 KiB  
Article
General Construction Method and Proof for a Class of Quadratic Chaotic Mappings
by Wenxia Xu, Xiangkun Chen, Ziwei Zhou, Guodong Li and Xiaoming Song
Mathematics 2025, 13(15), 2409; https://doi.org/10.3390/math13152409 - 26 Jul 2025
Viewed by 194
Abstract
The importance of chaotic systems as the main pseudo-random cryptographic generator of encryption algorithms in the field of communication secrecy cannot be overstated, but in practical applications, researchers often choose to build upon traditional chaotic maps, such as the logistic map, for study [...] Read more.
The importance of chaotic systems as the main pseudo-random cryptographic generator of encryption algorithms in the field of communication secrecy cannot be overstated, but in practical applications, researchers often choose to build upon traditional chaotic maps, such as the logistic map, for study and application. This approach provides attackers with more opportunities to compromise the encryption scheme. Therefore, based on previous results, this paper theoretically investigates discrete chaotic mappings in the real domain, constructs a general method for a class of quadratic chaotic mappings, and justifies its existence based on a robust chaos determination theorem for S single-peaked mappings. Based on the theorem, we construct two chaotic map examples and conduct detailed analysis of their Lyapunov exponent spectra and bifurcation diagrams. Subsequently, comparative analysis is performed between the proposed quadratic chaotic maps and the conventional logistic map using the 0–1 test for chaos and SE complexity metrics, validating their enhanced chaotic properties. Full article
Show Figures

Figure 1

Back to TopTop