Design of an Energy Selective Surface Employing Dual-Resonant Circuit Topology
Abstract
1. Introduction
2. Structure and Design
2.1. Theoretical Analysis
2.2. Structural Design
3. Simulation Analysis
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eleftheriades, G.V. Electronics: Protecting the weak from the strong. Nature 2014, 505, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Brown, N. Design Concepts for High-Power PIN Diode Limiting. IEEE Trans. Microw. Theory Tech. 1967, 15, 732–742. [Google Scholar] [CrossRef]
- Schröder, A.; Rasek, G.A.; Brüns, H.D.; Řezníček, Z.; Kučera, J.; Loos, S.E.; Schuster, C. Analysis of High Intensity Radiated Field Coupling into Aircraft Using the Method of Moments. IEEE Trans. Electromagn. Compat. 2014, 56, 113–122. [Google Scholar] [CrossRef]
- Lv, J.; Luo, C.; Zhao, J.; Han, H.; Lu, H.; Zheng, B. Development of Energy-Selective Surface for Electromagnetic Protection. Micromachines 2025, 16, 555. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, M.; Wu, Z.; Ding, L.; Bian, L.; Liu, P. Energy Selective Surface with Power-Dependent Transmission Coefficient for High-Power Microwave Protection in Waveguide. IEEE Trans. Antennas Propag. 2019, 67, 2494–2502. [Google Scholar] [CrossRef]
- Li, X.; Wang, B.; Ding, Q.; Qiu, S.; Li, H.; Shang, Y. High-Power Mechanical Waveguide Phase Shifter: Electromagnetic Resonance Analysis and Protection Design. IEEE Trans. Microw. Theory Tech. 2025, 73, 760–769. [Google Scholar] [CrossRef]
- Ning, Z.; Li, M.; Chen, L.; Gu, J.; Ding, D. Circuit Modelling and Analysis of Multiband Energy-Selective Surfaces Using Characteristic Modes. IEEE Trans. Antennas Propag. 2025. Early Access. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Y.; Wen, Y.; Zhao, M.; Wang, W.; Zhang, J.; Su, D. Non-nuclear Electromagnetic Pulse Threat of Critical Infrastructures and Protection Strategies. Strateg. Study Chin. Acad. Eng. 2022, 24, 249. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, P.; Liu, C.; Jiang, H.; Tian, T. Multilayer Energy Selective Surface with Wide Operational Band and High Shielding Effectiveness Based on Second-Order Filter. IEEE Trans. Electromagn. Compat. 2025, 67, 337–340. [Google Scholar] [CrossRef]
- Zha, S.; Qu, Z.; Zhang, J.; Zheng, D.; Liu, P. A Gain-Reconfigurable Reflector Antenna with Surface-Mounted Field-Induced Artificial Magnetic Conductor for Adaptive HIRF Prevention. IEEE Trans. Antennas Propag. 2024, 72, 7252–7260. [Google Scholar] [CrossRef]
- Fang, J.; Wu, Q. A Non-Reciprocal, Ultrawideband Energy Selective Antenna Based on Conductivity Modulation Effect. IEEE Trans. Electromagn. Compat. 2024, 66, 1836–1847. [Google Scholar] [CrossRef]
- Afzal, W.; Baig, M.Z.; Ebrahimi, A.; Robel, M.R.; Rana, M.T.A.; Rowe, W. Frequency Selective Surfaces: Design, Analysis, and Applications. Telecom 2024, 5, 1102–1128. [Google Scholar] [CrossRef]
- Kun, L.; Shining, S.; Xinyuan, Z.; Qianqian, S.; Xiangkun, K.; Shaobin, L. A Novel Polarization Converter Based on the Band-stop Frequency Selective Surface. Chin. Phys. B 2022, 31, 024211. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Li, Z.; Guo, C.; Li, Z.; Bing, P.; Wang, S.; Xu, J.; Zhang, H.; Yao, J. Multi-stopband Filter Based on Frequency Selective Surface. Opt. Commun. 2025, 574, 131064. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, Z. Diffusive Energy-Selective Surface with Low Backscattering. IEEE Trans. Antennas Propag. 2022, 70, 430–439. [Google Scholar] [CrossRef]
- Xiong, H.; Suo, M.; Li, X.; Xiao, D.; Zhang, H. Design of Energy-Selective Surface with an Ultra-wide Shielding Band for High-Power Microwave Protection. ACS Appl. Electron. Mater. 2024, 6, 696–701. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Pan, F.; Mao, J.F. Design and Failure Mechanism Analysis of a High-Power Limiter at DC-6 GHz with GaAs PIN Technology. IEEE Trans. Electromagn. Compat. 2025, 67, 227–236. [Google Scholar] [CrossRef]
- Backstrom, M.; Lovstrand, K. Susceptibility of Electronic Systems to High-power Microwaves: Summary of Test Experience. IEEE Trans. Electromagn. Compat. 2004, 46, 396–403. [Google Scholar] [CrossRef]
- Tian, T.; Huang, X.; Xu, Y.; Liu, P.; Liu, C.; Hu, N.; Zhang, J.; Wu, Z. A Wideband Energy Selective Surface with Quasi-Elliptic Bandpass Response and High-Power Microwave Shielding. IEEE Trans. Electromagn. Compat. 2024, 66, 224–233. [Google Scholar] [CrossRef]
- Guo, Y.; Li, G. Energy-Selective-Surface-Based Dynamic Phase Modulation Surface. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1363–1367. [Google Scholar] [CrossRef]
- Fang, J.; Wu, Q.; Su, D. An Energy Selective Antenna Based on the Folded Dipole Structure and PIN Diodes. IEEE Trans. Electromagn. Compat. 2023, 65, 2006–2014. [Google Scholar] [CrossRef]
- Yang, C.; Liu, P.G.; Huang, X.J. A Novel Method of Energy Selective Surface for Adaptive HPM/EMP Protection. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 112–115. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, C.F.; Aditya, S. Power-Dependent Frequency-Selective Surface: Concept, Design, and Experiment. IEEE Trans. Antennas Propag. 2019, 67, 3215–3220. [Google Scholar] [CrossRef]
- Cao, H.; Xie, Y.Z.; Gao, C. Design of an Energy Selective Surface with Broadband Stealth Characteristics. IEEE Trans. Antennas Propag. 2025. Early Access. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, W.; Chen, X.; Han, G.; Han, L.; Su, J.; Yang, R. A Low-Profile Energy Selective Surface with Ultra-Wide Absorption Band. IEEE Trans. Microw. Theory Tech. 2023, 71, 1348–1355. [Google Scholar] [CrossRef]
- Hu, N.; Wang, K.; Zhang, J.; Zha, S.; Wu, Z.; Liu, C.; Liu, P. Design of Ultrawideband Energy-Selective Surface for High-Power Microwave Protection. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 669–673. [Google Scholar] [CrossRef]
- Qin, D.; Zhang, W.; Han, G.; Han, L.; Ma, R.; Chen, X. Circuit-Based Dual-Resonance Energy Selective Surface. IEEE Trans. Electromagn. Compat. 2023, 65, 2015–2021. [Google Scholar] [CrossRef]
- Luo, Z.; Zheng, M.; Zheng, C.; Wang, X.; Zhou, L.; Li, Y.B.; Cheng, Q.; Ma, H.F.; Cui, T.J. Digital Nonlinear Metasurface with Customizable Nonreciprocity. Adv. Funct. Mater. 2019, 29, 1906635. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Q.; Zhang, X.G.; Wu, J.W.; Dai, J.Y.; Zhang, L.; Wu, H.T.; Zhang, H.C.; Ma, H.F.; Cheng, Q.; et al. Intensity-dependent metasurface with digitally reconfigurable distribution of nonlinearity. Adv. Opt. Mater. 2019, 7, 1900792. [Google Scholar] [CrossRef]
- Yang, X.; Wen, E.; Sievenpiper, D.F. Power-Dependent Metasurface with Self-Induced Bandgap. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1115–1119. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, Z. 3-D Absorptive Energy-Selective Structures. IEEE Trans. Antennas Propag. 2021, 69, 5664–5672. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, F.; Liu, Z.; Qu, Z.; Xu, M.; Song, Z.; Liu, P. Design of Ultrawideband Energy Selective Surface Based on Triple-Layer Structure and Semiconductor for HIRF Prevention. IEEE Trans. Antennas Propag. 2025. Early Access. [Google Scholar] [CrossRef]
- Wang, M.; Tang, M.; Zhang, H.C.; Mao, J. Energy Selective Antenna: Concept, Design, and Experiment. IEEE Trans. Electromagn. Compat. 2023, 65, 539–545. [Google Scholar] [CrossRef]
- Li, M.; Xiao, S.; Bai, Y.Y.; Wang, B.Z. An Ultrathin and Broadband Radar Absorber Using Resistive FSS. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 748–751. [Google Scholar] [CrossRef]
- Dassault Systèmes. CST Studio Suite 2023. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (accessed on 1 June 2025).
- Ghosh, S.; Srivastava, K.V. A Polarization-Independent Broadband Multilayer Switchable Absorber Using Active Frequency Selective Surface. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3147–3150. [Google Scholar] [CrossRef]
- Wang, X.; Deng, L.; Chen, L.; Qu, M.; Liu, X.; Chen, W. An S-Band Dual-Polarization Energy Selective Surface with Low-Cost Design. In Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China), Hangzhou, China, 15–18 August 2023; pp. 1–3. [Google Scholar] [CrossRef]
/nH | /nH | /nH | /pF | /pF | / |
---|---|---|---|---|---|
5.7 | 3.7 | 0.45 | 0.3 | 0.2 | 1.5 |
p/(mm) | f/(mm) | g/(mm) | L/(mm) | /(mm) |
---|---|---|---|---|
9.5 | 0.5 | 0.5 | 5.0 | 2.0 |
/(mm) | /(mm) | /(mm) | /(mm) | /(mm) |
3.3 | 0.1 | 1.0 | 0.5 | 0.035 |
Ref. | Circuit | IL (dB)/ | SE | Diodes/ | |
---|---|---|---|---|---|
NO. | Topology | (GHz) | Freq. Range (GHz) | (dB) | Geometry (mm2) * |
[16] | Single-resonant | 4.00 | 3/(3.65–4.38) | 15 | 4/0.018 |
[36] | Single-resonant | 7.8 | 3/(7.30–9.20) | 10 | 8/0.082 |
[37] | Single-resonant | 3.19 | 3/(2.37–4.00) | 17 | 8/0.025 |
[26] | Dual-resonant | 3.00 | 3/(2.00–4.42) | 20 | 9/0.029 |
[23] | Dual-resonant | 3.00 | 3/(2.71–3.52) | 18 | 4/0.130 |
This paper | Dual-resonant | 5.00 | 3/(4.46–5.23) | 20 | 4/0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, J.; Zha, S.; Jiang, H.; Zhou, T.; Liu, C.; Liu, P. Design of an Energy Selective Surface Employing Dual-Resonant Circuit Topology. Electronics 2025, 14, 3029. https://doi.org/10.3390/electronics14153029
Zhang H, Zhang J, Zha S, Jiang H, Zhou T, Liu C, Liu P. Design of an Energy Selective Surface Employing Dual-Resonant Circuit Topology. Electronics. 2025; 14(15):3029. https://doi.org/10.3390/electronics14153029
Chicago/Turabian StyleZhang, Honglin, Jihong Zhang, Song Zha, Huan Jiang, Tao Zhou, Chenxi Liu, and Peiguo Liu. 2025. "Design of an Energy Selective Surface Employing Dual-Resonant Circuit Topology" Electronics 14, no. 15: 3029. https://doi.org/10.3390/electronics14153029
APA StyleZhang, H., Zhang, J., Zha, S., Jiang, H., Zhou, T., Liu, C., & Liu, P. (2025). Design of an Energy Selective Surface Employing Dual-Resonant Circuit Topology. Electronics, 14(15), 3029. https://doi.org/10.3390/electronics14153029