Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = Schiff base N,O-donor ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1128 KiB  
Article
ESR and Mössbauer Spectroscopy of Iron(III) Spin Crossover Complexes Based on Pentadentate Schiff Base Ligands with Pseudohalide Coligands
by Rene Lucka, Besnik Elshani, Maximilian Seydi Kilic, Stephen Klimke, Christoph Krüger, Michael Menzel, Reinhard Stößer, Ján Titiš, Roman Boča and Franz Renz
Magnetochemistry 2025, 11(5), 43; https://doi.org/10.3390/magnetochemistry11050043 - 10 May 2025
Viewed by 1115
Abstract
Two iron(III) spin crossover complexes [Fe(5Cl-L)(NCS)] (1) and [Fe(5Cl-L)(NCSe)] (2) were synthesized with the pentadentate Schiff base ligand 5Cl-L and thiocyanato and selenocyanato as coligands. 5Cl-L, as an asymmetric {N3O2 [...] Read more.
Two iron(III) spin crossover complexes [Fe(5Cl-L)(NCS)] (1) and [Fe(5Cl-L)(NCSe)] (2) were synthesized with the pentadentate Schiff base ligand 5Cl-L and thiocyanato and selenocyanato as coligands. 5Cl-L, as an asymmetric {N3O2} donor Schiff base, was synthesized by a condensation reaction of 5-chlorosalicyladehyde using the asymmetric N-(2-aminoethyl)-1,3-propanediamine. The complexes exhibited a spin crossover at 280 (1) and 293 K (2), respectively, and were subjected to electron spin resonance (ESR) and Mössbauer spectroscopy at 77, 295 and 325 K. Ab initio CASSCF calculations followed by the NEVPT2 method were applied for predicting the g-tensor components as well as Mössbauer parameters. Full article
(This article belongs to the Section Spin Crossover and Spintronics)
Show Figures

Figure 1

38 pages, 43510 KiB  
Review
Coordination Polymers of Vanadium and Selected Metal Ions with N,O-Donor Schiff Base Ligands—Synthesis, Crystal Structure, and Application
by Dariusz Osypiuk, Agata Bartyzel and Beata Cristóvão
Molecules 2025, 30(5), 1104; https://doi.org/10.3390/molecules30051104 - 27 Feb 2025
Viewed by 1176
Abstract
This review provides an overview of the synthesis, characterization and application of coordination polymers based on N,O-donor Schiff base ligands. The coordination polymers (CPs) represent a novel class of inorganic–organic hybrid materials with tunable compositions and fascinating structures. They are [...] Read more.
This review provides an overview of the synthesis, characterization and application of coordination polymers based on N,O-donor Schiff base ligands. The coordination polymers (CPs) represent a novel class of inorganic–organic hybrid materials with tunable compositions and fascinating structures. They are composed of metal ions and organic ligands. Therefore, the nature of the metal ion and type of organic ligand is the most significant factor in constructing targeted coordination polymers with the desired properties. Due to the versatile coordination modes, N,O-donor Schiff base ligands are also used to construct various CPs. Full article
Show Figures

Figure 1

16 pages, 3995 KiB  
Article
A Preliminary Investigation of Thermally Stable Schiff Base Metal Complexes for Hyperthermia: Synthesis and Biological Evaluation
by Vigneswari Sankara Narayanan, Soven Dhawa, Amritha Sukumaran, Bharathi Hassan Ganesh, Jeya Rajendran, Kondapa Naidu Bobba and Prasanna Ramani
Antioxidants 2024, 13(12), 1586; https://doi.org/10.3390/antiox13121586 - 23 Dec 2024
Cited by 4 | Viewed by 1413
Abstract
A novel Schiff base ligand (L), bearing N2O2 donor sites, was derived from the condensation of 5-chloromethylisophthaldehyde and phenylpropanolamine (PPA). Mononuclear Co(II), Cu(II), and Zn(II) complexes were synthesized and were characterized by FTIR, UV–Vis, 1H NMR, ESI-mass spectroscopy, molar [...] Read more.
A novel Schiff base ligand (L), bearing N2O2 donor sites, was derived from the condensation of 5-chloromethylisophthaldehyde and phenylpropanolamine (PPA). Mononuclear Co(II), Cu(II), and Zn(II) complexes were synthesized and were characterized by FTIR, UV–Vis, 1H NMR, ESI-mass spectroscopy, molar conductance, and thermal and electrochemical studies. The thermal investigation revealed that the complexes were stable up to 150–250 °C and began to degrade in stages, resulting in the development of respective metal oxides. The Coats–Redfern integration method was used to calculate the kinetic and thermodynamic parameters, the energy of activation (Ea), and changes in enthalpy (∆H), entropy (∆S), and free energy (∆G) for each step of the degradation processes. For stage I decomposition, the calculated activation energy values of the complexes follow the order of Ea [Cu(L)] > Ea [Co(L)(H2O)2] > Ea [Zn(L)]. The influence of the temperature on the efficacy of antioxidant activities of the complexes with DPPH assay, ABTS assay, and hydroxy radical assay was investigated at various concentrations using ascorbic acid (AA) as the reference. Antioxidant activity was assessed at multiple temperatures to ascertain whether these complexes may be applied in radiation therapy enhanced with hyperthermia and found to be stable. Subsequently, the Cu(II) complex (C2) demonstrated a greater cytotoxicity (IC50 = 5.16 µM) than Co(II), Zn(II), and conventional cisplatin when in vitro cytotoxicity was evaluated against the MCF-7 cell line using the MTT method. Analyses of the thermal stability and ROS scavenging ability of complexes have demonstrated that these complexes have potential in hyperthermic radiation therapy. Full article
Show Figures

Figure 1

18 pages, 3162 KiB  
Article
Isolated Dipolar ONN Schiff Base Regioisomers: Synthesis, Characterization and Crystallographic Study
by Pablo Castro-Tamay, David Villaman, Jean-René Hamon and Néstor Novoa
Molecules 2024, 29(24), 5863; https://doi.org/10.3390/molecules29245863 - 12 Dec 2024
Viewed by 832
Abstract
Organic compounds with 1,3-diketone or 3-amino enone functional groups are extremely important as they can be converted into a plethora of carbo- or heterocyclic derivatives or can be used as ligands in the formation of metal complexes. Here, we have achieved the preparation [...] Read more.
Organic compounds with 1,3-diketone or 3-amino enone functional groups are extremely important as they can be converted into a plethora of carbo- or heterocyclic derivatives or can be used as ligands in the formation of metal complexes. Here, we have achieved the preparation of a series of non-symmetrical β-ketoenamines (O,N,N proligand) of the type (4-MeOC6H4)C(=O)CH=C(R)NH(Q) obtained through the Schiff base condensation of 1,3-diketones (1-anisoylacetone, 1-anisyl-3-(4-cyanophenyl)-1,3-propanedione, and 1-anisyl-3-(4,4,4-trifluorotolyl)-1,3-propanedione) functionalized with electron donor and electron-withdrawing substituents and 8-aminoquinoline (R = CH3, 4-C6H4CN, 4-C6H4CF3; Q = C9H7N). Schiff base ketoimines with a pendant quinolyl moiety were isolated as single regioisomers in yields of 22–56% and characterized with FT-IR, 1H NMR, and UV-visible spectroscopy, as well as single-crystal X-ray crystallography, which allowed for the elucidation of the nature of the isolated regioisomers. The regioselectivity of the condensation of electronically unsymmetrical 1,3-diaryl-1,3-diketones with 8-aminoquinoline was studied by 1H NMR, providing regioisomer ratios of ~3:1 and ~2:1 in the case of CN and CF3 substituents, respectively. The electronic effects correlate well with the difference between the Hammett σ+ coefficients of the two para substituents on the aryl rings. Full article
Show Figures

Figure 1

18 pages, 7821 KiB  
Article
Preparation and Antifungal Properties of Cyclopropyl Derivatives of 3-Aminoquinazolin-4(3H)-one and Salicylal Schiff Base Nickel(II) Chelate Complex
by Alexander N. Fedotov, Elena V. Trofimova, Victor A. Tafeenko, Igor P. Gloriozov, Andrey V. Mironov and Alexandre N. Zakharov
Inorganics 2024, 12(12), 304; https://doi.org/10.3390/inorganics12120304 - 25 Nov 2024
Viewed by 904
Abstract
N-substituted 2-cyclopropyl-3-R-quinazoline-4()-ones [R: NH2 (1), N=CH(2-hydroxyphenyl) (2)] and Ni(II) chelate compound of 2-cyclopropyl-3-[(Z)-(2-hydroxybenzylidene)amino]quinazoline-4(3H)-one (3) were synthesized and their structures and properties were characterized using X-ray diffraction data, computational optimization, 1H and 13C [...] Read more.
N-substituted 2-cyclopropyl-3-R-quinazoline-4()-ones [R: NH2 (1), N=CH(2-hydroxyphenyl) (2)] and Ni(II) chelate compound of 2-cyclopropyl-3-[(Z)-(2-hydroxybenzylidene)amino]quinazoline-4(3H)-one (3) were synthesized and their structures and properties were characterized using X-ray diffraction data, computational optimization, 1H and 13C NMR, IR spectroscopy, and diffuse reflectance spectra. Compounds 1 and 2 are monoclinic (space group P21/n). Unit cell parameters (a, b, c) are 9.2529; 4.7246; 22.3460 Å and 10.2811; 4.6959; 30.972 Å for 1 and 2, respectively. Nickel(II) chelate compound crystallizes in an orthorhombic crystal system (space group Pbca). Unit cell parameters (a, b, c) for 3 are 26.5010; 14.8791; 8.904975 Å, respectively. Schiff base 2 in the crystalline state exhibits two rotary isomers in a molar ratio of 1:3, among which only a minor component as a bidentate ligand can form compound 3 with Ni(II) ion. Nickel(II) ion in 3 is coordinated by N donor atoms and deprotonated O atoms of Schiff base ligands to form square-planar chelate node NiN2O2. All synthesized compounds revealed high antifungal activity against bread mold (Mucor mucedo). Full article
Show Figures

Graphical abstract

23 pages, 8826 KiB  
Article
Synthesis, Characterization, DNA, Fluorescence, Molecular Docking, and Antimicrobial Evaluation of Novel Pd(II) Complex Containing O, S Donor Schiff Base Ligand and Azole Derivative
by Maged S. Al-Fakeh, Muneera Alrasheedi, Ard Elshifa M. E. Mohammed, Ahmed B. M. Ibrahim, Sadeq M. Al-Hazmy, Ibrahim A. Alhagri and Sabri Messaoudi
Inorganics 2024, 12(7), 189; https://doi.org/10.3390/inorganics12070189 - 11 Jul 2024
Cited by 3 | Viewed by 1728
Abstract
Pd(II) with the Schiff base ligand 2-Hydroxy-3-Methoxy Benzaldehyde-Thiosemicarbazone (HMBATSC) (L2) and 2-aminobenzothiazole (2-ABZ) (L1) was synthesized. The Schiff base ligand and the Palladium(II) complex were characterized by C.H.N.S, FT-IR, conductance studies, magnetic susceptibility, XRD, and TGA. From the elemental analysis and spectral data, [...] Read more.
Pd(II) with the Schiff base ligand 2-Hydroxy-3-Methoxy Benzaldehyde-Thiosemicarbazone (HMBATSC) (L2) and 2-aminobenzothiazole (2-ABZ) (L1) was synthesized. The Schiff base ligand and the Palladium(II) complex were characterized by C.H.N.S, FT-IR, conductance studies, magnetic susceptibility, XRD, and TGA. From the elemental analysis and spectral data, the complex was proposed to have the formula [Pd(HMBATSC)(2-ABZ)H2O]. The interaction between the Pd(II) complex and DNA was examined through various methods, including UV–Vis spectroscopy, fluorescence techniques, and DNA viscosity titrations. The findings provided strong evidence that the interaction between the Pd(II) complex and DNA occurs through the intercalation mode. The analysis yielded the following values: a Stern–Volmer quenching constant (ksv) of 1.67 × 104 M−1, a quenching rate constant (kq) of 8.35 × 1011 M−1 s−1, a binding constant (kb) of 5.20 × 105 M−1, and a number of binding the sites (n) of 1.392. DFT studies suggest that the azole derivative may act as an electron donor through pyridine nitrogen, while the Schiff base ligand may act as an electron donor via oxygen and sulfur atoms. TDDFT calculations indicate that the intramolecular charge transfer from the Schiff base to Pd(II) is responsible for the complex’s fluorescence quenching. The powder X-ray diffraction data revealed that the complex is arranged in a monoclinic system. The resulting Pd(II) complex was investigated for its antimicrobial activity and demonstrated antibacterial efficiency. Interestingly, it showed potent activity against E. coli and E. niger that was found to be more powerful than that recorded for Neomycin. Full article
(This article belongs to the Special Issue Noble Metals in Medicinal Inorganic Chemistry)
Show Figures

Figure 1

17 pages, 10290 KiB  
Article
Exploring the Spatial Arrangement of Simple 18-Membered Hexaazatetraamine Macrocyclic Ligands in Their Metal Complexes
by Julio Corredoira-Vázquez, Cristina González-Barreira, Jesús Sanmartín-Matalobos, Ana M. García-Deibe and Matilde Fondo
Int. J. Mol. Sci. 2024, 25(12), 6802; https://doi.org/10.3390/ijms25126802 - 20 Jun 2024
Cited by 1 | Viewed by 1255
Abstract
Hexaazamacrocyclic Schiff bases have been extensively combined with lanthanoid (Ln) ions to obtain complexes with a highly axial geometry. However, the use of flexible hexaazatetraamine macrocycles containing two pyridines and acyclic spacers is rather uncommon. Accordingly, we obtained [DyL(OAc)2]OAc·7H2O·EtOH [...] Read more.
Hexaazamacrocyclic Schiff bases have been extensively combined with lanthanoid (Ln) ions to obtain complexes with a highly axial geometry. However, the use of flexible hexaazatetraamine macrocycles containing two pyridines and acyclic spacers is rather uncommon. Accordingly, we obtained [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O, where L and LMe2 are the 18-membered macrocycles 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane and 3,10-dimethyl-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane, respectively, which contain ethylene and methylethylene spacers between their N3 moieties. [DyL(OAc)2]OAc·7H2O·EtOH represents the first crystallographically characterized lanthanoid complex of L, while [DyLMe2(Cl)2]Cl·2H2O contributes to increasing the scarce number of LnIII compounds containing LMe2. Furthermore, the crystal structure of L·12H2O was solved, and it was compared with those of other related macrocycles previously published. Likewise, the crystal structures of the DyIII complexes were compared with those of the lanthanoid and d-metal complexes of other 18-membered N6 donor macrocycles. This comparison showed some effect of the spacers employed, as well as the influence of the size of the ancillary ligands and the metal ion. Additionally, the distinct folding behaviors of these macrocycles influenced their coordination geometries. Moreover, the luminescent properties of [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O were also investigated, showing that both complexes are fluorescent, with the emission being sensitized by the ligands. Full article
Show Figures

Graphical abstract

21 pages, 4771 KiB  
Article
Experimental and Computational Studies on the Interaction of DNA with Hesperetin Schiff Base CuII Complexes
by Federico Pisanu, Anna Sykula, Giuseppe Sciortino, Feliu Maseras, Elzbieta Lodyga-Chruscinska and Eugenio Garribba
Int. J. Mol. Sci. 2024, 25(10), 5283; https://doi.org/10.3390/ijms25105283 - 13 May 2024
Cited by 5 | Viewed by 1952
Abstract
The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or thiosemicarbazide (HTSC or L3H3) [...] Read more.
The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or thiosemicarbazide (HTSC or L3H3) and their CuII complexes (CuHHSB, CuHIN, and CuHTSC with the general formula [CuLnH2(AcO)]) were evaluated in aqueous solution both experimentally and theoretically. UV–Vis studies indicate that the ligands and complexes exhibit hypochromism, which suggests helical ordering in the DNA helix. The intrinsic binding constants (Kb) of the Cu compounds with CT-DNA, in the range (2.3–9.2) × 106, from CuHTSC to CuHHSB, were higher than other copper-based potential drugs, suggesting that π–π stacking interaction due to the presence of the aromatic rings favors the binding. Thiazole orange (TO) assays confirmed that ligands and Cu complexes displace TO from the DNA binding site, quenching the fluorescence emission. DFT calculations allow for an assessment of the equilibrium between [Cu(LnH2)(AcO)] and [Cu(LnH2)(H2O)]+, the tautomer that binds CuII, amido (am) and not imido (im), and the coordination mode of HTSC (O, N, S), instead of (O, N, NH2). The docking studies indicate that the intercalative is preferred over the minor groove binding to CT-DNA with the order [Cu(L1H2am)(AcO)] > [Cu(L2H2am)(AcO)] ≈ TO ≈ L1H3 > [Cu(L3H2am)(AcO)], in line with the experimental Kb constants, obtained from the UV–Vis spectroscopy. Moreover, dockings predict that the binding strength of [Cu(L1H2am)(AcO)] is larger than [Cu(L1H2am)(H2O)]+. Overall, the results suggest that when different enantiomers, tautomers, and donor sets are possible for a metal complex, a computational approach should be recommended to predict the type and strength of binding to DNA and, in general, to macromolecules. Full article
Show Figures

Figure 1

13 pages, 3169 KiB  
Article
A Dinuclear Copper(II) Complex Electrochemically Obtained via the Endogenous Hydroxylation of a Carbamate Schiff Base Ligand: Synthesis, Structure and Catalase Activity
by Sandra Fernández-Fariña, Isabel Velo-Heleno, Laura Rodríguez-Silva, Marcelino Maneiro, Ana M. González-Noya and Rosa Pedrido
Int. J. Mol. Sci. 2024, 25(4), 2154; https://doi.org/10.3390/ijms25042154 - 10 Feb 2024
Viewed by 1293
Abstract
In the present work, we report a neutral dinuclear copper(II) complex, [Cu2(L1)(OH)], derived from a new [N,O] donor Schiff base ligand L1 that was formed after the endogenous hydroxylation of an initial carbamate Schiff base H2L [...] Read more.
In the present work, we report a neutral dinuclear copper(II) complex, [Cu2(L1)(OH)], derived from a new [N,O] donor Schiff base ligand L1 that was formed after the endogenous hydroxylation of an initial carbamate Schiff base H2L coordinated with copper ions in an electrochemical cell. The copper(II) complex has been fully characterized using different techniques, including X-ray diffraction. Direct current (DC) magnetic susceptibility measurements were also performed at variable temperatures, showing evidence of antiferromagnetic behavior. Its catalase-like activity was also tested, demonstrating that this activity is affected by temperature. Full article
Show Figures

Figure 1

19 pages, 3453 KiB  
Article
Effect of Metal Environment and Immobilization on the Catalytic Activity of a Cu Superoxide Dismutase Mimic
by Micaela Richezzi, Joaquín Ferreyra, Sharon Signorella, Claudia Palopoli, Gustavo Terrestre, Nora Pellegri, Christelle Hureau and Sandra R. Signorella
Inorganics 2023, 11(11), 425; https://doi.org/10.3390/inorganics11110425 - 27 Oct 2023
Cited by 2 | Viewed by 2317
Abstract
The Cu(II)/Cu(I) conversion involves variation in the coordination number and geometry around the metal center. Therefore, the flexibility/rigidity of the ligand plays a critical role in the design of copper superoxide dismutase (SOD) mimics. A 1,3-Bis[(pyridin-2-ylmethyl)(propargyl)amino]propane (pypapn), a flexible ligand with an N [...] Read more.
The Cu(II)/Cu(I) conversion involves variation in the coordination number and geometry around the metal center. Therefore, the flexibility/rigidity of the ligand plays a critical role in the design of copper superoxide dismutase (SOD) mimics. A 1,3-Bis[(pyridin-2-ylmethyl)(propargyl)amino]propane (pypapn), a flexible ligand with an N4-donor set, was used to prepare [Cu(pypapn)(ClO4)2], a trans-Cu(II) complex whose structure was determined by the X-ray diffraction. In DMF or water, perchlorate anions are exchanged with solvent molecules, affording [Cu(pypan)(solv)2]2+ that catalyzes O2•− dismutation with a second-order rate constant kMcF = 1.26 × 107 M−1 s−1, at pH 7.8. This high activity results from a combination of ligand flexibility, total charge, and labile binding sites, which places [Cu(pypapn)(solv)2]2+ above other mononuclear Cu(II) complexes with more favorable redox potentials. The covalent anchoring of the alkyne group of the complex to azide functionalized mesoporous silica through “click” chemistry resulted in the retention of the SOD activity and improved stability. A dicationic Cu(II)-N4-Schiff base complex encapsulated in mesoporous silica was also tested as an SOD mimic, displaying higher activity than the free complex, although lower than [Cu(pypapn)(solv)2]2+. The robustness of covalently attached or encapsulated doubly charged Cu(II) complexes in a mesoporous matrix appears as a suitable approach for the design of copper-based hybrid catalysts for O2•− dismutation under physiological conditions. Full article
Show Figures

Graphical abstract

15 pages, 1785 KiB  
Article
Substituent-Guided Cluster Nuclearity for Tetranuclear Iron(III) Compounds with Flat {Fe43-O)2} Butterfly Core
by Lorenzo Marchi, Stefano Carlino, Carlo Castellano, Francesco Demartin, Alessandra Forni, Anna M. Ferretti, Alessandro Ponti, Alessandro Pasini and Luca Rigamonti
Int. J. Mol. Sci. 2023, 24(6), 5808; https://doi.org/10.3390/ijms24065808 - 18 Mar 2023
Cited by 2 | Viewed by 2014
Abstract
The tetranuclear iron(III) compounds [Fe43-O)2(μ-LZ)4] (13) were obtained by reaction of FeCl3 with the shortened salen-type N2O2 tetradentate Schiff bases N,N’-bis(salicylidene)-o [...] Read more.
The tetranuclear iron(III) compounds [Fe43-O)2(μ-LZ)4] (13) were obtained by reaction of FeCl3 with the shortened salen-type N2O2 tetradentate Schiff bases N,N’-bis(salicylidene)-o-Z-phenylmethanediamine H2LZ (Z = NO2, Cl and OMe, respectively), where the one-carbon bridge between the two iminic nitrogen donor atoms guide preferentially to the formation of oligonuclear species, and the ortho position of the substituent Z on the central phenyl ring selectively drives towards Fe4 bis-oxido clusters. All compounds show a flat almost-symmetric butterfly-like conformation of the {Fe43-O)2} core, surrounded by the four Schiff base ligands, as depicted by both the X-ray molecular structures of 1 and 2 and the optimized geometries of all derivatives as obtained by UM06/6-311G(d) DFT calculations. The strength of the antiferromagnetic exchange coupling constants between the iron(III) ions varies among the three derivatives, despite their magnetic cores remain structurally almost unvaried, as well as the coordination of the metal ions, with a distorted octahedral environment for the two-body iron ions, Feb, and a pentacoordination with trigonal bipyramidal geometry for the two-wing iron ions, Few. The different magnetic behavior within the series of examined compounds may be ascribed to the influence of the electronic features of Z on the electron density distribution (EDD) of the central {Fe43-O)2} core, substantiated by a Quantum Theory of Atoms In Molecules (QTAIM) topological analysis of the EDD, as obtained by UM06 calculations 13. Full article
(This article belongs to the Special Issue Oligonuclear Metal Complexes with Schiff Base Ligands 2.0)
Show Figures

Figure 1

11 pages, 7672 KiB  
Article
A DyIII Complex of a Pentadentate Schiff Base with Field-Induced Single-Ion Magnet Behaviour
by Julio Corredoira-Vázquez, Paula Oreiro-Martínez, Ana M. García-Deibe, Jesús Sanmartín-Matalobos and Matilde Fondo
Magnetochemistry 2023, 9(3), 62; https://doi.org/10.3390/magnetochemistry9030062 - 23 Feb 2023
Cited by 4 | Viewed by 1895
Abstract
The influence of the solvent in the reaction of dysprosium(III) chloride hydrate with the N3O2 ligand H2L (2,6-bis(2-hydroxyphenyliminomethyl)pyridine) was studied To this end, the new mononuclear chloride complex [Dy(L)Cl(H2O)2] (1) was isolated [...] Read more.
The influence of the solvent in the reaction of dysprosium(III) chloride hydrate with the N3O2 ligand H2L (2,6-bis(2-hydroxyphenyliminomethyl)pyridine) was studied To this end, the new mononuclear chloride complex [Dy(L)Cl(H2O)2] (1) was isolated in absolute ethanol as solvent, without any evidence of the hydrolysis of the ligand. This clearly contrasts with previous results, where a similar reaction in methanol proceeds with the partial hydrolysis of the Schiff base, and the formation of a new hemiacetal donor to yield [Dy(HL’)2)][Dy(L)(Cl2)] (H2L’ = (6-(2-hydroxyphenyliminomethyl)-2-methoxyhydroxymethyl)pyridine). The single crystal X-ray structure of the chloride complex 1 shows that the DyIII ion is octacoordinated in a highly distorted N3O4Cl environment between triangular dodecahedral and biaugmented trigonal prisms. The full magnetic characterisation of 1 shows that it presents field-induced single ion magnet behaviour, with a thermal energy barrier Ueff of 113.5 K, which is the highest among dysprosium complexes derived from H2L. Full article
(This article belongs to the Special Issue Magnetic Relaxation in Metal Complexes)
Show Figures

Figure 1

12 pages, 1497 KiB  
Article
Synthesis, Structural, Magnetic and Computational Studies of a One-Dimensional Ferromagnetic Cu(II) Chain Assembled from a New Schiff Base Ligand
by Anne Worrell, Gabriele Delle Monache, Mark M. Turnbull, Jeremy M. Rawson, Theocharis C. Stamatatos and Melanie Pilkington
Chemistry 2023, 5(1), 85-96; https://doi.org/10.3390/chemistry5010007 - 7 Jan 2023
Viewed by 3007
Abstract
A new asymmetrically substituted ONOO Schiff base ligand N-(2′-hydroxy-1′-naphthylidene)-3-amino-2-naphthoic acid (nancH2) was prepared from the condensation of 2–hydroxy–1–naphthaldehyde and 3–amino–2–naphthoic acid. nancH2 reacts with Cu2(O2CMe)4·2H2O in the presence of [...] Read more.
A new asymmetrically substituted ONOO Schiff base ligand N-(2′-hydroxy-1′-naphthylidene)-3-amino-2-naphthoic acid (nancH2) was prepared from the condensation of 2–hydroxy–1–naphthaldehyde and 3–amino–2–naphthoic acid. nancH2 reacts with Cu2(O2CMe)4·2H2O in the presence of Gd(O2CMe)3·6H2O to afford a uniform one-dimensional homometallic chain, [CuII(nanc)]n (1). The structure of 1 was elucidated via single crystal X-ray diffraction studies, which revealed that the Cu(II) ions adopt distorted square planar geometries and are coordinated in a tridentate manner by an [ONO] donor set from one nanc2− ligand and an O of a bridging carboxylate group from a second ligand. The bridging carboxylato group of the nanc2− ligand adopts a syn, anti-η11:μ conformation linking neighboring Cu(II) ions, forming a 1D chain. The magnetic susceptibility of 1 follows Curie–Weiss law in the range 45–300 K (C = 0.474(1) emu K mol-1, θ = +7.9(3) K), consistent with ferromagnetic interactions between S = ½ Cu(II) ions with g = 2.248. Subsequently, the data fit well to the 1D quantum Heisenberg ferromagnetic (QHFM) chain model with g = 2.271, and J = +12.3 K. DFT calculations, implementing the broken symmetry approach, were also carried out on a model dimeric unit extracted from the polymeric chain structure. The calculated exchange coupling via the carboxylate bridge (J = +13.8 K) is consistent with the observed ferromagnetic exchange between neighbouring Cu(II) centres. Full article
Show Figures

Figure 1

21 pages, 3139 KiB  
Article
Spectroscopic Characterization and Biological Activity of Hesperetin Schiff Bases and Their Cu(II) Complexes
by Anna Sykuła, Adriana Nowak, Eugenio Garribba, Aliaksandr Dzeikala, Magdalena Rowińska-Żyrek, Justyna Czerwińska, Waldemar Maniukiewicz and Elżbieta Łodyga-Chruścińska
Int. J. Mol. Sci. 2023, 24(1), 761; https://doi.org/10.3390/ijms24010761 - 1 Jan 2023
Cited by 10 | Viewed by 2987
Abstract
The three Schiff base ligands, derivatives of hesperetin, HHSB (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]isonicotinohydrazide), HIN (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]benzhydrazide) and HTSC (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]thiosemicarbazide) and their copper complexes, CuHHSB, CuHIN, and CuHTSC were designed, synthesized and analyzed in terms of their spectral characterization and the genotoxic [...] Read more.
The three Schiff base ligands, derivatives of hesperetin, HHSB (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]isonicotinohydrazide), HIN (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]benzhydrazide) and HTSC (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]thiosemicarbazide) and their copper complexes, CuHHSB, CuHIN, and CuHTSC were designed, synthesized and analyzed in terms of their spectral characterization and the genotoxic activity. Their structures were established using several methods: elemental analysis, FT-IR, UV-Vis, EPR, and ESI-MS. Spectral data showed that in the acetate complexes the tested Schiff bases act as neutral tridentate ligand coordinating to the copper ion through two oxygen (or oxygen and sulphur) donor atoms and a nitrogen donor atom. EPR measurements indicate that in solution the complexes keep their structures with the ligands remaining bound to copper(II) in a tridentate fashion with (O, N, Oket) or (O, N, S) donor set. The genotoxic activity of the compounds was tested against model tumour (HeLa and Caco-2) and normal (LLC-PK1) cell lines. In HeLa cells the genotoxicity for all tested compounds was noticed, for HHSB and CuHHSB was the highest, for HTSC and CuHTSC–the lowest. Generally, Cu complexes displayed lower genotoxicity to HeLa cells than ligands. In the case of Caco-2 cell line HHSB and HTSC induced the strongest breaks to DNA. On the other side, CuHHSB and CuHTSC induced the highest DNA damage against LLC-PK1. Full article
(This article belongs to the Special Issue Biology and Development of Therapeutic Drugs Targeting DNA)
Show Figures

Figure 1

14 pages, 3390 KiB  
Article
Synthesis and Characterization of Lanthanide Metal Ion Complexes of New Polydentate Hydrazone Schiff Base Ligand
by Izabela Pospieszna-Markiewicz, Marta A. Fik-Jaskółka, Zbigniew Hnatejko, Violetta Patroniak and Maciej Kubicki
Molecules 2022, 27(23), 8390; https://doi.org/10.3390/molecules27238390 - 1 Dec 2022
Cited by 9 | Viewed by 3736
Abstract
The new homodinuclear complexes of the general formula [Ln2L3(NO3)3] (where HL is newly synthesized 2-((2-(benzoxazol-2-yl)-2-methylhydrazono)methyl)phenol and Ln = Sm3+ (1), Eu3+ (2), Tb3+ (3a, 3b), [...] Read more.
The new homodinuclear complexes of the general formula [Ln2L3(NO3)3] (where HL is newly synthesized 2-((2-(benzoxazol-2-yl)-2-methylhydrazono)methyl)phenol and Ln = Sm3+ (1), Eu3+ (2), Tb3+ (3a, 3b), Dy3+ (4), Ho3+ (5), Er3+ (6), Tm3+ (7), Yb3+ (8)), have been synthesized from the lanthanide(III) nitrates with the polydentate hydrazone Schiff base ligand. The flexibility of this unsymmetrical Schiff base ligand containing N2O binding moiety, attractive for lanthanide metal ions, allowed for a self-assembly of these complexes. The compounds were characterized by spectroscopic data (ESI-MS, IR, UV/Vis, luminescence) and by the X-ray structure determination of the single crystals, all of which appeared to be different solvents. The analytical data suggested 2:3 metal:ligand stoichiometry in these complexes, and this was further confirmed by the structural results. The metal cations are nine-coordinated, by nitrogen and oxygen donor atoms. The complexes are two-centered, with three oxygen atoms in bridging positions. There are two types of structures, differing by the sources of terminal (non-bridging) coordination centers (group A: two ligands, one nitro anion/one ligand, two nitro anions, group B: three ligands, three anions). Full article
(This article belongs to the Special Issue Crystal Structures of Metal Complexes)
Show Figures

Figure 1

Back to TopTop