ESR and Mössbauer Spectroscopy of Iron(III) Spin Crossover Complexes Based on Pentadentate Schiff Base Ligands with Pseudohalide Coligands
Abstract
:1. Introduction
2. Results
2.1. Mössbauer Results
2.2. Electron Spin Resonance Results
2.3. Ab Initio Calculations
3. Materials and Methods
3.1. Experimental Section
3.2. Mössbauer Measurements
3.3. Electron Spin Resonance Measurements
3.4. Ab Initio Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cambi, L.; Szegö, L. Berichte der deutschen chemischen Gesellschaft (A and B Series). Eur. J. Inorg. Chem. 1931, 64, 2591. [Google Scholar]
- Li, G.; Stefanczyk, O.; Kumar, K.; Guérin, L.; Okuzono, K.; Tran, K.; Kilic, M.S.; Nakabayashi, K.; Imoto, K.; Namai, A.; et al. Near-Infrared Light-Induced Spin-State Switching Based on Fe (II)–Hg (II) Spin-Crossover Network. Angew. Chem. Int. Ed. 2025, 64, e202423095. [Google Scholar] [CrossRef] [PubMed]
- Nicolazzi, W.; Bousseksou, A. Thermodynamical aspects of the spin crossover phenomenon. Comptes Rendus Chim. 2018, 21, 1060–1074. [Google Scholar] [CrossRef]
- Létard, J.F.; Capes, L.; Chastanet, G.; Moliner, N.; Létard, S.; Real, J.A.; Kahn, O. Critical temperature of the LIESST effect in iron (II) spin crossover compounds. Chem. Phys. Lett. 1999, 313, 115–120. [Google Scholar] [CrossRef]
- Sun, L.; Rotaru, A.; Robeyns, K.; Garcia, Y. A colorimetric sensor for the highly selective, ultra-sensitive, and rapid detection of volatile organic compounds and hazardous gases. Ind. Eng. Chem. Res. 2021, 60, 8788–8798. [Google Scholar] [CrossRef]
- Tran, K.; Sander, P.; Kilic, M.S.; Brehme, J.; Sindelar, R.; Renz, F. Facile Approach for the Fabrication of Vapor Sensitive Spin Transition Composite Nanofibers. Eur. J. Inorg. Chem. 2024, 27, e202400363. [Google Scholar] [CrossRef]
- Goodwin, H.A. Spin transitions in six-coordinate iron (II) complexes. Coord. Chem. Rev. 1976, 18, 293. [Google Scholar] [CrossRef]
- Gütlich, P. Spin crossover in iron (II)-complexes. Met. Complexes 1981, 44, 83–195. [Google Scholar]
- König, E. Nature and dynamics of the spin-state interconversion in metal complexes. Nature and dynamics of the spin-state interconversion in metal complexes. Complex Chem. 1991, 76, 51–152. [Google Scholar]
- Gütlich, P.; Hauser, A.; Spiering, H. Thermisch und optisch schaltbare Eisen (II)-Komplexe. Angew. Chem. 1994, 106, 2109–2141. [Google Scholar] [CrossRef]
- Gütlich, P.; Garcia, Y.; Goodwin, H.A. Spin crossover phenomena in Fe (II) complexes. Chem. Soc. Rev. 2000, 29, 419–427. [Google Scholar] [CrossRef]
- Gütlich, P.; Garcia, Y.; van Koningsbruggen, P.J.; Renz, F. Introduction to Physical Techniques in Molecular Magnetism, Part 1—Structural and Magnetic Methods; Palacio, F., Schweizer, J., Ressouche, E., Eds.; University Press: Zaragoza, Spain, 2000. [Google Scholar]
- Hauser, A.; Jeftic, J.; Romstedt, H.; Hinek, R.; Spering, H. Cooperative phenomena and light-induced bistability in iron(II) spin-crossover compounds. Coord. Chem. Rev. 1999, 190–192, 471–491. [Google Scholar] [CrossRef]
- Gütlich, P.; Goodwin, H.A. Spin Crossover in Transition Metal Compounds I, II, III, in Topics in Current Chemistry; Springer: Berlin, Germany, 2004; pp. 233–235. [Google Scholar]
- Gütlich, P.; van Koningsbruggen, P.J.; Renz, F. Recent advances of spin crossover research. Struct. Bond. 2004, 107, 27–75. [Google Scholar]
- Augustín, P.; Boča, R. Magnetostructural relationships for Fe (III) spin crossover complexes. Nova Biotechnol. Chim. 2015, 14, 96–103. [Google Scholar] [CrossRef]
- Boča, R. Thermodynamics and cooperativeness of the spin crossover. Nova Biotechnol. Chim. 2020, 19, 138–153. [Google Scholar] [CrossRef]
- Nemec, I.; Herchel, R.; Boča, R.; Trávníček, Z.; Svoboda, I.; Fuess, H.; Linert, W. Tuning of spin crossover behaviour in iron (III) complexes involving pentadentate Schiff bases and pseudohalides. Dalton Trans. 2011, 40, 10090–10099. [Google Scholar] [CrossRef]
- Boča, R.; Fukuda, Y.; Gembický, M.; Herchel, R.; Jaroščiak, R.; Linert, W.; Renz, F.; Yuzurihara, J. Spin crossover in mononuclear and binuclear iron (III) complexes with pentadentate Schiff-base ligands. Chem. Phys. Lett. 2000, 325, 411–419. [Google Scholar] [CrossRef]
- Boča, R.; Nemec, I.; Šalitroš, I.; Pavlik, J.; Herchel, R.; Renz, F. Interplay between spin crossover and exchange interaction in iron (III) complexes. Pure Appl. Chem. 2009, 81, 1357–1383. [Google Scholar] [CrossRef]
- Šalitroš, I.; Boča, R.; Dlháň, Ľ.; Gembický, M.; Kožíšek, J.; Linares, J.; Moncoľ, J.; Nemec, I.; Perašínová, L.; Renz, F.; et al. Unconventional spin crossover in dinuclear and trinuclear iron (III) complexes with cyanide and metallacyanido bridges. Eur. J. Inorg. Chem. 2009, 2009, 3141–3154. [Google Scholar] [CrossRef]
- Renz, F.; Kerep, P.; Hill, D.; Klein, M. Complexes based on ethylene- and propylene-bridged-pentadentate-Fe (III)-units allow interplay between magnetic centers and multistability investigated by Mössbauer spectroscopy. Hyperfine Interact. 2006, 168, 981–987. [Google Scholar] [CrossRef]
- Krüger, C.; Augustín, P.; Nemec, I.; Trávniček, Z.; Oshio, H.; Boča, R.; Renz, F. Spin crossover in iron (III) complexes with pentadentate schiff base ligands and pseudohalido coligands. Eur. J. Inorg. Chem. 2013, 2013, 902–915. [Google Scholar] [CrossRef]
- Rajnák, C.; Mičová, R.; Moncoľ, J.; Dlháň, Ľ.; Krüger, C.; Renz, F.; Boča, R. Spin-crossover in an iron (III) complex showing a broad thermal hysteresis. Dalton Trans. 2021, 50, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Hayami, S.; Gu, Z.; Yoshiki, H.; Fujishima, A.; Sato, O. Iron (III) spin-crossover compounds with a wide apparent thermal hysteresis around room temperature. J. Am. Chem. Soc. 2001, 123, 11644–11650. [Google Scholar] [CrossRef] [PubMed]
- Preiss, A.; Heyer, L.; Klimke, S.; Klingelhöfer, G.; Renz, F. Mössbauer investigation of Schiff base iron (III) coordination compounds. Hyperfine Interact. 2017, 238, 74. [Google Scholar] [CrossRef]
- Nihei, M.; Shiga, T.; Maeda, Y.; Oshio, H. Spin crossover iron (III) complexes. Coord. Chem. Rev. 2007, 251, 2606–2621. [Google Scholar] [CrossRef]
- Grunert, M.; Reiman, S.; Spiering, H.; Kitchen, J.A.; Brooker, S.; Gütlich, P. Mixed Spin-State [HS-LS] Pairs in a Dinuclear Spin-Transition Complex: Confirmation by Variable-Temperature 57Fe Mössbauer Spectroscopy. Angew. Chem. 2008, 120, 3039–3041. [Google Scholar] [CrossRef]
- Grandjean, F.; Long, G.J. Best Practices and Protocols in Mössbauer Spectroscopy. Chem. Mater. 2021, 33, 3878–3904. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. ORCA—An Ab Initio, Density Functional and Semi-Empirical Program Package, Version 4.2.1; Max-Planck-Institut für Kohlenforschung: Mülheim, Germany, 2024. [Google Scholar]
- Atanasov, M.; Ganyushin, D.; Pantazis, D.A.; Sivalingam, K.; Neese, F. Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron (II) pyrrolide complexes. Inorg. Chem. 2011, 50, 7460. [Google Scholar] [CrossRef]
- Angeli, C.; Borini, S.; Cestari, M.; Cimiraglia, R. A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys. 2004, 121, 4043. [Google Scholar] [CrossRef]
- Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J. –P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001, 114, 10252. [Google Scholar] [CrossRef]
- Angeli, C.; Cimiraglia, R.; Malrieu, J. –P. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002, 117, 9138. [Google Scholar] [CrossRef]
- Ganyushin, D.; Neese, F. First principles calculations of zero-field splitting parameters. J. Chem. Phys. 2006, 125, 24103. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.J. Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory. Chem. Phys. 2007, 127, 164112. [Google Scholar]
- Neese, F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005, 122, 34107. [Google Scholar] [CrossRef]
- Neese, F. Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory. J. Chem. Phys. 2001, 115, 11080. [Google Scholar] [CrossRef]
- Sinnecker, S.; Slep, L.; Bill, E.; Neese, F. Performance of Nonrelativistic and Quasi-Relativistic Hybrid DFT for the Prediction of Electric and Magnetic Hyperfine Parameters in 57Fe Mössbauer Spectra. Inorg. Chem. 2005, 44, 2245–2254. [Google Scholar] [CrossRef]
- Römelt, M.; Ye, S.; Neese, F. Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: Meta-GGA and double-hybrid functionals. Inorg. Chem. 2009, 48, 784–785. [Google Scholar] [CrossRef]
- Ericsson, T.; Wäppling, R. Texture Effects in 3/2-1/2 Mössbauer Spectra. J. Phys. Colloq. 1976, 37, C6–C719. [Google Scholar] [CrossRef]
- Goldanskii, V.I.; Gorodinskii, G.M.; Karyagin, S.V.; Korytko, L.A.; Krizhanskii, L.M.; Makarov, E.F.; Suzdalev, I.P. VV Khrapov English transl. Proc. Acad. Sci. USSR Phys. Chem. Dect. 1963, 147, 766. [Google Scholar]
- Karyagin, S.V. The possible reason for the asymmetry of doublet components of Mössbauers absorption spectrum in certain powdery tin compounds. Proc. Acad. Sci. USSR Phys. Chem. Sect. 1964, 148, 110. [Google Scholar]
- Gütlich, P.; Bill, E.; Trautwein, A.X. Mössbauer Spectroscopy and Transition Metal Chemistry; Springer: Berlin, Germany, 2011; pp. 210–220. [Google Scholar]
- Vieira, B.J.; Coutinho, J.T.; Santos, I.C.; Pereira, L.C.; Waerenborgh, J.C.; da Gama, V. [Fe(nsal2trien)]SCN, a new two-step iron (III) spin crossover compound, with symmetry breaking spin-state transition and an intermediate ordered state. Inorg. Chem. 2013, 52, 3845–3850. [Google Scholar] [CrossRef]
- von Rhein, N.; Krewald, V. The temperature dependence of Mössbauer quadrupole splitting values: A quantum chemical analysis. Chem. Commun. 2025, 61, 2512–2515. [Google Scholar] [CrossRef] [PubMed]
- Koczorowski, T.; Szczolko, W.; Bakun, P.; Wicher, B.; Sobotta, L.; Gdaniec, M.; Teubert, A.; Mielcarek, J.; Tykarska, E.; Korecki, J.; et al. The valence and spin state tuning of iron (II/III) porphyrazines with bulky pyrrolyl periphery in solution and solid state. Molecules 2022, 27, 7820. [Google Scholar] [CrossRef]
- Halcrow, M.A. Spin-Crossover Materials, Properties and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Wickman, H.H.; Klein, M.P.; Shirley, D.A. Paramagnetic Hyperfine Structure and Relaxation Effects in Mössbauer Spectra: Fe57 in Ferrichrome A. Phys. Rev. 1966, 152, 345. [Google Scholar] [CrossRef]
- Paulsen, H.; Grünsteudel, H.; Meyer-Klaucke, W.; Gerdan, M.; Grünsteudel, H.F.; Chumakov, A.I.; Rüffer, R.; Winkler, H.; Toftlund, H.; Trautwein, A.X. The spin-crossover complex [Fe(tpa)(NCS)2] Investigated by synchrotron-radiation based spectroscopies. Eur. Phys. J. B-Condens. Matter Complex Syst. 2001, 23, 463–472. [Google Scholar] [CrossRef]
Sample | Temperature/K | δ /mm⸳s−1 | ΔEQ /mm⸳s−1 | FWHM /mm⸳s−1 | A/A’ | w/w’ |
---|---|---|---|---|---|---|
1 | 325 | 0.287 (2) | 0.640 (2) | 0.662 | 1.041 | 1.372 |
295 | 0.285 (8) | 0.870 (15) | 0.810 | 0.979 | 1.466 | |
77 | 0.221 (1) | 2.739 (3) | 0.293 | 0.966 | 1.029 | |
2 | 325 | 0.281 (2) | 0.712 (2) | 0.606 | 0.942 | 1.425 |
295 | 0.223 (14) | 1.374 (28) | 1.028 | 1.038 | 1.787 | |
77 | 0.221 (4) | 2.740 (7) | 0.265 | 0.902 | 0.968 |
Sample | Temperature/K | g1 | g2 | g3 |
---|---|---|---|---|
1 | 77 | 2.263 | 2.210 | 1.955 |
2 | 77 | 2.268 | 2.209 | 1.951 |
Sample | ΔE/cm−1 | ΔESOC/cm−1 | g3, g2, g1 * | δ/mm⸳s−1 | ΔEQ/mm⸳s−1 |
---|---|---|---|---|---|
1 (100 K) | 0 (2) | 0 | 1.784, 2.344, 2.706 | 0.163 (80) | 2.384 |
767 (6) | 828 | [2.016, 2.107, 2.139] | |||
839 | |||||
846 | |||||
2 (120 K) | 0 (2) | 0 | 1.775, 2.376, 2.697 | 0.171 (80) | 2.432 |
733 (6) | 796 | [2.017, 2.113, 2.156] | |||
807 | |||||
814 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucka, R.; Elshani, B.; Kilic, M.S.; Klimke, S.; Krüger, C.; Menzel, M.; Stößer, R.; Titiš, J.; Boča, R.; Renz, F. ESR and Mössbauer Spectroscopy of Iron(III) Spin Crossover Complexes Based on Pentadentate Schiff Base Ligands with Pseudohalide Coligands. Magnetochemistry 2025, 11, 43. https://doi.org/10.3390/magnetochemistry11050043
Lucka R, Elshani B, Kilic MS, Klimke S, Krüger C, Menzel M, Stößer R, Titiš J, Boča R, Renz F. ESR and Mössbauer Spectroscopy of Iron(III) Spin Crossover Complexes Based on Pentadentate Schiff Base Ligands with Pseudohalide Coligands. Magnetochemistry. 2025; 11(5):43. https://doi.org/10.3390/magnetochemistry11050043
Chicago/Turabian StyleLucka, Rene, Besnik Elshani, Maximilian Seydi Kilic, Stephen Klimke, Christoph Krüger, Michael Menzel, Reinhard Stößer, Ján Titiš, Roman Boča, and Franz Renz. 2025. "ESR and Mössbauer Spectroscopy of Iron(III) Spin Crossover Complexes Based on Pentadentate Schiff Base Ligands with Pseudohalide Coligands" Magnetochemistry 11, no. 5: 43. https://doi.org/10.3390/magnetochemistry11050043
APA StyleLucka, R., Elshani, B., Kilic, M. S., Klimke, S., Krüger, C., Menzel, M., Stößer, R., Titiš, J., Boča, R., & Renz, F. (2025). ESR and Mössbauer Spectroscopy of Iron(III) Spin Crossover Complexes Based on Pentadentate Schiff Base Ligands with Pseudohalide Coligands. Magnetochemistry, 11(5), 43. https://doi.org/10.3390/magnetochemistry11050043