Preparation and Antifungal Properties of Cyclopropyl Derivatives of 3-Aminoquinazolin-4(3H)-one and Salicylal Schiff Base Nickel(II) Chelate Complex
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis, Characterization, and Structure of 2-Cyclopropyl-3-aminoquinazolin-4(3H)-one (1) and 2-Cyclopropyl-3-[(Z)-(2-hydroxybenzylidene)amino]quinazoline-4(3H)-one (2)
2.2. Synthesis, Characterization, and Structure of Bis[2-cyclopropyl-3-{[2-(hydroxy-κO)benzylidene]amino-κN}quinazolin-4(3H)-onato]nickel(II) (3)
2.3. Antifungal Activity
3. Experiment
3.1. Materials and Equipment
3.2. Synthesis
3.2.1. 2-[(Cyclopropylcarbonyl)amino]benzoic Acid
3.2.2. 2-Cyclopropyl-4H-benzo[d][1,3]-oxazinone-4
3.2.3. 2-Cyclopropyl-3-aminoquinazolin-4(3H)-one (1)
3.2.4. 2-Cyclopropyl-3-[(Z)-(2-hydroxybenzylidene)amino]quinazolin-4(3H)-one (2)
3.2.5. Bis[2-cyclopropyl-3-{[2-(hydroxy-κO)benzylidene]amino-κN}quinazolin-4(3H)-onato]nickel(II) (3)
3.3. X-Ray Data Collection and Structure Determination
3.4. Computational Details
3.5. Antifungal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ajani, O.O.; Aderohunmu, D.V.; Umeokoro, E.N.; Olomieja, A.O. Quinazoline pharmacophore in therapeutic medicine. Bangladesh. J. Pharmacol. 2016, 11, 716–733. [Google Scholar] [CrossRef]
- Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci. 2016, 11, 1–14. [Google Scholar] [PubMed]
- Parkanyi, C.; Schmidt, D. Synthesis of 5-chloro-2-methyl-3-(5-methyl thiazole-2-yl)-4(3H)-quinazolinone and related compounds with potential biological activity. J. Heterocycl. Chem. 2000, 37, 725–729. [Google Scholar] [CrossRef]
- Rohokale, R.S.; Kshirsagar, U.A. Advanced Synthetic Strategies for Constructing Quinazolinone Scaffolds. Synthesis 2016, 48, 1253–1268. [Google Scholar] [CrossRef]
- Devi, K.A.; Sarangapani, M.S. Synthesis and Antimicrobial activity of some Quinazolinones Derivatives. Int. J. Drug Dev. Res. 2012, 4, 324–327. [Google Scholar]
- Atia, A.J.K.; Al-Mufrgaiy, S.S. Synthesis and antibacterial activities of new 3-amino-2-methyl-quinazolin-4(3h)-one. Am. J. Chem. 2012, 2, 150–156. [Google Scholar] [CrossRef]
- Kumar, P.; Shrivastava, B.; Pandeya, S.N.; Stables, J.P. ChemInform Abstract: Design, Synthesis and Potential 6 Hz Psychomotor Seizure Test Activity of Some Novel 2-(Substituted)-3-{[substituted]amino}quinazolin-4(3H)-one. Eur. J. Med. Chem. 2011, 46, 1006–1018. [Google Scholar] [CrossRef]
- Hemalatha, K.; Girija, K. Synthesis of some novel 2,3-disubstituted quinazolinone derivatives as analgesic and anti-inflammatory agents. Int. J. Pharm. Pharm. Sci. 2011, 3, 103–106. [Google Scholar]
- Khan, M.T.H.; Khan, R.; Wuxiuer, Y.; Arfan, M.; Ahmed, M.; Sylte, I. Identification of novel quinazolin-4(3H)-ones as inhibitors of thermolysin, the prototype of the M4 family of proteinases. Bioorg. Med. Chem. 2010, 18, 4317–4327. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Singh, V.K.; Bajpai, A.; Shukla, G.; Singh, S.; Mishra, A.K. Synthesis and biological properties of 4-(3H)-quinazolone derivatives. Eur. J. Med. Chem. 2007, 42, 1234–1238. [Google Scholar] [CrossRef]
- Alagarsamy, V.; Meena, S.; Vijayakumar, S.; Ramseshu, K.V.; Revathi, R. Synthesis and pharmacological investigation of some novel 2,3-disubstituted quinazolin-4(3H)-ones as analgetic and anti-inflammatory agents. Parmazie 2003, 58, 233–236. [Google Scholar] [CrossRef]
- Siddappa, K.; Reddy, P.C. Synthesis, spectral and antimicrobial studies of some transition metal(II) complexes with schiff base 3-[(2-hydroxy-6-methoxyquinolin-3- ylmethylene)-amino]-2-methyl-3h-quinazoline-4-one. Int. J. Appl. Biol. Pharm. Tech. 2012, 3, 168–177. [Google Scholar]
- Siddappa, K.; Mane, S.B. Harmacological activity of (e) 3-2-(1-(1-hydroxynaphthalen-2-yl) methyleneamino) phenyl) -2-methylquinazoline-4 (3h) -one schiff base and its transition metal complexes. Int. J. Pharm. Pharmaceut. Sci. 2013, 5, 725–732. [Google Scholar]
- Sahu, S.K.; Azam, A.; Banerjee, M.; Acharrya, S.; Behera, C.C.; Si, S. Synthesis, Characterization and Biological Activity of 2-Methyl-3-aminoquinazolin-4(3H)-ones Schiff Bases. J. Braz. Chem. Soc. 2008, 19, 963–970. [Google Scholar] [CrossRef]
- Gholap, A.V.A.; Maity, S.; Schulzke, C.; Maiti, D.; Kapdi, A.R. Synthesis of Cu-catalysed quinazolinones using a Csp3–H functionalisation/cyclisation strategy. Org. Biomol. Chem. 2017, 15, 7140–7146. [Google Scholar] [CrossRef]
- Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal, J.; Saeed, A. Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: An update on the development of synthetic methods and pharmacological diversification. Bioorg. Med. Chem. 2016, 24, 2361–2381. [Google Scholar] [CrossRef]
- Zhou, Y.; Murphy, D.; Sun, Z.; Gregor, V.E. Novel parallel synthesis of N-(4-oxo-2-substituted-4H-quinazolin-3-yl)-substituted sulfonamides. Tetrahedron Lett. 2004, 45, 8049–8051. [Google Scholar] [CrossRef]
- Connolly, D.J.; Cusack, D.; O’Sullivan, T.P.; Guiry, P.J. Synthesis of quinazolinones and quinazolines. Tetrahedron 2005, 61, 10153–10202. [Google Scholar] [CrossRef]
- El-Hiti, G.A.; Smith, K.; Hegazy, A.S.; Alanazi, S.A.; Kariuki, B.M. Crystal structure of 3-amino-2-propylquinazolin-4(3H)-one. Acta Cryst. 2015, E71, o590–o591. [Google Scholar] [CrossRef]
- Coogan, M.P.; Hibbs, D.E.; Smart, E. Asymmetric transformation (deracemisation) of an atropisomeric bisheterocyclic amine. Chem. Commun. 1999, 19, 1991–1992. [Google Scholar] [CrossRef]
- Kumar, K.S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazolinone-4(3)H-ones. Eur. J. Med. Chem. 2010, 45, 5474–5479. [Google Scholar] [CrossRef] [PubMed]
- Xingwen, G.; Xuejian, C.; Kai, Y.; Lili, G.; Zhuo, C. Synthesis and Antiviral Bioactivities of 2-Aryl- or 2-Methyl-3-(substituted-Benzalamino)-4(3H)-quinazolinone Derivatives. Molecules 2007, 12, 2621–2642. [Google Scholar] [CrossRef] [PubMed]
- Al-Amiery, A.A.H.; Al-Majedy, Y.K.; Abdulhadi, S.A.; Sadoon, A.H. Design, synthesis and bioassay of novel metal complexes of 3-amino-2-methylquinazolin-4(3H)-one. Afr. J. Pure Apl. Chem. 2009, 3, 218–227. [Google Scholar]
- Raghavendra, N.M.; Thampi, P.; Gurubasavarajaswami, P.M.; Sriram, D. Synthesis, antitubercular and anticancer activities of substituted furyl-quinazolin-3(4H)-ones. Arch. Pharm. Chem. Life Sci. 2007, 340, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, M.B.; Smith, K.; Hegazy, A.S.; Kariuki, B.M.; El-Hiti, G.A. Crystal structure of 2-ethylquinazoline4(3H)-thione. Acta Cryst. 2014, E70, o953. [Google Scholar] [CrossRef]
- Borissova, A.O.; Lyssenko, K.A.; Gurinov, A.A.; Shenderovich, I.G. Energy Analysis of Competing Non-Covalent Interaction in 1:1 and 1:2 Adducts of Collidine with Benzoic Acids by Means of X-ray Diffraction. Z. Phys. Chem. 2013, 2, 775–790. [Google Scholar] [CrossRef]
- Prodius, D.; Wilk-Kozubek, M.; Mudring, A.-V. Synthesis, structural characterization and luminescence properties of 1-carboxymethyl-3-ethylimidazolium chloride. Acta Cryst. 2018, C74, 653–658. [Google Scholar] [CrossRef]
- Tafeenko, V.A.; Gurskiy, S.I. Disorder for the Sake of Order. Cryst. Growth Des. 2016, 16, 940–945. [Google Scholar] [CrossRef]
- Borissova, A.O.; Antipin, Y.M.; Karapetyan, H.A.; Petrosyan, A.M.; Lyssenko, K.A. Cooperativity effects of H-bonding and charge transfer in an L-nitroarginine crystal with Z’ > 1. Mendeleev Commun. 2010, 20, 260–262. [Google Scholar] [CrossRef]
- Mironov, A.V.; Tafeenko, V.A.; Grebenkin, D.Y.; Oblezov, A.E. Hydrogen bonding in hydroxypyridium salts. Z. Kristallogr. Cryst. Mater. 2018, 233, 501–506. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed.; Wiley: New York, NY, USA, 1970. [Google Scholar]
- Pechler, K.G.R.; Matlok, F.; Gremlich, H.-U. A Collection of FT-IR Spectra. Merck/Bruker: Darmstadt/Karlsruhe, Germany, 1988. [Google Scholar]
- Kemnitz, C.R.; Loewen, M.J. “Amide resonance” correlates with a breadth of C-N rotation barriers. J. Am. Chem. Soc. 2007, 129, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L. The Nature of Chemical Bond; Cornell University Press: Ithaca, NY, USA, 1960. [Google Scholar]
- Wheland, G.W. Resonance in Organic Chemistry; Wiley: Hoboken, NJ, USA, 1955. [Google Scholar]
- Rotthaus, O.; Thomas, F.; Jarjayes, O.; Philouze, C.; Saint-Aman, E.; Pierre, J.-L. Valence tautomerism in octahedral and square-planar phenoxyl-nickel(II) complexes: Are imino nitrogen atoms good friends? Chem. Eur. J. 2006, 12, 6953–6962. [Google Scholar] [CrossRef] [PubMed]
- Minkin, V.I.; Glukhovtsev, M.V.; Simkin, B.Y. Aromaticity and Antiaromaticity; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Von Ragué Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N.J.R. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. [Google Scholar] [CrossRef] [PubMed]
- Waugh, J.S.; Fessenden, R.W. Nuclear Resonance Spectra of Hydrocarbons: The Free Electron Model. J. Am. Chem. Soc. 1957, 79, 846–849. [Google Scholar] [CrossRef]
- Waghmare Sweeti, M.; Manchare Akanksha, M.; Shaikkh Avesh, Y.; Diksha Raut, G. Biological activity of quinazolinone derivatives: A review. Int. J. Curr. Pharm. Res 2023, 15, 15–18. [Google Scholar]
- Wang, D.; Gao, F. Quinazoline derivatives: Synthesis and bioactivities. Chem. Cent. J. 2013, 7, 95. [Google Scholar] [CrossRef]
- Rakesh, K.P.; Darshini, N.; Shubhavathi, T.; Mallesha, N. Biological Applications of Quinazolinone Analogues: A Review. Org. Med. Chem. 2017, 2, OMCIJ.MS.ID.555585. [Google Scholar]
- Burla, M.C.; Camalli, M.; Carrozzini, B.; Cascarano, G.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2002: The program. A new direct-methods program, which has been designed to solve both small and large crystal structures, is described. J. Appl. Cryst. 2003, 36, 1103. [Google Scholar] [CrossRef]
- Petricek, V.; Dusek, M.; Palatinus, L. Jana. In The Crystallographic Computing System; Institute of Physics: Praha, Czech Republic, 2000. [Google Scholar]
- Visser, J.W. A fully Aromatic Program for finding the Unit Cell from Powder Data. J. Appl. Crystallogr. 1969, 2, 89–95. [Google Scholar] [CrossRef]
- Favre-Nicolin, V.; Cerny, R. FOX, Free Objects for Crystallography: A Modular Approach to ab Initio Structure Determination from Powder Diffraction. J. Appl. Crystallogr. 2002, 35, 734–743. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Laikov, D.N. A new class of atomic basis functions for accurate electronic structure calculations of molecules. Chem. Phys. Lett. 2005, 416, 116–120. [Google Scholar] [CrossRef]
- Schreckenbach, G.; Ziegler, T. Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory. J. Phys. Chem. 1995, 99, 606–611. [Google Scholar] [CrossRef]
- Schreckenbach, G.; Ziegler, T. Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes. Int. J. Quantum Chem. 1997, 61, 899–918. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theoret. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Bader, R.W.F. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Laikov, D.N.; Ustynyuk, Y.A. PRIPODA-04: A Qiantem-Chemical Program Suite. New Possibilities in the Study of Molecular Systems with the Application Parallel Computing. Russ. Chem. Bull. Int. Ed. 2005, 54, 820–826. [Google Scholar] [CrossRef]
Moiety | Point | Compound | ||
---|---|---|---|---|
1 | 2 | 3 | ||
A | 0 | −8.002 | −2.963 | −4.639 |
1 | −10.091 | −8.086 | −10.564 | |
−1 | −7.957 | |||
B | 0 | −1.295 | −8.896 | −8.527 |
1 | −4.107 | −9.982 | −15.976 | |
−1 | −14.875 | |||
C | 0 | −0.0200 | ||
1 | −3.890 | |||
−1 | −3.445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedotov, A.N.; Trofimova, E.V.; Tafeenko, V.A.; Gloriozov, I.P.; Mironov, A.V.; Zakharov, A.N. Preparation and Antifungal Properties of Cyclopropyl Derivatives of 3-Aminoquinazolin-4(3H)-one and Salicylal Schiff Base Nickel(II) Chelate Complex. Inorganics 2024, 12, 304. https://doi.org/10.3390/inorganics12120304
Fedotov AN, Trofimova EV, Tafeenko VA, Gloriozov IP, Mironov AV, Zakharov AN. Preparation and Antifungal Properties of Cyclopropyl Derivatives of 3-Aminoquinazolin-4(3H)-one and Salicylal Schiff Base Nickel(II) Chelate Complex. Inorganics. 2024; 12(12):304. https://doi.org/10.3390/inorganics12120304
Chicago/Turabian StyleFedotov, Alexander N., Elena V. Trofimova, Victor A. Tafeenko, Igor P. Gloriozov, Andrey V. Mironov, and Alexandre N. Zakharov. 2024. "Preparation and Antifungal Properties of Cyclopropyl Derivatives of 3-Aminoquinazolin-4(3H)-one and Salicylal Schiff Base Nickel(II) Chelate Complex" Inorganics 12, no. 12: 304. https://doi.org/10.3390/inorganics12120304
APA StyleFedotov, A. N., Trofimova, E. V., Tafeenko, V. A., Gloriozov, I. P., Mironov, A. V., & Zakharov, A. N. (2024). Preparation and Antifungal Properties of Cyclopropyl Derivatives of 3-Aminoquinazolin-4(3H)-one and Salicylal Schiff Base Nickel(II) Chelate Complex. Inorganics, 12(12), 304. https://doi.org/10.3390/inorganics12120304