Coordination Polymers of Vanadium and Selected Metal Ions with N,O-Donor Schiff Base Ligands—Synthesis, Crystal Structure, and Application
Abstract
:1. Introduction
2. Synthesis of Coordination Polymers
3. Crystal Structure and Properties of Vanadium Coordination Polymers
4. Crystal Structure and Properties of Selected Metal Ion Coordination Polymers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Debsharma, K.; Dey, S.; Pal, S.; Dutta, B.; Ghosh, S.; Sinha, C. Structural characterization and photoelectrochemistry of coordination polymer of Pb(II)-naphthyl-isonicotinohydrazide Schiff base. Appl. Organomet. Chem. 2023, 37, e7157. [Google Scholar] [CrossRef]
- Wang, Q.; Astruc, D. State of the art and prospects in metal−organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438. [Google Scholar] [CrossRef] [PubMed]
- Basu Baul, T.S.; Brahma, S.; Addepalli, M.R.; Duthie, A.; Mahmoud, A.G.; Guedes da Silva, M.F.C.; Parkin, S. Structures and NMR solution dynamics of diorganotin complexes with bulky quadridentate salen- and salphen-type Schiff bases (N2O2) incorporating diazenylpyridyl side arms. Eur. J. Inorg. Chem. 2024, 27, e202400377. [Google Scholar] [CrossRef]
- Roy, I.; Brandao, P.; Majumder, A.; Bera, M.; Banerjee, A.; Saha, S. Structures, electrical properties and catecholase-like activity of a series of new copper(II) coordination polymers supported by azido bridges. J. Mol. Struct. 2024, 1317, 139085. [Google Scholar] [CrossRef]
- Husain, A.; Rani, P.; Nar, K.K.; Singh, A.P.; Kumar, R.; Bhasin, K.; Kumar, G. A tryptophan-based copper(II) coordination polymer: Catalytic activity towards Suzuki-Miyaura cross-coupling reactions. CrystEngComm 2021, 23, 7855–7864. [Google Scholar] [CrossRef]
- Chakraborty, P.; Dasgupta, S. Synthesis of one-dimensional coordination polymer using dicyanamide spacer to explore catecholase like activity. Polyhedron 2020, 188, 114700. [Google Scholar] [CrossRef]
- Liu, C.Y.; Chen, X.R.; Chen, H.X.; Niu, Z.; Hirao, H.; Braunstein, P.; Lang, J.P. Ultrafast luminescent light-up guest detection based on the lock of the host molecular vibration. J. Am. Chem. Soc. 2020, 142, 6690–6697. [Google Scholar] [CrossRef]
- Kamaal, S.; Usman, M.; Afzal, M.; Alarifi, A.; Ali, A.; Das, R.; Lama, P.; Ahmad, M. A new copper(II)-based layered coordination polymer: Crystal structure, topology, QTAIM analysis, experimental and theoretical magnetic properties based on DFT combined with broken-symmetry formalism (BS-DFT). Polyhedron 2021, 193, 114881. [Google Scholar] [CrossRef]
- Gao, Y.L.; Nishihara, S.; Suzuki, T.; Umeo, K.; Inoue, K.; Kurmoo, M. Ferroelastic-like transition and solvents affect the magnetism of a copper–organic radical one-dimensional coordination polymer. Dalton Trans. 2022, 51, 6682–6686. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, H. Charge manipulation in metal-organic frameworks: Toward designer functional molecular materials. Bull. Chem. Soc. Jpn. 2021, 94, 2929–2955. [Google Scholar] [CrossRef]
- Takahashi, K.; Takeda, T.; Zheng, X.; Noro, S.I.; Akutagawa, T.; Nakamura, T. Selective gas sensing under a mixed gas flow with a one-dimensional copper coordination polymer. Inorg. Chem. 2023, 62, 14942–14948. [Google Scholar] [CrossRef] [PubMed]
- Lippi, M.; Cametti, M. Highly dynamic 1D coordination polymers for adsorption and separation applications. Coord. Chem. Rev. 2021, 430, 213661. [Google Scholar] [CrossRef]
- Paul, S.; Dutta, B.; Das, P.; Halder, S.; Shit, M.; Ray, P.P.; Jana, K.; Sinha, C. Double advantages of 2D coordination polymer of coumarinyl-pyridyl Schiff base decorated Zn(II): The fabrication of schottky device and anti-carcinogenic activity. Appl. Organomet. Chem. 2023, 37, e7160. [Google Scholar] [CrossRef]
- Ashashi, N.A.; Kumar, M.; Ul Nisa, Z.; Frontera, A.; Sahoo, S.C.; Sheikh, H.N. Solvothermal self assembly of three lanthanide(III)-succinates: Crystal structure, topological analysis and DFT calculations on water channel. J. Mol. Struct. 2021, 1245, 131094. [Google Scholar] [CrossRef]
- Abu-Yamin, A.A.; Abduh, M.S.; Saghir, S.A.M.; Al-Gabri, N. Synthesis, characterization and biological activities of new Schiff base compound and its lanthanide complexes. Pharmaceuticals 2022, 15, 454. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Ye, J.; Zhang, S.; Shi, L.; Akram, M.A.; Ning, G. Synthesis, structure and antibacterial activity of a copper(II) coordination polymer based on thiophene-2,5-dicarboxylate ligand. Polyhedron 2019, 166, 130–136. [Google Scholar] [CrossRef]
- Narayanaswamy, S.; Bhargavi, G.; Rajasekharan, M.V. Synthesis, characterization, and structural analysis of hetero Ni(II)–Na(I) and Homo Ni(II)–Ni(II) dinuclear complexes with a flexible tridendate schiff base ligand. J. Mol. Struct. 2024, 1317, 139027. [Google Scholar] [CrossRef]
- Xie, Y.; Dou, Z.; Liu, Z.; Huang, N.; Fei, C.; Wu, H. Cd-Ln (Ln = Pr, Sm, Yb and Nd) heteronuclear complexes based on the linear chain ether Schiff base: Structural regulation and fluorescence properties. J. Mol. Struct. 2024, 1318, 139445. [Google Scholar] [CrossRef]
- Dutta, B.; Debsharma, K.; Dey, S.; Sinha, C. Advancement and future challenges of metal–organic coordination polymers: A case study of optical sensor for the detection of the environmental contaminants. Appl. Organomet. Chem. 2023, 37, e6919. [Google Scholar] [CrossRef]
- Sarkar, S.; Singha, D.K.; Majee, P.; Daga, P.; Mondal, S.K.; Mahata, P. Stabilization of CO2 as zwitterionic carbamate within a coordination polymer (CP): Synthesis, structure and anion sensing behaviour of a Tb-CP composite. CrystEngComm 2022, 24, 5890–5899. [Google Scholar] [CrossRef]
- Manna, P.; Chandra, A.K.; Mahata, P. A two-dimensional mixed ligands based coordination polymer of cadmium: Synthesis, single crystal structure and luminescence quenching based sensing behaviors towards Fe3+, Cr3+, Al3+ ions and TNP in aqueous phase. Inorg. Chim. Acta 2025, 580, 122592. [Google Scholar] [CrossRef]
- Bibik, Y.S.; Fritsky, I.O.; Kucheriv, O.I.; Marynin, A.I.; Molnár, G.; Salmon, L.; Bousseksou, A.; Gural’skiy, I.A. Switchable nanoparticles based on Fe(II)-Au(I) spin-crossover coordination polymer. J. Mol. Struct. 2024, 1318, 139302. [Google Scholar] [CrossRef]
- Debsharma, K.; Dey, S.; Das, D.; Halder, S.; Ortega-Castro, J.; Sarkar, S.; Dutta, B.; Maity, S.; Jana, K.; Frontera, A.; et al. Designing of a Zn(II)-isonicotinohydrazido thiophenyl based 2D coordination polymer: Structure, augmented photoconductivity and superior biological activity. CrystEngComm 2023, 25, 162. [Google Scholar] [CrossRef]
- Ali, M.; Pervaiz, E.; Noor, T.; Rabi, O.; Zahra, R.; Yang, M. Recent advancements in MOF-based catalysts forapplications in electrochemical and photoelectrochemicalwater splitting: A review. Int. J. Energy Res. 2021, 45, 1190. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Bera, S.; Das, R.; Chakraborty, D.; Basu, A.; Banerjee, P.; Ghosh, S.; Bhaumik, A. A Ni(II) metal-organic framework with mixed carboxylate and bipyridine ligands for ultrafast and selective sensing of explosives and photoelectrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 2022, 14, 20907. [Google Scholar] [CrossRef]
- Pu, L.M.; An, X.X.; Liu, C.; Long, H.T.; Zhao, L. Insights into crystal structures, supramolecular architectures and antioxidant activities of self-assembled fluorescent hetero-multinuclear [Cu(II)–Ln(III)](Ln = La, Ce, Pr and Nd) salamo-like complexes. Appl. Organomet. Chem. 2020, 34, e5980. [Google Scholar] [CrossRef]
- Xu, J.H.; Xia, X.Z.; Xia, L.X.; Dong, J.P.; Jiang, Y.X.; Sun, F.G.; Wu, H.L. Syntheses, structures and fluorescence properties of two Ce/Zn-Ce complexes with an open- chain ether Schiff base ligand. J. Coord. Chem. 2021, 74, 2263–2273. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, C.; Wu, Y.C.; Wu, H.L.; Han, X.T.; Xu, J.H.; Xia, X.Z. Construction of d-f heteronuclear complexes with open-chain ether Schiff base ligand: Regulation effects of Zn(II) and Cd(II) on structures and luminescence properties. J. Lumin. 2020, 226, 117437. [Google Scholar] [CrossRef]
- Fei, C.L.; Gao, W.; Zhang, J.Q.; Wu, Z.W.; Lv, Y.; Wu, H.L. Structural regulation and luminescence properties of Tb/Zn-Tb complexes based on aliphatic ether Schiff base. J. Mol. Struct. 2024, 1308, 138069. [Google Scholar] [CrossRef]
- Mahmoudi, G.; Garcia-Santos, I.; Safin, D.A.; Fernández-Vazquez, R.; Eftekharisis, B.; Gomila, R.M.; Frontera, A. A joint action of coordination, hydrogen and tetrel bonds toward a new 2D coordination polymer of lead(II) perchlorate and N’-isonicotinoylpyrazine-2-carbohydrazonamide. Inorg. Chem. Commun. 2025, 174, 113914. [Google Scholar] [CrossRef]
- Zhang, G.; Xia, X.Z.; Xia, L.X.; Sun, F.G.; Dong, J.P.; Li, R.X.; Wu, H.L. A series of new hetero-decanucleus sandwich Cd–Ln clusters constructed from open-chain ether Schiff base and niacin ligands: Synthesis, structure, luminescence and antioxidant activity. Inorg. Chim. Acta. 2021, 522, 120371. [Google Scholar] [CrossRef]
- Dong, J.P.; Li, R.X.; Sun, F.G.; Jiang, Y.X.; Wu, H.L. Structures, fluorescence, and superoxide radical scavenging activities of two Cd–Ln (Ln = Gd, Er) coordination polymers with an open-chain ether Schiff base and isonicotinate. J. Coord. Chem. 2022, 75, 107–119. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Ferraz-Caetano, J.; Teixeira, F.; Cordeiro, M.N.D.S. Systematic development of vanadium catalysts for sustainable epoxidation of small alkenes and allylic alcohols. Int. J. Mol. Sci. 2023, 24, 12299. [Google Scholar] [CrossRef] [PubMed]
- Romanowski, G.; Budka, J.; Inkielewicz-Stepniak, I. Synthesis, spectroscopic characterization, catalytic and biological activity of oxidovanadium(V) complexes with chiral tetradentate Schiff bases. Molecules 2023, 28, 7408. [Google Scholar] [CrossRef] [PubMed]
- Romanowski, G.; Budka, J.; Inkielewicz-Stepniak, I. Oxidovanadium(V) Schiff base complexes derived from chiral 3-amino-1,2-propanediol enantiomers: Synthesis, spectroscopic studies, catalytic and biological activity. Int. J. Mol. Sci. 2024, 25, 5010. [Google Scholar] [CrossRef]
- Romanowski, G.; Budka, J.; Inkielewicz-Stepniak, I. Oxidovanadium(V) complexes with chiral tetradentate Schiff bases: Synthesis, spectroscopic characterization, catalytic and biological activity. J. Mol. Struct. 2024, 1306, 137929. [Google Scholar] [CrossRef]
- Salubi, C.A. Heterogeneous vanadium Schiff base complexes in catalytic oxidation reactions. Curr. Chem. Lett. 2023, 12, 91–106. [Google Scholar] [CrossRef]
- Bendia, S.; Benabid, W.; Bourzami, R.; Ouari, K. Spectroscopic characterization of a mononuclear oxovanadium(IV) Schiff base complex. Oxidation catalysis applications and antibacterial activities. J. Mol. Struct. 2023, 1281, 135131. [Google Scholar] [CrossRef]
- Yang, Q.; Li, G.; Liu, J.; Xiao, W.; Lei, Y.; Xiao, X.; Liu, Y. Synthesis, crystal structures and catalytic oxidation property of two oxidovanadium(V) complexes with Schiff bases. Acta Chim. Slov. 2024, 71, 288–294. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Maurya, M.R. Vanadium complexes supported on organic polymers as sustainable systems for catalytic oxidations. Coord. Chem. Rev. 2017, 455, 415–428. [Google Scholar]
- Mahboubi-Anarjan, P.; Bikas, R.; Hosseini-Monfared, H.; Aleshkevych, P.; Mayer, P. Synthesis, characterization, EPR spectroscopy and catalytic activity of a new oxidovanadium(IV) complex with N2O2-donor ligand. J. Mol. Struct. 2017, 1131, 258–265. [Google Scholar] [CrossRef]
- Noshiranzadeh, N.; Emami, M.; Bikas, R.; Sanchiz, J.; Otreba, M.; Aleshkevych, P.; Lis, T. Synthesis, characterization and magnetic properties of a dinuclear oxidovanadium(IV) complex: Magneto-structural DFT studies on the effects of out-of-plane-OCH3 angle. Polyhedron 2017, 122, 194–202. [Google Scholar] [CrossRef]
- Sutradhar, M.; Martins, L.M.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Vanadium complexes: Recent progress in oxidation catalysis. Coord. Chem. Rev. 2015, 301–302, 200–239. [Google Scholar] [CrossRef]
- Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H. Enantioselective epoxidation of allylic alcohols by a chiral complex of vanadium: An effective controller systemand a rational mechanistic model. Angew. Chem. Int. Ed. Engl. 2005, 44, 4389–4391. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.A.L.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Oxovanadium complexes in catalytic oxidations. Coord. Chem. Rev. 2011, 255, 2232–2248. [Google Scholar] [CrossRef]
- Conte, V.; Coletti, A.; Floris, B.; Licini, G.; Zonta, C. Mechanistic aspects of vanadium catalysed oxidations with peroxides. Coord. Chem. Rev. 2011, 255, 2165–2177. [Google Scholar] [CrossRef]
- Trindade, A.F.; Gois, P.M.P.; Afonso, C.A.M. Recyclable stereoselective catalysts. Chem. Rev. 2009, 109, 418–514. [Google Scholar] [CrossRef]
- Naglah, A.M.; Al-Omar, M.A.; Almehizia, A.A.; Obaidullah, A.J.; Bhat, M.A.; Kalmouch, A.; Al-Wasidi, A.S.; Al-Humaidi, J.Y.; Refat, M.S. Synthesis, characterization, and anti-diabetic activity of some novel vanadium-folate-amino acid materials. Biomolecules 2020, 10, 781. [Google Scholar] [CrossRef]
- Pessoa, J.C.; Correia, I. Misinterpretations in evaluating interactions of vanadium complexes with proteins and other biological targets. Inorganics 2021, 9, 17. [Google Scholar] [CrossRef]
- Kostenkova, K.; Levina, A.; Walters, D.; Murakami, H.A.; Lay, P.A.; Crans, D.C. Vanadium(V) pyridine-containing Schiff base catecholate complexes are lipophilic, redox-active and selectively cytotoxic in glioblastoma (T98G) cells. Chem. Eur. J. 2023, 29, e202302271. [Google Scholar] [CrossRef] [PubMed]
- Crans, D.C.; Koehn, J.T.; Petry, S.M.; Glover, C.M.; Wijetunga, A.; Kaur, R.; Levina, A.; Lay, P.A. Hydrophobicity may enhance membrane affinity and anti-cancer effects of Schiff base vanadium(V) catecholate complexes. Dalton Trans. 2019, 48, 6383–6395. [Google Scholar] [CrossRef] [PubMed]
- Krośniaka, M.; Szklarzewicz, J.; Gryboś, R.; Tatar, B.; Yildirim, M.; Sahin, B.; Yuksek, N.; Ustunda, M. The influence of chronic supply of vanadium compounds on organ weights and body mass in animal diabetes model (NZO). Sci. Tech. Innov. 2019, 4, 63–73. [Google Scholar] [CrossRef]
- Levina, A.; Vieira, A.P.; Wijetunga, A.; Kaur, R.; Koehn, J.T.; Crans, D.C.; Lay, P.A. A short-lived but highly cytotoxic vanadium(V) complex as a potential drug lead for brain cancer treatment by intratumoral injections. Angew. Chem. Int. Ed. 2020, 59, 15834–15838. [Google Scholar] [CrossRef]
- Manganaro, J.; Levina, A.; Lay, P.A.; Crans, D.C. Potential applications of vanadium-based anticancer drugs for intratumoral injections. Med. Sci. Forum. 2022, 11, 10. [Google Scholar]
- Irving, E.; Stoker, A.W. Vanadium compounds as PTP inhibitors. Molecules 2017, 22, 2269. [Google Scholar] [CrossRef]
- Suzuki, T.; Ueda, K.; Kita, R.; Kokado, S.; Harigaya, K. Synthesis, crystal structure and magnetic property of bis(tetra-n-butylammonium) bis(4,5-dicyanobenzene-1,2-dithiolato)oxovanadium complex. Polyhedron 2005, 24, 2491–2496. [Google Scholar] [CrossRef]
- Thompson, K.H.; Orvig, C. Coordination chemistry of vanadium in metallopharmaceutical candidate compounds. Coord. Chem. Rev. 2001, 2019, 1033. [Google Scholar] [CrossRef]
- Carpenter, L.J.; Archer, S.D.; Beale, R. Ocean-atmosphere trace gas exchange. Chem. Soc. Rev. 2012, 41, 6473–6506. [Google Scholar] [CrossRef]
- Tsuchida, E.; Oyaizu, K. Oxovanadium(III–V) mononuclear complexes and their linear assemblies bearing tetradentate Schiff base ligands: Structure and reactivity as multielectron redox catalysts. Coord. Chem. Rev. 2003, 237, 213. [Google Scholar] [CrossRef]
- Sasmal, P.K.; Patra, A.K.; Chakravarty, A.R. Synthesis, structure, DNA binding and DNA cleavage activity of oxovanadium(IV) N-salicylidene-S-methyldithiocarbazate complexes of phenanthroline bases. J. Inorg. Biochem. 2008, 102, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Eady, R.R. Current status of structure function relationships of vanadium nitrogennase. Coord. Chem. Rev. 2003, 237, 23–30. [Google Scholar] [CrossRef]
- Bastos, A.M.B.; da Silva, J.G.; Maia, P.I.S.; Deflon, V.M.; Batista, A.A.; Ferreira, A.V.M.; Botion, L.M.; Niquet, E.; Beraldo, H. Oxovanadium(IV) and (V) complexes of acetylpyridinederived semicarbazones exhibit insulin-like activity. Polyhedron 2008, 27, 1787–1794. [Google Scholar] [CrossRef]
- Tracey, A.S.; Willsky, G.R.; Takeuchi, E.S. Vanadium Chemistry, Biochemistry, Pharmacology and Practical Applications; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Shechter, Y. Insulin-mimetic effects of vanadate: Possible implications for future treatment of diabetes. Diabetes 1990, 39, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Grivani, G.; Delkhosh, S.; Fejfarová, K.; Dušek, M.; Khalaji, A.D. Polynuclear oxovanadium(IV) Schiff base complex [VOL2]n (L = (5-bromo-2-hydroxybenzyl-2-furylmethyl)imine): Synthesis, characterization, crystal structure, catalytic properties and thermal decomposition into V2O5 nano-particles. Inorg. Chem. Commun. 2013, 27, 82–87. [Google Scholar] [CrossRef]
- Matsuoka, N.; Kawamura, H.; Yoshioka, N. Magnetic property and crystal structure of bis [N-(4-chlorophenyl)salicylideneaminato] oxovanadium(IV). Chem. Phys. Lett. 2010, 488, 32–37. [Google Scholar] [CrossRef]
- Tsuchimoto, M.; Hoshina, G.; Yoshioka, N.; Inoue, H.; Nakajima, K.; Kamishima, M.; Kojima, M.; Ohba, S. Mechanochemical reaction of polymeric oxovanadium(IV) complexes with Schiff base ligands derived from 5-nitrosalicylaldehyde and diamines. J. Solid State Chem. 2000, 153, 9–15. [Google Scholar] [CrossRef]
- Halevas, E.; Tsave, O.; Yavropoulou, M.P.; Hatzidimitriou, A.; Yovos, J.G.; Psycharis, V.; Gabriel, C.; Salifoglou, A. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure–function correlations at the molecular level. J. Inorg. Biochem. 2015, 147, 99–115. [Google Scholar] [CrossRef]
- Bhunia, A.; Dey, S.; Moreno, J.M.; Diaz, U.; Concepcion, P.; Van Hecke, K.; Janiak, C.; Van Der Voort, P. A homochiral vanadium-salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. Chem. Commun. 2016, 52, 1401. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Xia, Q.; Cui, Y. Chiral binary metal–organic frameworks for asymmetric sequential reactions. Chem. Commun. 2017, 53, 12313. [Google Scholar] [CrossRef]
- Xi, W.; Liu, Y.; Xia, Q.; Li, Z.; Cui, Y. Direct and post-synthesis incorporation of chiral metallosalen catalysts into metal–organic frameworks for asymmetric organic transformations. Chem. Eur. J. 2015, 21, 12581–12585. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Ishida, T. Ferromagnetic oxovanadium(IV) complexes chelated with tetrahalosalen ligands. Polyhedron 2011, 30, 3073–3078. [Google Scholar] [CrossRef]
- Deilami, A.B.; Salehi, M.; Amiri, A.; Arab, A. New copper(II) and vanadium(IV) complexes based on allylaminederived Schiff base ligand; synthesis, crystal structure, electrochemical properties and DFT calculations. J. Mol. Struct. 2019, 1181, 190–196. [Google Scholar] [CrossRef]
- Zhu, C.; Xia, Q.; Chen, X.; Liu, Y.; Du, X.; Cui, Y. Chiral metal-organic framework as a platform for cooperative catalysis in asymmetric cyanosilylation of aldehydes. ACS Catal. 2016, 6, 7590–7596. [Google Scholar] [CrossRef]
- Maurya, M.R.; Kumar, A. Oxovanadium(IV) based coordination polymers and their catalytic potentials for the oxidation of styrene, cyclohexene and trans-stilbene. J. Mol. Catal. A Chem. 2006, 250, 190–198. [Google Scholar] [CrossRef]
- Maurya, M.R.; Uprety, B.; Chaudhary, N.; Avecilla, F. Synthesis and characterization of di-l-oxidovanadium(V), oxidoperoxido-vanadium(V) and polymer supported dioxidovanadium(V) complexes and catalytic oxidation of isoeugenol. Inorganica Chim. Acta. 2015, 434, 230–238. [Google Scholar] [CrossRef]
- Maurya, M.R.; Chaudhary, N.; Avecilla, F.; Correia, I. Mimicking peroxidase activity by a polymer-supported oxidovanadium(IV) Schiff base complex derived from salicylaldehyde and 1,3-diamino-2-hydroxypropane. J. Inorg. Biochem. 2015, 147, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Maurya, M.R.; Kumar, A.; Manikandan, P.; Chand, S. Synthesis, characterisation and catalytic potential of oxovanadium(IV) based coordination polymers having a bridging methylene group. Appl. Catal. 2004, 277, 45–53. [Google Scholar] [CrossRef]
- Malik, S.; Mondal, U.; Jana, N.C.; Banerjee, P.; Saha, A. Using eugenol scaffold to explore the explosive sensing properties of Cd(II)-based coordination polymers: Experimental studies and real sample analysis. Dalton Trans. 2024, 53, 12995. [Google Scholar] [CrossRef] [PubMed]
- Middya, P.; Frontera, A.; Chattopadhyay, S. Thecrucial role of hydrogen bonding in shaping the structures of zinc-based coordination polymers using tridentate N,N,O donor reduced Schiff base ligands and bridging acetates. RSC Adv. 2024, 14, 13905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.W.; Zhang, Y.; Cui, Y.F.; Yu, M.; Dong, W.K. Heterobimetallic [NiIILnIII] (Ln = Sm and Tb) N2O4-donor coordination polymers: Syntheses, crystal structures and fluorescence properties. Inorganica Chim. Acta 2020, 506, 119534. [Google Scholar] [CrossRef]
- Khan, S.; Giri, P.; Bauzá, A.; Harms, K.; Frontera, A.; Chattopadhyay, S. Synthesis, characterization and DFT study on two copper(II) complexes with a naphthalene-based Schiff base: Examples of stronger chelate-chelate interactions than those reported for classical p–p complexes. Polyhedron 2019, 157, 487–494. [Google Scholar] [CrossRef]
- Saha, S.; Biswas, N.; Chowdhury, M.; Ghosh, K.K.; Rizzoli, C.; Sepay, N.; Chakraborty, S.; Chakraborty, M.; Choudhury, C.R. Self-assembled heterometallic Cu(II)–Na(I) coordination polymer with salen-type Schiff base ligand: Structural analysis, antimicrobial, DFT and molecular docking study. Transit. Met. Chem. 2024, in press. [Google Scholar] [CrossRef]
- Bikas, R.; Hosseini-Monfared, H.; Siczek, M.; Gutiérrez, A.; Krawczyk, M.S.; Lis, T. Syntheses, crystal structures and magnetic studies of new 2D coordination polymers containing dinuclear manganese(II) repetitive units using a ditopic isonicotinhydrazone based N,N,O-donor ligand. Polyhedron 2014, 67, 396–404. [Google Scholar] [CrossRef]
- Hosseini-Monfared, H.; Bikas, R.; Mohammadi, S.; Percino, T.M.; Demeshko, S.; Meyer, F.; Leyva Ramírez, M.A. Synthesis, structure, magnetic properties, and catalase-like activity of methoxy-bridged manganese(III) coordination polymer containing hydrazone based (O,N,O)2-donor ligand. Z. Anorg. Allg. Chem. 2014, 640, 405–411. [Google Scholar] [CrossRef]
- Lin, Y.Q.; Tian, X.M.; Xiong, Y.; Huang, C.; Chen, D.M.; Zhu, B.X. Coordination-driven heterochiral self-assembly: Construction of Cd(II) coordination polymers with sorption behaviors for iodine and dyes. Inorg. Chem. 2023, 62, 19887–19897. [Google Scholar] [CrossRef] [PubMed]
- Shit, M.; Halder, S.; Manna, K.; Karan, A.K.; Samanta, A.; Manik, N.B.; Pal, S.; Jana, K.; Sinha, C. Mn(II) 3D coordination framework with mixed 5-aminoisophthalato and pyridyl-isonicotinoyl hydrazone bridges: Structure, electrical conductivity, anticancer activity, and drug delivery. ACS Appl. Polym. Mater. 2024, 6, 2637–2648. [Google Scholar] [CrossRef]
- Karakousi, R.; Tsami, P.A.; Spanoudaki, M.A.; Dalgarno, S.J.; Papadimitriou, V.C.; Milios, C.J. Blue-emitting 2D- and 3D-zinc coordination polymers based on Schiff-base amino acid ligands. Chemistry 2023, 5, 1770–1780. [Google Scholar] [CrossRef]
- Huang, X.; Yan, S.Y.; Chen, Y.M.; Zhang, D.S.; Huang, C.; Zhu, B.X.; Lu, J.H. Synthesis, structures, and gas adsorption properties of Hg(II) and Cd(II) complexes constructed from two acylhydrazone ligands with multiple coordination sites. Inorg. Chim. Acta 2023, 555, 121588. [Google Scholar] [CrossRef]
- Majumdar, D.; Surendra Babu, M.S.; Das, S.; Biswas, J.K.; Mondal, M.; Hazra, S. Synthesis, X-ray crystal structure, photo luminescent property, antimicrobial activities and DFT computational study of Zn(II) coordination polymer derived from multisite N,O donor Schiff base ligand (H2L1). J. Mol. Struct. 2017, 1138, 161–171. [Google Scholar] [CrossRef]
- Santos, R.; Freire dos Santos, S.; da Silva Moura, F.; Sousa Maia, P.J.; Teixeira da Fonseca, B.; de Almeida Santos, R.H.; Medeiros, M.E.; Manoel dos Santos Garrido, F.; Casellato, A. A nickel(II) coordination polymer derived from a tridentate Schiff base ligand with N,O-donor groups: Synthesis, crystal structure, spectroscopy, electrochemical behavior and electrocatalytic activity for H2O2 electroreduction in alkaline medium. Transit. Met. Chem. 2017, 42, 301–310. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
Scheme of the Complex | Reagents/M:L Ratio | Conditions/Solvents | Ref. |
---|---|---|---|
1 | 5-bromo-2-hydroxybenzyl-2-furyl(methyl)imine, VO(acac)2 1:1 | the reaction was carried in methanol in reflux conditions MeOH | [66] |
2 | bis[N-(4-chlorophenyl) salicylideneaminato], VOSO4 1:2 | MeOH | [67] |
3 | N,N′-di-5-nitrosalicylidene-1, 2-ethanediamine), vanadyl sulphate pyridine 1:1 | a hot solution was stirred at 130 °C for 1 h MeOH | [68] |
4 | N,N′-di-5-nitrosalicylidene-(R,S)(S,R)-1,2diphenyl-1,2-ethanediamine), vanadyl sulphate pyridine 1:1 | a hot solution was stirred at 130 °C for 1 h MeOH | [68] |
5 | o-vanillin, tromethamine VO(acac)2, NaOH 1:1 | the resulting solution was refluxed for 2 h at 90 °C under continuous stirring and then cooled to room temperature MeOH | [69] |
6 | o-vanillin, 2-amino-1,3-propanediol, VO(acac)2, NaOH 1:1 | the resulting solution was refluxed for 2 h at 90 °C under continuous stirring and then cooled to room temperature EtOH | [69] |
7 | o-vanillin, ethanolamine, VO(acac)2, NaOH 1:1 | the resulting solution was refluxed for 2 h at 90 °C under continuous stirring and then cooled to room temperature EtOH | [69] |
8 | ((R,R)-(–)-1,2-cyclohexanediamino-N,N’bis(3-tert-butyl-5-(4-pyridyl)salicylidene), biphenyl-4,4′-dicarboxylic acid, VOSO4, Cd(NO3)2·4H2O | synthesis under solvothermal conditions at 100 °C DMF/EtOH/H2O | [70] |
9 | Cd(NO3)2∙6H2O, VO(L9), FeL8(OAc) | a solution was stirred at 80 °C DMF/MeOH | [71] |
10 | Cd(NO3)2∙6H2O, VO(L9), MnL8Cl | a solution was stirred at 80 °C DMF/EtOH | [71] |
11 | salen dicarboxylate, VO(acac)2, ZnI2 | a solution was heating at 85 °C DMA/MeOH/H2O | [72] |
12 | salen dicarboxylate, VO(acac)2, CdI2 | a solution was heating at 85 °C DMA/MeOH | [72] |
13 | N,N′-ethylenebis(3,5-dihalosalicylideneaminate), pyridine oxovanadium(IV) sulphate | a slow diffusion method was applied by contacting two dilute solutions containing reagents | [73] |
14 | N,N′-ethylenebis(3,5-dihalosalicylideneaminate), pyridine oxovanadium(IV) sulphate | a slow diffusion method was applied by contacting two dilute solutions containing reagents | [73] |
15 | N,N′-ethylenebis(4,6-dihalosalicylideneaminate), pyridine oxovanadium(IV) sulphate | a slow diffusion method was applied by contacting two dilute solutions containing reagents | [73] |
16 | allylamine, 5-bromo salicylaldehyde, VO(acac)2 1:1 | the reaction solution was heated at reflux condition with constant magnetically stirring for 3 h MeOH | [74] |
17 | (1R,2R)-[VO(L14)], Cd(NO3)2∙6H2O 1:1 | the mixture was heated at 100 °C for 12 h DMF | [75] |
18 | L15, VO(acac)2 1:1 | heating on a water bath MeOH/DMF | [76] |
19 | L16, VO(acac)2 1:1 | heating on a water bath MeOH/DMF | [76] |
20 | L17, VO(acac)2 1:1 PS-im (imidazolo- methylpolystyrene) | refluxed under stirring in an oil bath for 2 h MeOH | [77] |
21 | L18, VOSO4·5H2O, VO(acac)2 1:1 PS-Cl (choloromethylated polystyrene) | the reaction mixture was refluxed, complex was dissolved in hot DMSO MeOH/DMSO | [78] |
22 | L19, VO(acac)2 1:1 | the reaction mixture was digested on a water bath at ca. 90 °C for 4 h. MeOH/DMF | [79] |
23 | L20, VO(acac)2 1:1 | the reaction mixture was digested on a water bath at ca. 90 °C for 4 h. MeOH/DMF | [79] |
24 | L21, VO(acac)2 1:1 | the reaction mixture was digested on a water bath at ca. 90 °C for 4 h. MeOH/DMF | [79] |
Scheme of the Complex | Reagents/M:L Ratio | Conditions/Solvents | Ref. |
---|---|---|---|
25 | 4-allyl-2-(((2-(benzylamino)ethyl)imino) methyl)-6-methoxyphenol, Cd(NO3)2·4H2O, NaSCN 1:1 | the reaction mixture was stirred at room temperature for 4 h MeOH | [80] |
26 | 4-allyl-2-(((2-(benzylamino)ethyl)imino) methyl)-6-methoxyphenol, Cd(NO3)2·4H2O, NaN(CN)2 1:1 | the reaction mixture was stirred at room temperature for 4 h MeOH | [80] |
27 | 4-chloro-2-(((2-(methylamino)ethyl)amino)methyl)phenol, Zn(OAc)2·2H2O 2:1 | the reaction mixture was constant stirred MeOH | [81] |
28 | 2,4-dibromo-6-(((3-(methylamino)propyl)amino)methyl) phenol, Zn(OAc)2·2H2O 2:1 | the reaction mixture was constant stirred MeOH | [81] |
29 | (2-hydroxynaphthalen-1-ylmethylene)-hydrazide, Pb(NO3)2 1:1 | the reaction mixture was constant stirred MeOH/DMF/H2O | [1] |
30 | L26, terephthalic acid, Ni(OAc)2·4H2O, Tb(NO3)3·6H2O 1:1 | the reaction mixture was continuously stirring for 20 min EtOH/DMF/CHCl3 | [82] |
31 | L26, terephthalic acid, Ni(OAc)2·4H2O, Sm(NO3)3·6H2O 1:1 | the reaction mixture was continuously stirring for 20 min EtOH/DMF/CHCl3 | [82] |
32 | (1-(2-(morpholino-ethylimino)methyl)naphthalen-2-ol), Cu(OAc)2·H2O, NaN(CN)2 1:1 | the reaction mixture was constant stirring for 2 h MeOH | [83] |
33 | 2-[(E)-(2-hydroxy-phenyl)methyleneamino]terephthalic acid, Cu(NO3)2·3H2O NaOH 1:1 | The reaction mixture was refluxed for 1 h. MeOH/H2O | [84] |
34 | (E)-N′-(phenyl(pyridin-2-yl)methylene) Isonicotinhydrazide, MnCl2·4H2O, NaN3 1.1:1 | complex was synthesized using the thermal gradient method in a branched tube in an oil bath at 60 °C MeOH | [85] |
35 | (E)-N′-(phenyl(pyridin-2-yl)methylene) Isonicotinhydrazide, MnCl2·4H2O KSCN 1.1:1 | complex was synthesized using the thermal gradient method in a branched tube in an oil bath at 60 °C MeOH | [85] |
36 | bis[(2-hydroxynaphthalen-1-yl)methylene]-adipohydrazide, MnCl2·4H2O 2:1 | MeOH | [86] |
37 | 2-amino-N′-(pyridin-4-ylmethylene)-benzohydrazide, CdCl2 2:1 | the reaction was performed at room temperature for 1 h DMF/MeOH | [87] |
38 | 2-amino-N′-(pyridin-4-ylmethylene)-benzohydrazide, CdI2 1:1 | the reaction was performed at room temperature for 1 h DMF/MeOH | [87] |
39 | 2-amino-N′-(pyridin-4-ylmethylene)-benzohydrazide, CdBr2·4H2O 2:1 | the reaction was performed at room temperature for 1 h DMF/MeOH | [87] |
40 | 2-amino-N′-(pyridin-4-ylmethylene)-benzohydrazide, Cd(NO3)2·4H2O 2:1 | the reaction was performed at room temperature for 1 h MeOH | [87] |
41 | pyridine-4-carboxaldehydeisonicotinoylhydrazine, 5-aminoisophthalic acid, MnCl2·4H2O 1:1 | DMF/MeOH | [88] |
42, 43 | N-butyl-N-(5-bromosalcylidine)ethane-1, 2-diamine or N-butyl-N-(5-chlorosalcylidine)ethane-1, 2-diamine, Cu(OAc)2·H2O, NaN3 1:1 | A methanolic solution of ligand and Cu2+ was refluxed for 1 h. Further aqueous solution of NaN3 was added and refluxed for another 2 h. MeOH/H2O | [4] |
44 | 2-OH-1-napthaldehyde-2-aminoisobutyric acid, Zn(NO3)2·4H2O 1:1 | the reaction was performed in autoclaves at 120 °C for 12 h MeOH | [89] |
45 | 2-OH-1-napthaldehyde-glycine acid, Zn(NO3)2·4H2O 1:1 | the reaction was performed in autoclaves at 120 °C for 12 h MeOH | [89] |
46 | Dialdehyde, isonicotinic hydrazide, HgBr2 3:1 | The mixture was stirred with heating for 1 h DMF/MeOH | [90] |
47 | Dialdehyde, isonicotinic hydrazide, HgI2 2:1 | The mixture was stirred with heating for 1 h DMF/MeOH | [90] |
48 | N,N′-bis(3-methoxysalicylidenimino)-1,3-daminopropane, Zn(OAc)2·2H2O, KSCN 1:1 | in presence of KSCN, constant stirring for 2.5 h MeOH | [91] |
49 | Glycine, potassium hydroxide, salicylaldehyde, Ni(OAc)2·4H2O 1:1 | a solution of metal ion was slowly added to the solution of the Schiff base MeOH | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osypiuk, D.; Bartyzel, A.; Cristóvão, B. Coordination Polymers of Vanadium and Selected Metal Ions with N,O-Donor Schiff Base Ligands—Synthesis, Crystal Structure, and Application. Molecules 2025, 30, 1104. https://doi.org/10.3390/molecules30051104
Osypiuk D, Bartyzel A, Cristóvão B. Coordination Polymers of Vanadium and Selected Metal Ions with N,O-Donor Schiff Base Ligands—Synthesis, Crystal Structure, and Application. Molecules. 2025; 30(5):1104. https://doi.org/10.3390/molecules30051104
Chicago/Turabian StyleOsypiuk, Dariusz, Agata Bartyzel, and Beata Cristóvão. 2025. "Coordination Polymers of Vanadium and Selected Metal Ions with N,O-Donor Schiff Base Ligands—Synthesis, Crystal Structure, and Application" Molecules 30, no. 5: 1104. https://doi.org/10.3390/molecules30051104
APA StyleOsypiuk, D., Bartyzel, A., & Cristóvão, B. (2025). Coordination Polymers of Vanadium and Selected Metal Ions with N,O-Donor Schiff Base Ligands—Synthesis, Crystal Structure, and Application. Molecules, 30(5), 1104. https://doi.org/10.3390/molecules30051104