Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (614)

Search Parameters:
Keywords = Saa2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1641 KiB  
Article
Site-Specific Trafficking of Lipid and Polar Metabolites in Adipose and Muscle Tissue Reveals the Impact of Bariatric Surgery-Induced Weight Loss: A 6-Month Follow-Up Study
by Aidan Joblin-Mills, Zhanxuan E. Wu, Garth J. S. Cooper, Ivana R. Sequeira-Bisson, Jennifer L. Miles-Chan, Anne-Thea McGill, Sally D. Poppitt and Karl Fraser
Metabolites 2025, 15(8), 525; https://doi.org/10.3390/metabo15080525 (registering DOI) - 2 Aug 2025
Abstract
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not [...] Read more.
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not known. Methods: Women with obesity scheduled to undergo bariatric surgery were assessed at baseline (BL, n = 28) and at 6-month follow-up (6m_FU, n = 26) after weight loss. Fasting plasma (Pla), subcutaneous thigh adipose (STA), subcutaneous abdominal adipose, (SAA), and thigh vastus lateralis muscle (VLM) samples were collected at BL through surgery and at 6m_FU using needle biopsy. An untargeted liquid chromatography mass spectrometry metabolomics platform was used. Pla and tissue-specific lipid and polar metabolite profiles were modelled as changes from BL and 6m_FU. Results: There was significant body weight (−24.5 kg) loss at 6m_FU (p < 0.05). BL vs. 6m_FU tissue metabolomics profiles showed the largest difference in lipid profiles in SAA tissue in response to surgery. Conversely, polar metabolites were more susceptible to change in STA and VLM. In Pla samples, both lipid and polar metabolite profiles showed significant differences between timepoints. Jaccard–Tanimoto coefficient t-tests identified a sub-group of gut microbiome and dietary-derived omega-3-fatty-acid-containing lipid species and core energy metabolism and adipose catabolism-associated polar metabolites that are trafficked between sample types in response to bariatric surgery. Conclusions: In this first report on channelling of lipids and polar metabolites to alternative tissues in bariatric-induced weight loss, adaptive shuttling of small molecules was identified, further promoting adipose processing and highlighting the dynamic and coordinated nature of post-surgical metabolic regulation. Full article
Show Figures

Figure 1

19 pages, 707 KiB  
Review
Salivary α-Amylase as a Metabolic Biomarker: Analytical Tools, Challenges, and Clinical Perspectives
by Gita Erta, Gita Gersone, Antra Jurka and Peteris Tretjakovs
Int. J. Mol. Sci. 2025, 26(15), 7365; https://doi.org/10.3390/ijms26157365 - 30 Jul 2025
Viewed by 257
Abstract
Salivary α-amylase, primarily encoded by the AMY1 gene, initiates the enzymatic digestion of dietary starch in the oral cavity and has recently emerged as a potential biomarker in metabolic research. Variability in salivary amylase activity (SAA), driven largely by copy number variation of [...] Read more.
Salivary α-amylase, primarily encoded by the AMY1 gene, initiates the enzymatic digestion of dietary starch in the oral cavity and has recently emerged as a potential biomarker in metabolic research. Variability in salivary amylase activity (SAA), driven largely by copy number variation of AMY1, has been associated with postprandial glycemic responses, insulin secretion dynamics, and susceptibility to obesity. This review critically examines current analytical approaches for quantifying SAA, including enzymatic assays, colorimetric techniques, immunoassays, and emerging biosensor technologies. The methodological limitations related to sample handling, intra-individual variability, assay standardization, and specificity are highlighted in the context of metabolic and clinical studies. Furthermore, the review explores the physiological relevance of SAA in energy homeostasis and its associations with visceral adiposity and insulin resistance. We discuss the potential integration of SAA measurements into obesity risk stratification and personalized dietary interventions, particularly in individuals with altered starch metabolism. Finally, the review identifies key research gaps and future directions necessary to validate SAA as a reliable metabolic biomarker in clinical practice. Understanding the diagnostic and prognostic value of salivary amylase may offer new insights into the prevention and management of obesity and related metabolic disorders. Full article
Show Figures

Figure 1

15 pages, 483 KiB  
Article
Comparing Inflammatory Biomarkers in Cardiovascular Disease: Insights from the LURIC Study
by Angela P. Moissl, Graciela E. Delgado, Hubert Scharnagl, Rüdiger Siekmeier, Bernhard K. Krämer, Daniel Duerschmied, Winfried März and Marcus E. Kleber
Int. J. Mol. Sci. 2025, 26(15), 7335; https://doi.org/10.3390/ijms26157335 - 29 Jul 2025
Viewed by 187
Abstract
Inflammatory biomarkers, including high-sensitivity C-reactive protein (hsCRP), serum amyloid A (SAA), and interleukin-6 (IL-6), have been associated with an increased risk of future cardiovascular events. While they provide valuable prognostic information, these associations do not necessarily imply a direct causal role. The combined [...] Read more.
Inflammatory biomarkers, including high-sensitivity C-reactive protein (hsCRP), serum amyloid A (SAA), and interleukin-6 (IL-6), have been associated with an increased risk of future cardiovascular events. While they provide valuable prognostic information, these associations do not necessarily imply a direct causal role. The combined prognostic utility of these markers, however, remains insufficiently studied. We analysed 3300 well-characterised participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, all of whom underwent coronary angiography. Participants were stratified based on their serum concentrations of hsCRP, SAA, and IL-6. Associations between biomarker combinations and mortality were assessed using multivariate Cox regression and ROC analysis. Individuals with elevated hsCRP and SAA or IL-6 showed higher prevalence rates of coronary artery disease, heart failure, and adverse metabolic traits. These “both high” groups had lower estimated glomerular filtration rate, higher NT-proBNP, and increased HbA1c. Combined elevations of hsCRP and SAA were significantly associated with higher all-cause and cardiovascular mortality in partially adjusted models. However, these associations weakened after adjusting for IL-6. IL-6 alone demonstrated the highest predictive power (AUC: 0.638) and improved risk discrimination when included in multi-marker models. The co-elevation of hsCRP, SAA, and IL-6 identifies a high-risk phenotype characterised by greater cardiometabolic burden and increased mortality. IL-6 may reflect upstream inflammatory activity and could serve as a therapeutic target. Multi-marker inflammatory profiling holds promise for refining cardiovascular risk prediction and advancing personalised prevention strategies. Full article
Show Figures

Graphical abstract

11 pages, 248 KiB  
Article
Food Security Among South Asian Americans: The Role of Availability, Affordability, and Quality of Culturally Appropriate Food
by Monideepa B. Becerra, Farhan Danish and Valentina Chawdhury
Int. J. Environ. Res. Public Health 2025, 22(8), 1169; https://doi.org/10.3390/ijerph22081169 - 24 Jul 2025
Viewed by 262
Abstract
Background: South Asian Americans (SAA) are one of the fastest-growing immigrant groups in the U.S. and face significant health disparities, particularly regarding chronic diseases like diabetes, hypertension, and cardiovascular disease. Dietary patterns play a crucial role in these disparities, with acculturation to Western [...] Read more.
Background: South Asian Americans (SAA) are one of the fastest-growing immigrant groups in the U.S. and face significant health disparities, particularly regarding chronic diseases like diabetes, hypertension, and cardiovascular disease. Dietary patterns play a crucial role in these disparities, with acculturation to Western diets linked to poorer health outcomes. Despite this, the impact of food insecurity on dietary habits among SAAs remains underexplored. This study aims to examine the availability, cost, and quality of ethnic food items and how food insecurity influences dietary practices in Southern California’s SAA population. Methods: The study was conducted in San Bernardino County, California, with field data collection focused on five South Asian ethnicity-specific grocery stores and three Western grocery stores. We assessed the availability and cost of key ingredients for commonly prepared SAA dishes. Additionally, focus group interviews were held with South Asian immigrants to understand food insecurity challenges and dietary adaptations. Results: The study found significant disparities in food availability and cost between SAA-ethnic grocery stores and Western stores. SAA stores were less accessible and more widely dispersed, with an average distance of 10 miles between them. While ingredients like ginger paste and cumin powder were available in both types of stores, items such as ghee, fenugreek seeds, and black gram were harder to find in Western stores. Focus group participants noted that ethnic foods, especially vegetarian ingredients, were more expensive than Western alternatives, leading many to substitute traditional meals with cheaper, less nutritious options. Participants also raised concerns about the poor quality of items in ethnic stores, such as expired produce, which further limited their food choices. Conclusions: Food insecurity, driven by limited availability, high cost, and poor quality of ethnic foods, poses significant challenges to the SAA community’s diet and health. Addressing these barriers could improve food security and health outcomes among SAA immigrants. Full article
(This article belongs to the Special Issue Role of Social Determinants in Health of Vulnerable Groups)
10 pages, 1165 KiB  
Brief Report
Serum Amyloid A3 Expression Is Enhanced by Gram-Negative Bacterial Stimuli in Bovine Endometrial Epithelial Cells
by Kazuha Aoyagi, Keishi Owaki, Hiroki Sakai, Ayaka Okada and Yasuo Inoshima
Pathogens 2025, 14(8), 729; https://doi.org/10.3390/pathogens14080729 - 23 Jul 2025
Viewed by 211
Abstract
Bovine endometritis is a common postpartum disease that significantly impairs reproductive performance and reduces economic sustainability in dairy and beef cattle. It is primarily caused by gram-negative and -positive bacteria, triggering strong inflammatory responses in the endometrium. Serum amyloid A (SAA) is an [...] Read more.
Bovine endometritis is a common postpartum disease that significantly impairs reproductive performance and reduces economic sustainability in dairy and beef cattle. It is primarily caused by gram-negative and -positive bacteria, triggering strong inflammatory responses in the endometrium. Serum amyloid A (SAA) is an acute-phase protein and precursor of amyloid A (AA) in AA amyloidosis. In cattle, multiple SAA isoforms have been identified; however, the biological functions of SAA3 remain unclear. Hence, this study investigated the role of SAA3 in bovine endometrial epithelial cells (BEnEpCs) following stimulation with gram-negative or -positive bacterial antigens. BEnEpCs were treated with lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and, subsequently, the expression levels of SAA3 and SAA1 mRNA were compared by real-time PCR. To further investigate protein-level changes, immunocytochemistry (ICC) was performed to assess the expressions of SAA3 and SAA1. These analyses revealed that SAA3 mRNA expression was significantly enhanced by LPS and LTA, whereas SAA1 mRNA remained undetectable or showed only minimal responsiveness. Notably, only SAA3 protein expression increased in response to stimulation. These results indicate that SAA3 plays a crucial role in the innate immune response of BEnEpCs against gram-negative bacteria. Our in vitro findings may facilitate understanding of the innate immune activity in bovine uterus. Full article
Show Figures

Figure 1

27 pages, 3394 KiB  
Article
Integrative Multi-Omics Profiling of Rhabdomyosarcoma Subtypes Reveals Distinct Molecular Pathways and Biomarker Signatures
by Aya Osama, Ahmed Karam, Abdelrahman Atef, Menna Arafat, Rahma W. Afifi, Maha Mokhtar, Taghreed Khaled Abdelmoneim, Asmaa Ramzy, Enas El Nadi, Asmaa Salama, Emad Elzayat and Sameh Magdeldin
Cells 2025, 14(14), 1115; https://doi.org/10.3390/cells14141115 - 20 Jul 2025
Viewed by 752
Abstract
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, comprises embryonal (ERMS) and alveolar (ARMS) subtypes with distinct histopathological features, clinical outcomes, and therapeutic responses. To better characterize their molecular distinctions, we performed untargeted plasma proteomics and metabolomics profiling in children with ERMS [...] Read more.
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, comprises embryonal (ERMS) and alveolar (ARMS) subtypes with distinct histopathological features, clinical outcomes, and therapeutic responses. To better characterize their molecular distinctions, we performed untargeted plasma proteomics and metabolomics profiling in children with ERMS (n = 18), ARMS (n = 17), and matched healthy controls (n = 18). Differential expression, functional enrichment (GO, KEGG, RaMP-DB), co-expression network analysis (WGCNA/WMCNA), and multi-omics integration (DIABLO, MOFA) revealed distinct molecular signatures for each subtype. ARMS displayed elevated oncogenic and stemness-associated proteins (e.g., cyclin E1, FAP, myotrophin) and metabolites involved in lipid transport, fatty acid metabolism, and polyamine biosynthesis. In contrast, ERMS was enriched in immune-related and myogenic proteins (e.g., myosin-9, SAA2, S100A11) and metabolites linked to glutamate/glycine metabolism and redox homeostasis. Pathway analyses highlighted subtype-specific activation of PI3K-Akt and Hippo signaling in ARMS and immune and coagulation pathways in ERMS. Additionally, the proteomics and metabolomics datasets showed association with clinical parameters, including disease stage, lymph node involvement, and age, demonstrating clear molecular discrimination consistent with clinical observation. Co-expression networks and integrative analyses further reinforced these distinctions, uncovering coordinated protein–metabolite modules. Our findings reveal novel, subtype-specific molecular programs in RMS and propose candidate biomarkers and pathways that may guide precision diagnostics and therapeutic targeting in pediatric sarcomas. Full article
Show Figures

Figure 1

10 pages, 1668 KiB  
Article
Hepatic Inflammation Primes Vascular Dysfunction Following Treatment with LPS in a Murine Model of Pediatric Fatty Liver Disease
by Hong Huang, Robin Shoemaker, Yasir Alsiraj, Margaret Murphy, Troy E. Gibbons and John A. Bauer
Int. J. Mol. Sci. 2025, 26(14), 6802; https://doi.org/10.3390/ijms26146802 - 16 Jul 2025
Viewed by 275
Abstract
Obesity and pediatric fatty liver disease are increasingly prevalent, yet the underlying mechanisms linking these conditions to heightened inflammatory and immune responses remain poorly understood. Using a murine model reflecting early-life obesity and hepatic steatosis, we tested the hypothesis that obesity-driven hepatic inflammation [...] Read more.
Obesity and pediatric fatty liver disease are increasingly prevalent, yet the underlying mechanisms linking these conditions to heightened inflammatory and immune responses remain poorly understood. Using a murine model reflecting early-life obesity and hepatic steatosis, we tested the hypothesis that obesity-driven hepatic inflammation intensifies systemic immune responses and exacerbates vascular dysfunction following innate immune activation. Newly weaned C57BL/6 mice were fed either a high-saturated-fat, high-cholesterol diet (HFD) or a control diet (CD) for four weeks, modeling adolescence in humans. HFD-fed mice exhibited hepatic and splenic enlargement, elevated plasma cholesterol levels, increased activity levels of liver enzymes (alanine and aspartate aminotransferases), and higher plasma serum amyloid A (SAA) concentrations. Following a sublethal dose of lipopolysaccharide (LPS), the expression of hepatic inflammatory genes (VCAM-1 and iNOS) was significantly elevated in HFD-fed mice, indicating an exaggerated local immune response. Mice fed an HFD also showed significant impairment in endothelium-dependent vasorelaxation compared to CD mice and saline-treated controls, while endothelium-independent responses remained intact. These vascular changes occurred in the context of hepatic inflammation, suggesting that early-life diet-induced steatosis sensitizes the vasculature to inflammatory insult. These findings suggest that obesity-driven hepatic inflammation primes exaggerated systemic immune responses to innate immune stimuli, potentially contributing to the vascular dysfunction and variable clinical morbidity observed in pediatric inflammatory conditions. Full article
(This article belongs to the Special Issue Obesity: From Molecular Mechanisms to Clinical Aspects)
Show Figures

Figure 1

24 pages, 2011 KiB  
Article
Pharmacokinetics of Pegaspargase with a Limited Sampling Strategy for Asparaginase Activity Monitoring in Children with Acute Lymphoblastic Leukemia
by Cristina Matteo, Antonella Colombini, Marta Cancelliere, Tommaso Ceruti, Ilaria Fuso Nerini, Luca Porcu, Massimo Zucchetti, Daniela Silvestri, Maria Grazia Valsecchi, Rosanna Parasole, Luciana Vinti, Nicoletta Bertorello, Daniela Onofrillo, Massimo Provenzi, Elena Chiocca, Luca Lo Nigro, Laura Rachele Bettini, Giacomo Gotti, Silvia Bungaro, Martin Schrappe, Paolo Ubezio and Carmelo Rizzariadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(7), 915; https://doi.org/10.3390/pharmaceutics17070915 - 15 Jul 2025
Viewed by 376
Abstract
Background: Asparaginase (ASPase) plays an important role in the therapy of acute lymphoblastic leukemia (ALL). Serum ASPase activity (SAA) can be modified and even abolished by host immune responses; therefore, current treatment guidelines recommend to monitor SAA during treatment administration. The SAA [...] Read more.
Background: Asparaginase (ASPase) plays an important role in the therapy of acute lymphoblastic leukemia (ALL). Serum ASPase activity (SAA) can be modified and even abolished by host immune responses; therefore, current treatment guidelines recommend to monitor SAA during treatment administration. The SAA monitoring schedule needs to be carefully planned to reduce the number of samples without hampering the possibility of measuring pharmacokinetics (PK) parameters in individual patients. Complex modelling approaches, not easily applicable in common practice, have been applied in previous studies to estimate ASPase PK parameters. This study aimed to estimate PK parameters by using a simplified approach suitable for real-world settings with limited sampling. Methods: Our study was based on 434 patients treated in Italy within the AIEOP-BFM ALL 2009 trial. During the induction phase, patients received two doses of pegylated ASPase and were monitored with blood sampling at five time points, including time 0. PK parameters were estimated by using the individually available SAA measurements with simple modifications of the classical non-compartmental PK analysis. We also took the opportunity to develop and validate a series of limited sampling models to predict ASPase exposure. Results: During the induction phase, average ASPase activity at day 7 was 1380 IU/L after the first dose and 1948 IU/L after the second dose; therapeutic SAA levels (>100 IU/L) were maintained until day 33 in 90.1% of patients. The average AUC and clearance were 46,937 IU/L × day and 0.114 L/day/m2, respectively. The database was analyzed for possible associations of PK parameters with biological characteristics of the patients, finding only a limited dependence on sex, age and risk score; however, these differences were not sufficient to allow any dose or schedule adjustments. Thereafter the possibility of further sampling reduction by using simple linear models to estimate the AUC was also explored. The most simple model required only two samplings 7 days after each ASPase dose, with the AUC being proportional to the sum of the two measured activities A(7) and A(21), calculated by the formula AUC = 14.1 × [A(7) + A(21)]. This model predicts the AUC with 6% average error and 35% maximum error compared to the AUC estimated with all available measures. Conclusions: Our study demonstrates the feasibility of a direct estimation of PK parameters in a real-life situation with limited and variable blood sampling schedules and also offers a simplified method and formulae easily applicable in clinical practice while maintaining a reliable pharmacokinetic monitoring. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

10 pages, 572 KiB  
Article
Alpha-Amylase Activity in Feline Saliva: An Analytical Validation of an Automated Assay for Its Measurement and a Pilot Study on Its Changes Following Acute Stress and Due to Urinary Tract Pathologies
by Esmeralda Cañadas-Vidal, Alberto Muñoz-Prieto, Juan D. García-Martínez, Jose J. Ceron, Luis Pardo-Marín and Asta Tvarijonaviciute
Animals 2025, 15(14), 2074; https://doi.org/10.3390/ani15142074 - 14 Jul 2025
Viewed by 273
Abstract
Salivary alpha-amylase (sAA) increases in response to stressful stimuli in a number of animal species, and it is considered a biomarker of sympathetic nervous system activation. However, no studies have been performed in which sAA has been measured in cats. The aim of [...] Read more.
Salivary alpha-amylase (sAA) increases in response to stressful stimuli in a number of animal species, and it is considered a biomarker of sympathetic nervous system activation. However, no studies have been performed in which sAA has been measured in cats. The aim of this study was to perform an analytical and clinical validation of a commercially available automated assay for the determination of sAA in feline saliva. For the analytical validation, the precision, accuracy, and lower limit of quantification (LLOQ) were determined. To evaluate its response to acute stress, sAA was evaluated in feline saliva before and after stressful stimuli, consisting of a blood extraction. In addition, the sAA activity was compared between cats suffering from urinary tract pathologies and healthy controls. Analytical validation studies confirmed the method as being precise, accurate, and sufficiently sensitive for the sAA determination in cats. When the response to stress was evaluated, a statistically significant increase was detected in sAA in comparison with its activity before the blood extraction. In addition, cats with urinary tract diseases presented higher sAA activity than controls. The results of the present study indicate that sAA can be measured in feline saliva. This study could contribute to a wider use of the measurements of sAA in the saliva of cats and serve as a basis for future investigations aiming to assess acute stress in this species in a non-invasive manner. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

22 pages, 3733 KiB  
Article
Combating Traumatic Brain Injury: A Dual-Mechanism Hydrogel Delivering Salvianolic Acid A and Hydroxysafflor Yellow A to Block TLR4/NF-κB and Boost Angiogenesis
by Guoying Zhou, Yujia Yan, Linh Nguyen, Jiangkai Fan, Xiao Zhang, Li Gan, Tingzi Yan and Haitong Wan
Polymers 2025, 17(14), 1900; https://doi.org/10.3390/polym17141900 - 9 Jul 2025
Viewed by 419
Abstract
Traumatic brain injury (TBI) leads to severe neurological dysfunction, disability, and even death. Surgical intervention and neurorehabilitation represent the current clinical management methods, yet there remains no effective treatment for recovery after TBI. Post-traumatic hyperinflammation and vascular injury are the key therapeutic challenges. [...] Read more.
Traumatic brain injury (TBI) leads to severe neurological dysfunction, disability, and even death. Surgical intervention and neurorehabilitation represent the current clinical management methods, yet there remains no effective treatment for recovery after TBI. Post-traumatic hyperinflammation and vascular injury are the key therapeutic challenges. Therefore, a novel-designed multifunctional HT/SAA/HSYA hydrogel based on hyaluronic acid (HA) co-loaded with salvianolic acid A (SAA) and hydroxysafflor yellow A (HSYA) was developed in order to simultaneously target inflammation and vascular injury, addressing key pathological processes in TBI. The HT hydrogel was formed through covalent cross-linking of tyramine-modified HA catalyzed by horseradish peroxidase (HRP). Results demonstrated that the HT hydrogel possesses a porous structure, sustained release capabilities of loaded drugs, suitable biodegradability, and excellent biocompatibility both in vitro and in vivo. WB, immunofluorescence staining, and PCR results revealed that SAA and HSYA significantly reduced the expression level of pro-inflammatory cytokines (IL-1β and TNF-α) and inhibited M1 macrophage polarization through the suppression of the TLR4/NF-κB inflammatory pathway. In vivo experiments confirmed that the HT/SAA/HSYA hydrogel exhibited remarkable pro-angiogenic effects, as evidenced by increased expression of CD31 and α-SMA. Finally, H&E staining showed that the HT/SAA/HSYA hydrogel effectively reduced the lesion volume in a mouse TBI model, and demonstrated more pronounced effects in promoting brain repair at the injury site, compared to the control and single-drug-loaded hydrogel groups. In conclusion, the HT hydrogel co-loaded with SAA and HSYA demonstrates excellent anti-inflammatory and pro-angiogenic effects, offering a promising therapeutic approach for brain repair following TBI. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 2534 KiB  
Article
Impact of the Mean Radiant Temperature (Tmrt) on Outdoor Thermal Comfort Based on Urban Renewal: A Case Study of the Panjiayuan Antique Market in Beijing, China
by Chenxiao Liu, Yani Fang, Yanglu Shi, Mingli Wang, Mo Han and Xiaobing Chen
Buildings 2025, 15(14), 2398; https://doi.org/10.3390/buildings15142398 - 8 Jul 2025
Viewed by 228
Abstract
Like other mega cities in China, Beijing is undergoing a large-scale urban renewal process. However, in the context of global warming and the goal of promoting human health and well-being, urban renewal should follow the principle of minimal intervention, draw inspiration from the [...] Read more.
Like other mega cities in China, Beijing is undergoing a large-scale urban renewal process. However, in the context of global warming and the goal of promoting human health and well-being, urban renewal should follow the principle of minimal intervention, draw inspiration from the condition of the climate and environment itself, and pursue the goal of common health and development between humans and non-human beings. This study takes the Panjiayuan Antique Market as the research object. Unlike previous studies that focused on the behavior patterns of vendors and buyers, this study focuses on the increase in users’ expectation on environmental thermal comfort when the Panjiayuan Antique Market transforms from a conventional commercial market into an urban public space. This study aimed to find a minimal intervention strategy suitable for urban public space renewal from the perspective of the microclimate, encouraging people to use outdoor public spaces more, thereby promoting physical and mental health, as well as social well-being. We used a mixed-methods approach comprising microclimate measurements, questionnaires (n = 254), and field measurements. Our results show that the mean radiant temperature (Tmrt) is the key factor that affects thermal comfort, and it is a comprehensive concept that is associated with other microclimate factors. Linking the quantitative sun-related factors, such as the solar position angle (SAA), the shadow area ratio (SAR), and direct sun hours (DSHs), we also found that the correlation between the Tmrt and physical spatial characteristics, such as the ratio of the visible sky (SVF), the aspect ratio (H/W), and orientation of the building layout, helped us to generate design strategies oriented by regulating microclimate, such as controlling thermal mass/radiant heating, solar radiation, and air convection. One of the significances of this study is its development of a design method that minimizes intervention in urban public spaces from the perspective of regulating the microclimate. In addition, this study proposes a new perspective of promoting people’s health and well-being by improving outdoor thermal comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 2351 KiB  
Article
Associations Between Dietary Amino Acid Intake and Elevated High-Sensitivity C-Reactive Protein in Children: Insights from a Cross-Sectional Machine Learning Study
by Lianlong Yu, Xiaodong Zheng, Jilan Li, Changqing Liu, Yiya Liu, Meina Tian, Qianrang Zhu, Zhenchuang Tang and Maoyu Wu
Nutrients 2025, 17(13), 2235; https://doi.org/10.3390/nu17132235 - 5 Jul 2025
Viewed by 535
Abstract
Background High-sensitivity C-reactive protein (hs-CRP) is a protein that indicates inflammation and the risk of cardiovascular diseases. The intake of dietary amino acids can influence immune and inflammatory reactions. However, studies on the relationship between dietary amino acids and hs-CRP, especially in children, [...] Read more.
Background High-sensitivity C-reactive protein (hs-CRP) is a protein that indicates inflammation and the risk of cardiovascular diseases. The intake of dietary amino acids can influence immune and inflammatory reactions. However, studies on the relationship between dietary amino acids and hs-CRP, especially in children, remain scarce. Methods This cross-sectional study analyzed data from the Nutrition and China Children and Lactating Women Nutrition and Health Survey (2016–2019), focusing on 3514 children (724 with elevated hs-CRP ≥ 3 mg/L and 2790 with normal levels). Dietary information was gathered via a food frequency questionnaire, and hs-CRP levels were obtained from blood samples. Boruta algorithm and propensity scores were used to select and match dietary factors and sample sizes. Machine learning (ML) algorithms and logistic regression models assessed the link between amino acid intake and elevated hs-CRP risk, adjusting for age, sex, BMI, and lifestyle factors. Results The odds ratios (ORs) for elevated hs-CRP were significant for several amino acids, including Ile, Leu, Lys, Ser, Cys, Tyr, His, Pro, SAA, and AAA, with values ranging from 1.10 to 2.07. The LightGBM algorithm was the most effective in predicting elevated hs-CRP risk, achieving an AUC of 0.927. Tyrosine, methionine, cysteine, and proline were identified as important features by SHAP analysis and logistic regression. The intake of Ser, Cys, Tyr, and Pro showed a linear increase in the risk of elevated hs-CRP, especially in individuals with low protein intake and normal weight (p < 0.1). Conclusions Intake of amino acids like Ser, Cys, Tyr, and Pro significantly impacts hs-CRP levels in children, indicating that regulating these could help prevent inflammation-related diseases. This study supports future dietary and health management strategies. This is first large-scale ML study linking amino acids to pediatric inflammation in China. The main limitations are the cross-section design and the use of self-reported dietary data. Full article
Show Figures

Figure 1

12 pages, 1845 KiB  
Article
Serum Concentrations of Imidazole Dipeptides and Serum Amyloid A in a Bottlenose Dolphin (Tursiops truncatus) with Rhabdomyolysis: Potential Biomarkers for Muscular Damage
by Nanami Arakawa, Mika Otsuka, Takahisa Hamano, Momochika Kumagai, Sanae Kato, Takuya Hirai, Akira Yabuki and Osamu Yamato
Animals 2025, 15(13), 1950; https://doi.org/10.3390/ani15131950 - 2 Jul 2025
Viewed by 409
Abstract
Imidazole dipeptides (IDPs), including anserine, carnosine, and balenine, are predominantly found in the skeletal muscles of vertebrates. Balenine is the major IDP in cetaceans. Serum amyloid A (SAA) is an acute phase protein released in response to damage or injury in various tissues, [...] Read more.
Imidazole dipeptides (IDPs), including anserine, carnosine, and balenine, are predominantly found in the skeletal muscles of vertebrates. Balenine is the major IDP in cetaceans. Serum amyloid A (SAA) is an acute phase protein released in response to damage or injury in various tissues, including skeletal muscles. A captive bottlenose dolphin (Tursiops truncatus) died due to rhabdomyolysis and subsequent acute kidney injury that probably originated from accidental muscle trauma. In this study, concentrations of IDPs and SAA were measured using stored serum collected from the affected dolphin with intermittent continuous damage of skeletal muscles to demonstrate the pathological relevance of these parameters and their usefulness as biomarkers for muscle damage in dolphins. The IDP concentration was measured using the high-performance liquid chromatography-ultraviolet method. The SAA concentration was measured using an enzyme-linked immunosorbent assay (ELISA) specific to dolphin SAA and a latex turbidimetric immunoassay (LTI) specific to human SAA. Herein, the IDP concentration was altered similarly to serum muscular enzymes, including creatinine kinase (CK) and aspartate aminotransferase (AST). However, IDP concentrations were elevated one day earlier than CK and AST levels at disease onset. Furthermore, IDP concentrations were similarly altered when assessed using both ELISA- and LTI-SAAs, and the change in IDP concentration coincided with that in LTI-SAA based on the statistical analysis. These data suggest that IDP concentration could detect muscle damage and injury, including necrosis and inflammation, in dolphins. Full article
(This article belongs to the Special Issue Diseases of Marine Mammals: Prevention, Control and Beyond)
Show Figures

Figure 1

18 pages, 9092 KiB  
Article
A Unified YOLOv8 Approach for Point-of-Care Diagnostics of Salivary α-Amylase
by Youssef Amin, Paola Cecere and Pier Paolo Pompa
Biosensors 2025, 15(7), 421; https://doi.org/10.3390/bios15070421 - 2 Jul 2025
Viewed by 419
Abstract
Salivary α-amylase (sAA) is a widely recognized biomarker for stress and autonomic nervous system activity. However, conventional enzymatic assays used to quantify sAA are limited by time-consuming, lab-based protocols. In this study, we present a portable, AI-driven point-of-care system for automated sAA [...] Read more.
Salivary α-amylase (sAA) is a widely recognized biomarker for stress and autonomic nervous system activity. However, conventional enzymatic assays used to quantify sAA are limited by time-consuming, lab-based protocols. In this study, we present a portable, AI-driven point-of-care system for automated sAA classification via colorimetric image analysis. The system integrates SCHEDA, a custom-designed imaging device providing and ensuring standardized illumination, with a deep learning pipeline optimized for mobile deployment. Two classification strategies were compared: (1) a modular YOLOv4-CNN architecture and (2) a unified YOLOv8 segmentation-classification model. The models were trained on a dataset of 1024 images representing an eight-class classification problem corresponding to distinct sAA concentrations. The results show that red-channel input significantly enhances YOLOv4-CNN performance, achieving 93.5% accuracy compared to 88% with full RGB images. The YOLOv8 model further outperformed both approaches, reaching 96.5% accuracy while simplifying the pipeline and enabling real-time, on-device inference. The system was deployed and validated on a smartphone, demonstrating consistent results in live tests. This work highlights a robust, low-cost platform capable of delivering fast, reliable, and scalable salivary diagnostics for mobile health applications. Full article
Show Figures

Figure 1

16 pages, 1415 KiB  
Article
Assessment of Surface Water Quality in the Krynka River Basin Using Fluorescence Spectroscopy Methods
by Sergey Chufitskiy, Sergey Romanchuk, Besarion Meskhi, Anastasiya Olshevskaya, Victoria Shevchenko, Mary Odabashyan, Svetlana Teplyakova, Anna Vershinina and Dmitry Savenkov
Plants 2025, 14(13), 2014; https://doi.org/10.3390/plants14132014 - 1 Jul 2025
Viewed by 304
Abstract
This study presents a biomonitoring study of surface waters in the Krynka River basin, encompassing three major regional reservoirs: Khanzhenkovskoe, Olkhovskoe, and Zuyevskoe. These water bodies face significant anthropogenic pressure from mining effluents, industrial discharges, and domestic wastewater. Key pollutants identified are surfactants [...] Read more.
This study presents a biomonitoring study of surface waters in the Krynka River basin, encompassing three major regional reservoirs: Khanzhenkovskoe, Olkhovskoe, and Zuyevskoe. These water bodies face significant anthropogenic pressure from mining effluents, industrial discharges, and domestic wastewater. Key pollutants identified are surfactants (SAAs), sulfates, phenols, chlorides, and manganese, with chemical oxygen demand (COD) exceeding regulatory limits. The research was conducted in September 2024. Based on the Specific Combinatorial Water Pollution Index, surface waters in the studied objects can be characterized as slightly polluted. To assess the negative impact of the identified pollutants on hydrobionts, the species composition of phytoplankton of the studied water bodies was analyzed. In the Olkhovskoe Reservoir and Olkhovaya River, cyanobacterial blooms (Oscillatoria agardhii G.) were observed, altering biodiversity in the Krynka River and Zuyevskoe Reservoir. Phytoplankton genera Synedra, Amphiprora, and Navicula—established bioindicators of aquatic ecosystem health—were dominant in Khanzhenkovskoe Reservoir, signaling nutrient enrichment and organic pollution. Changes in the species composition and structure of phytoplankton in the Krynka River, its tributaries and reservoirs, indicate a change in the level of saprobic water bodies from β to α-mesosaprobic, which indicates both the general level of surface water pollution and the accumulation of pollutants along the course of the river. The paper presents the results of fluorimetric analysis of photosynthetic activity of natural phytoplankton cells and demonstrates the possibility of using fluorescence induction curves for regular monitoring measurements. Fluorescence parameters indicate a general deterioration of photosynthetic activity of natural phytoplankton. The growth of Oscillatoria agardhii in the waters of the Olkhovskoe Reservoir and of green microalgae in the Zuevskoe Reservoir led to an increase in the fluorescence quantum yield (Fv/Fm) and the total photosynthetic activity index (PI), which makes it possible to use these parameters as indicator parameters reflecting the intensity of “blooming” of various phytoplankton species. Full article
(This article belongs to the Special Issue Biological Responses of Plants to Environmental Pollution)
Show Figures

Figure 1

Back to TopTop