Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,930)

Search Parameters:
Keywords = SO2 fluxes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11484 KiB  
Article
Analytical Investigation of Primary Waveform Distortion Effect on Magnetic Flux Density in the Magnetic Core of Inductive Current Transformer and Its Transformation Accuracy
by Michal Kaczmarek and Kacper Blus
Sensors 2025, 25(15), 4837; https://doi.org/10.3390/s25154837 (registering DOI) - 6 Aug 2025
Abstract
This paper analyzes how distortion in the primary current waveform affects the magnetic flux density in the magnetic core of an inductive current transformer and its transformation accuracy. Keeping the primary current’s RMS value constant, it studies the impact of changes in the [...] Read more.
This paper analyzes how distortion in the primary current waveform affects the magnetic flux density in the magnetic core of an inductive current transformer and its transformation accuracy. Keeping the primary current’s RMS value constant, it studies the impact of changes in the RMS values and phase angles of low-order harmonics on the core’s flux density and the values of current error and phase displacement of their transformation. The distorted current waveforms, resulting flux density, and hysteresis loops are examined to identify the operating conditions of the inductive current transformer. This study also highlights the strong influence of low-order harmonics and the diminishing effect of higher-frequency harmonics on the magnetic flux density in its magnetic core, e.g., third, fifth, and seventh higher harmonics may cause an increase in magnetic flux density in the magnetic core of the inductive current transformer in relation to that obtained for a sinusoidal current with a frequency of 50 Hz by about 8.5%, while with additional second, fourth, and sixth harmonics, the increase may reach about 23%. Therefore, the testing procedure should consider not only the load impedance and the RMS values of the primary current but also its harmonic content, including the RMS values of individual harmonics and their phase angles. Full article
(This article belongs to the Special Issue Condition Monitoring of Electrical Equipment Within Power Systems)
Show Figures

Figure 1

10 pages, 2566 KiB  
Article
Performance Prediction of Outer Rotor PMSM Considering 3-D Flux Coefficient Using Equivalent 2-D FEA
by Moo-Hyun Sung, Kyoung-Soo Cha, Young-Hoon Jung, Jae-Han Sim and Myung-Seop Lim
Machines 2025, 13(8), 692; https://doi.org/10.3390/machines13080692 - 6 Aug 2025
Abstract
In this article, we propose an equivalent 2-D finite element analysis (FEA) process considering the 3-D flux of an outer rotor permanent magnet synchronous motor (PMSM). In the motor, 3-D flux such as axial leakage flux (ALF) and overhang fringing flux (OFF) are [...] Read more.
In this article, we propose an equivalent 2-D finite element analysis (FEA) process considering the 3-D flux of an outer rotor permanent magnet synchronous motor (PMSM). In the motor, 3-D flux such as axial leakage flux (ALF) and overhang fringing flux (OFF) are influenced based on design variables. Three-dimensional FEA is required to consider the components of 3-D flux. However, 3-D FEA is inefficient to use during the design process because of time-consuming. Therefore, we propose an equivalent FEA that considers the 3-D flux. First, the effects of ALF and OFF according to design variables such as rotor inner and outer diameter, stack length, and overhang length. Second, the 3-D flux is converted into a coefficient. Finally, it is applied to 2-D FEA. Using the proposed process, motor performance considering 3-D flux can be quickly predicted. The proposed performance prediction process is verified through simulation and experiment. Full article
Show Figures

Figure 1

23 pages, 3831 KiB  
Article
Estimating Planetary Boundary Layer Height over Central Amazonia Using Random Forest
by Paulo Renato P. Silva, Rayonil G. Carneiro, Alison O. Moraes, Cleo Quaresma Dias-Junior and Gilberto Fisch
Atmosphere 2025, 16(8), 941; https://doi.org/10.3390/atmos16080941 (registering DOI) - 5 Aug 2025
Abstract
This study investigates the use of a Random Forest (RF), an artificial intelligence (AI) model, to estimate the planetary boundary layer height (PBLH) over Central Amazonia from climatic elements data collected during the GoAmazon experiment, held in 2014 and 2015, as it is [...] Read more.
This study investigates the use of a Random Forest (RF), an artificial intelligence (AI) model, to estimate the planetary boundary layer height (PBLH) over Central Amazonia from climatic elements data collected during the GoAmazon experiment, held in 2014 and 2015, as it is a key metric for air quality, weather forecasting, and climate modeling. The novelty of this study lies in estimating PBLH using only surface-based meteorological observations. This approach is validated against remote sensing measurements (e.g., LIDAR, ceilometer, and wind profilers), which are seldom available in the Amazon region. The dataset includes various meteorological features, though substantial missing data for the latent heat flux (LE) and net radiation (Rn) measurements posed challenges. We addressed these gaps through different data-cleaning strategies, such as feature exclusion, row removal, and imputation techniques, assessing their impact on model performance using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and r2 metrics. The best-performing strategy achieved an RMSE of 375.9 m. In addition to the RF model, we benchmarked its performance against Linear Regression, Support Vector Regression, LightGBM, XGBoost, and a Deep Neural Network. While all models showed moderate correlation with observed PBLH, the RF model outperformed all others with statistically significant differences confirmed by paired t-tests. SHAP (SHapley Additive exPlanations) values were used to enhance model interpretability, revealing hour of the day, air temperature, and relative humidity as the most influential predictors for PBLH, underscoring their critical role in atmospheric dynamics in Central Amazonia. Despite these optimizations, the model underestimates the PBLH values—by an average of 197 m, particularly in the spring and early summer austral seasons when atmospheric conditions are more variable. These findings emphasize the importance of robust data preprocessing and higtextight the potential of ML models for improving PBLH estimation in data-scarce tropical environments. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Atmospheric Sciences)
Show Figures

Figure 1

26 pages, 4213 KiB  
Article
Influence of Morus alba Leaves Extract on Human Erythrocytes
by Stefano Putaggio, Annamaria Russo, Giuseppe Tancredi Patanè, Antonella Calderaro, Santa Cirmi, Ivana Verboso, Giuseppina Laganà, Silvana Ficarra, Davide Barreca, Françisco Raymo and Ester Tellone
Biology 2025, 14(8), 1005; https://doi.org/10.3390/biology14081005 - 5 Aug 2025
Abstract
Morus alba L. (MA) is a member of the Moraceae family, known as “white mulberry”. Due to the high levels of bioactive compounds, mulberry plants can be considered a good source of nutrients and antioxidant compounds. Our study aims to analyze the effect [...] Read more.
Morus alba L. (MA) is a member of the Moraceae family, known as “white mulberry”. Due to the high levels of bioactive compounds, mulberry plants can be considered a good source of nutrients and antioxidant compounds. Our study aims to analyze the effect of MA extract leaves on erythrocytes, focusing on its action on metabolism and membrane integrity. The choice of erythrocytes as a study model is based on their metabolic simplicity and their easy availability. Cell viability, following exposure of the cells to the extract, was evaluated by hemolysis, methemoglobin, caspase 3 activity and flow cytofluorimetric analysis; in addition, the effect of the pretreatment with the MA was detected after incubation of erythrocytes with different stressors. The impact on cell metabolism was evaluated by measuring anion flux kinetics, ATP levels and phosphatase activity. The results obtained show a peculiar (double) effect of the extract, which, on the one hand, probably by exploiting its component with antioxidant properties, protects the cell membrane by accumulating on the bilayer. On the other hand, the alteration of anion exchange could lead to the triggering of apoptosis and consequent cell death. The hypotheses, although excluded by our data, all point toward a beneficial and protective action of the extract on the health and vitality of RBCs. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

23 pages, 5064 KiB  
Article
Study on Reasonable Well Spacing for Geothermal Development of Sandstone Geothermal Reservoir—A Case Study of Dezhou, Shandong Province, China
by Shuai Liu, Yan Yan, Lanxin Zhang, Weihua Song, Ying Feng, Guanhong Feng and Jingpeng Chen
Energies 2025, 18(15), 4149; https://doi.org/10.3390/en18154149 - 5 Aug 2025
Abstract
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in [...] Read more.
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in the sandstone thermal reservoir production area represented by Dezhou. Based on the measured data of temperature, flow, and water level, this paper constructs a typical engineering numerical model by using TOUGH2 software. It is found that when the distance between production and recharge wells is 180 m, the amount of production and recharge is 60 m3/h, and the temperature of reinjection is 30 °C, the temperature of the production well will decrease rapidly after 10 years of production and recharge. In order to solve the problem of thermal breakthrough, three optimization schemes are assumed: reducing the reinjection temperature to reduce the amount of re-injection when the amount of heat is the same, reducing the amount of production and injection when the temperature of production and injection is constant, and stopping production after the temperature of the production well decreases. However, the results show that the three schemes cannot solve the problem of thermal breakthrough or meet production demand. Therefore, it is necessary to set reasonable well spacing. Therefore, based on the strata near the Hydrological Homeland in Decheng District, the reasonable spacing of production and recharge wells is achieved by numerical simulation. Under a volumetric flux scenario ranging from 60 to 80 m3/h, the well spacing should exceed 400 m. For a volumetric flux between 80 and 140 m3/h, it is recommended that the well spacing be greater than 600 m. Full article
Show Figures

Figure 1

18 pages, 7499 KiB  
Article
Transformer Winding Fault Locating Using Frequency Domain Reflectometry (FDR) Technology
by Hao Yun, Yizhou Zhang, Yufei Sun, Liang Wang, Lulin Xu, Daning Zhang and Jialu Cheng
Electronics 2025, 14(15), 3117; https://doi.org/10.3390/electronics14153117 - 5 Aug 2025
Abstract
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing [...] Read more.
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing techniques, e.g., winding resistance, leakage inductance, and sweep frequency response analysis (SFRA), are not sensitive enough to identify minor turn-to-turn short defects. The SFRA technique is effective only if the fault is in such a condition that the flux distribution in the core is prominently distorted. This paper proposes the frequency domain reflectometry (FDR) technique for detecting and locating transformer winding defects. FDR measures the wave impedance and its change along the measured windings. The wire over a plane model is selected as the transmission line model for the transformer winding. The effectiveness is verified through lab experiments on a twist pair cable simulating the transformer winding and field testing on a real transformer. The FDR technique successfully identified and located the turn-to-turn short fault that was not detected by other testing techniques. Using FDR as a complementary tool for winding condition assessment will be beneficial. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

16 pages, 2036 KiB  
Article
Investigating a Characteristic Time Lag in the Ionospheric F-Region’s Response to Solar Flares
by Aisling N. O’Hare, Susanna Bekker, Harry J. Greatorex and Ryan O. Milligan
Atmosphere 2025, 16(8), 937; https://doi.org/10.3390/atmos16080937 (registering DOI) - 5 Aug 2025
Abstract
X-ray and EUV solar flare emission cause increases in the Earth’s dayside ionospheric electron density. While the response of the lower ionosphere to X-rays is well studied, the delay between EUV flare emission and the response of the ionospheric F-region has not been [...] Read more.
X-ray and EUV solar flare emission cause increases in the Earth’s dayside ionospheric electron density. While the response of the lower ionosphere to X-rays is well studied, the delay between EUV flare emission and the response of the ionospheric F-region has not been investigated. Here, we calculate the delays between incident He II 304 Å emission, and the TEC response for 10 powerful solar flares, all of which exhibit delays under 1 min. We assess these delays in relation to multiple solar and geophysical factors, and find a strong negative correlation (∼−0.85) between delay and He II flux change and a moderate negative correlation (∼−0.55) with rate of increase in He II flux. Additionally, flare magnitude and the X-ray-to-He II flux ratio at peak He II emission show strong negative correlations with delay (∼−0.80 and ∼−0.75, respectively). We also identify longer delays for flares occurring closer to the summer solstice. These results may have applications in upper-ionospheric recombination rate calculations, atmospheric modelling, and other solar–terrestrial studies. We highlight the importance of incident EUV and X-ray flux parameters on the response time of the ionospheric electron content, and these findings may also have implications for mitigating disruptions in communication and navigation systems. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

22 pages, 3788 KiB  
Article
An Optimization Design Method for Flat-Wire Motors Based on Combined Rotor Slot Structures
by Xiangjun Bi, Hongbin Yin, Yan Chen, Mingyang Luo, Xiaojun Wang and Wenjing Hu
World Electr. Veh. J. 2025, 16(8), 439; https://doi.org/10.3390/wevj16080439 - 4 Aug 2025
Abstract
To enhance the electromagnetic performance of flat-wire permanent magnet synchronous motors, three different groove structures were designed for the rotor, and a multi-objective optimization algorithm combining a genetic algorithm (GA) with the TOPSIS method was proposed. Firstly, an 8-pole 48-slot flat-wire motor model [...] Read more.
To enhance the electromagnetic performance of flat-wire permanent magnet synchronous motors, three different groove structures were designed for the rotor, and a multi-objective optimization algorithm combining a genetic algorithm (GA) with the TOPSIS method was proposed. Firstly, an 8-pole 48-slot flat-wire motor model was established, and the cogging torque was analytically calculated to compare the motor’s performance under different groove schemes. Secondly, global multi-objective optimization of the rotor groove dimensions was performed using a combined simulation approach involving Maxwell, Workbench, and Optislang, and the optimal rotor groove size structure was selected using the TOPSIS method. Finally, a comparative analysis of the motor’s performance under both rated-load and no-load conditions was conducted for the pre- and post-optimization designs, followed by verification of the mechanical strength of the optimized rotor structure. The research results demonstrate that the combined optimization approach utilizing the genetic algorithm and the TOPSIS method significantly enhances the torque characteristics of the motor. The computational results indicate that the average torque is increased to 165.32 N·m, with the torque ripple reduced from 28.37% to 13.32% and the cogging torque decreased from 896.88 mN·m to 187.9 mN·m. Moreover, the total distortion rates of the air-gap magnetic flux density and the no-load back EMF are significantly suppressed, confirming the rationality of the proposed motor design. Full article
Show Figures

Figure 1

17 pages, 838 KiB  
Article
A Scintillation Hodoscope for Measuring the Flux of Cosmic Ray Muons at the Tien Shan High Mountain Station
by Alexander Shepetov, Aliya Baktoraz, Orazaly Kalikulov, Svetlana Mamina, Yerzhan Mukhamejanov, Kanat Mukashev, Vladimir Ryabov, Nurzhan Saduyev, Turlan Sadykov, Saken Shinbulatov, Tairzhan Skokbayev, Ivan Sopko, Shynbolat Utey, Ludmila Vildanova, Nurzhan Yerezhep and Valery Zhukov
Particles 2025, 8(3), 73; https://doi.org/10.3390/particles8030073 - 4 Aug 2025
Abstract
For further investigation of the properties of the muon component in the core regions of extensive air showers (EASs), a new underground hodoscopic set-up with a total sensitive area of 22 m2 was built at the Tien Shan High Mountain Cosmic Ray [...] Read more.
For further investigation of the properties of the muon component in the core regions of extensive air showers (EASs), a new underground hodoscopic set-up with a total sensitive area of 22 m2 was built at the Tien Shan High Mountain Cosmic Ray Station. The hodoscope is based on a set of large-sized scintillation charged particle detectors with an output signal of analog type. The installation ensures a (5–8) GeV energy threshold of muon registration and a ∼104 dynamic range for the measurement of the density of muon flux. A program facility was designed that uses modern machine learning techniques for automated search for the typical scintillation pulse pattern in an oscillogram of a noisy analog signal at the output of the hodoscope detector. The program provides a ∼99% detection probability of useful signals, with a relative share of false positives below 1%, and has a sufficient operation speed for real-time analysis of incoming data. Complete verification of the hardware and software tools was performed under realistic operation conditions, and the results obtained demonstrate the correctness of the proposed method and its practical applicability to the investigation of the muon flux in EASs. In the course of the installation testing, a preliminary physical result was obtained concerning the rise of the multiplicity of muon particles around an EAS core in dependence on the primary EAS energy. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

17 pages, 5353 KiB  
Article
Evaluation of Hardfacing Layers Applied by FCAW-S on S355MC Steel and Their Influence on Its Mechanical Properties
by Fineas Morariu, Timotei Morariu, Alexandru Bârsan, Sever-Gabriel Racz and Dan Dobrotă
Materials 2025, 18(15), 3664; https://doi.org/10.3390/ma18153664 - 4 Aug 2025
Abstract
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective [...] Read more.
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective Fe-Cr-C alloy layers were deposited in one and two successive passes using automated FCAW, followed by tensile testing of specimens oriented at varying angles relative to the weld bead direction. The methodology integrated 3D scanning and digital image correlation to accurately capture geometric and deformation parameters. The experimental results revealed a consistent reduction in tensile strength and ductility in all the welded configurations compared to the base material. The application of the second weld layer further intensified this effect, while specimen orientation influenced the degree of mechanical degradation. Microstructural analysis confirmed carbide refinement and good adhesion, but also identified welding-induced defects and residual stresses as factors that contributed to performance loss. The findings highlight a clear trade-off between improved surface wear resistance and compromised structural properties, underscoring the importance of process optimization. Strategic selection of welding parameters and bead orientation is essential to balance functional durability with mechanical integrity in industrial applications. Full article
(This article belongs to the Special Issue Advances in Welding of Alloy and Composites (2nd Edition))
Show Figures

Figure 1

17 pages, 1459 KiB  
Article
Assessing Controlled Traffic Farming as a Precision Agriculture Strategy for Minimising N2O Losses
by Bawatharani Raveendrakumaran, Miles Grafton, Paramsothy Jeyakumar, Peter Bishop and Clive Davies
Nitrogen 2025, 6(3), 63; https://doi.org/10.3390/nitrogen6030063 - 4 Aug 2025
Abstract
Intensive vegetable farming emits high nitrous oxide (N2O) due to traffic-induced compaction, highlighting the need for preventing nitrogen (N) losses through better traffic management. This study examined the effects of Controlled Traffic Farming (CTF) and Random Traffic Farming (RTF) on N [...] Read more.
Intensive vegetable farming emits high nitrous oxide (N2O) due to traffic-induced compaction, highlighting the need for preventing nitrogen (N) losses through better traffic management. This study examined the effects of Controlled Traffic Farming (CTF) and Random Traffic Farming (RTF) on N2O emissions using intact soil cores (diameter: 18.7 cm; depth: 25 cm) collected from a vegetable production system in Pukekohe, New Zealand. Soil cores from CTF beds, CTF tramlines, and RTF plots were analysed under fertilised (140 kg N/ha) and unfertilised conditions. N2O fluxes were monitored over 58 days using gas chambers. The fertilised RTF system significantly (p < 0.05) increased N2O emissions (5.4 kg N2O–N/ha) compared to the unfertilised RTF system (1.53 kg N2O–N/ha). The emission from fertilised RTF was 46% higher than the maximum N2O emissions (3.7 kg N2O–N/ha) reported under New Zealand pasture conditions. The fertilised CTF system showed a 31.6% reduction in N2O emissions compared to fertilised RTF and did not differ significantly from unfertilised CTF. In general, CTF has demonstrated some resilience against fertiliser-induced N2O emissions, indicating the need for further investigation into its role as a greenhouse gas mitigation strategy. Full article
Show Figures

Figure 1

12 pages, 4237 KiB  
Article
Ultra-Stable Anode-Free Na Metal Batteries Enabled by Al2O3-Functionalized Separators
by Han Wang, Yiheng Zhao, Jiaqi Huang, Lu Wang, Canglong Li and Yuejiao Chen
Batteries 2025, 11(8), 297; https://doi.org/10.3390/batteries11080297 - 4 Aug 2025
Abstract
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is [...] Read more.
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is a pivotal strategy for stabilizing AFSMBs. Through systematic evaluation of four separators—2500 separator (PP), 2325 separator (PP/PE/PP), glass fiber (GF), and an Al2O3-coated PE membrane, we reveal that the Al2O3-coated separator uniquely enables exceptional interfacial kinetics and morphological control. Na||Na symmetric cells with Al2O3 coated separator exhibit ultralow polarization (4.5 mV) and the highest exchange current density (1.77 × 10−2 mA cm−2), while the anode-free AlC-NFPP full cells retain 91.6% capacity after 150 cycles at 2C. Specifically, the Al2O3 coating homogenizes Na+ flux, promotes dense and planar Na deposition, and facilitates near-complete stripping with minimal “dead Na”. This work establishes ceramic-functionalized separators as essential enablers of practical high-energy AFSMBs. Full article
Show Figures

Figure 1

21 pages, 5750 KiB  
Article
Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing
by Sara Soltanpour and Adolfo Foriero
Geotechnics 2025, 5(3), 51; https://doi.org/10.3390/geotechnics5030051 - 4 Aug 2025
Abstract
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and [...] Read more.
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and water flux, heat transport, frost heave, and vertical stress build-up in unsaturated soils. The analysis focuses on fine sand, sandy clay, and silty clay by examining their varying susceptibilities to frost action. Silty clay generated the highest amount of frost heave and steepest vertical stress gradients due to its high-water retention and strong capillary forces. Fine sand, on the other hand, produced a minimal amount of frost heave and a polarized vertical stress distribution. The study also revealed that vapor flux is more noticeable in freezing fine sand, while silty clay produces the greatest water flux between the frozen and unfrozen zones. The study also assesses the impact of soil properties including the saturated hydraulic conductivity, the particle thermal conductivity, and particle heat capacity on the frost-induced phenomena. Findings show that reducing the saturated hydraulic conductivity has a greater impact on mitigating frost heave than other variations in thermal properties. Silty clay is most affected by these changes, particularly near the soil surface, while fine sand shows less noticeable responses. Full article
Show Figures

Figure 1

16 pages, 10495 KiB  
Article
Revisiting Mn4Al11: Growth of Stoichiometric Single Crystals and Their Structural and Magnetic Properties
by Roman A. Khalaniya, Andrei V. Mironov, Alexander N. Samarin, Alexey V. Bogach, Aleksandr N. Kulchu and Andrei V. Shevelkov
Crystals 2025, 15(8), 714; https://doi.org/10.3390/cryst15080714 - 4 Aug 2025
Abstract
Stoichiometric single crystals of Mn4Al11 were synthesized from the elements using Sn as a flux. The crystal structure of Mn4Al11 was investigated using single crystal X-ray diffraction and showed a complex triclinic structure with a relatively small [...] Read more.
Stoichiometric single crystals of Mn4Al11 were synthesized from the elements using Sn as a flux. The crystal structure of Mn4Al11 was investigated using single crystal X-ray diffraction and showed a complex triclinic structure with a relatively small unit cell and interpenetrating networks of Mn and Al atoms. While our results generally agree with the previously reported data in the basic structure features such as triclinic symmetry and structure type, the atomic parameters differ significantly, likely due to different synthetic techniques producing off-stoichiometry or doped crystals used in the previous works. Our structural analysis showed that the view of the Mn substructure as isolated zigzag chains is incomplete. Instead, the Mn chains are coupled in corrugated layers by long Mn-Mn bonds. The high quality of the crystals with the stoichiometric composition also enabled us to study magnetic behavior in great detail and reveal previously unobserved magnetic ordering. Our magnetization measurements showed that Mn4Al11 is an antiferromagnet with TN of 65 K. The presence of the maximum above TN also suggests strong local interactions indicative of low-dimensional magnetic behavior, which likely stems from lowered dimensionality of the Mn substructure. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

12 pages, 411 KiB  
Article
High Sensitive Cardiac Troponin-I (Hs-cTnI) Levels in Asymptomatic Hemodialysis Patients
by Ofir Rabi, Linda Shavit, Ranel Loutati, Louay Taha, Mohammad Karmi, Akiva Brin, Dana Deeb, Nir Levi, Noam Fink, Pierre Sabouret, Mohammed Manassra, Abed Qadan, Motaz Amro, Michael Glikson and Elad Asher
J. Clin. Med. 2025, 14(15), 5470; https://doi.org/10.3390/jcm14155470 - 4 Aug 2025
Viewed by 55
Abstract
Background: High-sensitivity cardiac troponin (hs-cTn) is useful for detecting acute myocardial infarction, but chronic hemodialysis patients often have elevated baseline levels that exceed the upper reference limit (URL). This study aimed to determine whether hs-cTnI levels in asymptomatic hemodialysis patients exceed the [...] Read more.
Background: High-sensitivity cardiac troponin (hs-cTn) is useful for detecting acute myocardial infarction, but chronic hemodialysis patients often have elevated baseline levels that exceed the upper reference limit (URL). This study aimed to determine whether hs-cTnI levels in asymptomatic hemodialysis patients exceed the URL established for the general population, evaluate the impact of high-flux hemodialysis on hs-cTnI concentrations, and examine associations between hs-cTnI levels and subsequent hospitalization or mortality. Methods: A prospective, single-center cohort study was conducted at a tertiary care center from August 2023 to July 2024. Blood samples for hs-cTnI were collected from asymptomatic hemodialysis patients aged ≥ 40 years, measured before and after dialysis within one month. Patients were followed for up to 12 months. Results: Fifty-six patients were enrolled. The mean hs-cTnI levels were 28.4 ng/L pre-dialysis and 27.9 ng/L post-dialysis, with ranges of <6–223 ng/L and <6–187 ng/L, respectively. The mean hs-cTnI delta between pre- and post-dialysis was −0.5 ng/L, with 52% showing a negative delta, 30% no change, and 18% a positive delta. No association was found between baseline hs-cTnI levels and mortality or hospitalization during follow-up. Conclusions: Most asymptomatic hemodialysis patients had hs-cTnI levels in the “gray zone”, thus neither confirming nor excluding acute myocardial infarction. Dialysis did not significantly affect hs-cTnI levels, and elevated baseline hs-cTnI was not linked to increased mortality or hospitalization over 12 months. Full article
Show Figures

Figure 1

Back to TopTop