Electromagnetic and Multi-Physics Analysis and Design of Electric Machines

A special issue of Machines (ISSN 2075-1702). This special issue belongs to the section "Electrical Machines and Drives".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 2416

Special Issue Editor


E-Mail Website
Guest Editor
Department of Electrical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
Interests: multi-physics analysis and design of electric machines

Special Issue Information

Dear Colleagues,

This Special Issue focuses on advancing the understanding and development of electric machines by exploring innovative approaches in modeling, computational analysis, novel topologies, optimization strategies, and multi-physics coupling. It will bring together recent progress in these areas, highlighting emerging trends, methodologies, and challenges in the design and analysis of electric machines. By addressing key aspects such as electromagnetic field computation, structural improvements, and performance optimization, this Special Issue provides a platform for researchers and engineers to share insights, propose new solutions, and contribute to the future of high-performance electric machine technology.

The scope of this Special Issue encompasses, but is not limited to, the following topics:​

 - Computational Methods for Electromagnetic Fields: Development and application of advanced computational methods, including finite element methods (FEMs) and analytical methods, for analyzing electromagnetic fields in electric machines.;

 - Novel Topology and Structure: Design and analysis of new electric machine configurations and topologies that use performance metrics such as efficiency, power density, and thermal management.;

 - Optimization: Application of optimization techniques to electric machine design, with a particular focus on multi-objective optimization strategies that enhance electromagnetic, thermal, and mechanical performance;

 - Multi-Physics and Coupled Problems: Studies addressing the coupling of electromagnetic fields with other physical phenomena (e.g., thermal, mechanical) to provide a comprehensive analysis of electric machine behavior.

Dr. Min-Ro Park
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Machines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electric motor, generator, and transformer
  • computational methods for electromagnetic fields
  • novel topology and structure
  • optimization
  • multi-physics and coupled problems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4002 KB  
Article
Design and Validation of SPMSM with Step-Skew Rotor for EPS System Using Cycloid Curve
by Chungseong Lee
Machines 2025, 13(9), 814; https://doi.org/10.3390/machines13090814 - 5 Sep 2025
Viewed by 460
Abstract
This study considers a robust design methodology to reduce cogging torque in the EPS (Electric Power Steering) of an automotive system. Cogging torque reduction is the key design factor to improve steering feeling and drive stability in an EPS system. For this reason, [...] Read more.
This study considers a robust design methodology to reduce cogging torque in the EPS (Electric Power Steering) of an automotive system. Cogging torque reduction is the key design factor to improve steering feeling and drive stability in an EPS system. For this reason, an SPMSM (Surface Permanent Magnet Synchronous Motor) has been widely applied to drive a motor in an EPS system. Furthermore, two design methods, which are a magnet shape and step-skew design for rotor assembly, have been mainly used to reduce cogging torque in an SPMSM. In this paper, an SPMSM is selected as the drive motor and a robust design methodology is proposed to reduce cogging torque in an EPS system. Firstly, a cycloid curve is used for the magnet shape to reduce cogging torque. An evaluation index δq is also used to compare this with a conventional magnet shape design. Secondly, based on the results of the magnet shape design with the cycloid curve, a step-skew design for rotor assembly is also applied to reduce cogging torque. In order to validate the effectiveness of the robust design for the cycloid curve and conventional magnet shape with rotor step-skew, the results from FEM (Finite Element Method) analysis and prototype tests are compared. The cycloid curve magnet shape model with rotor step-skew was verified to reduce the cogging torque and enhance the robustness for cogging torque variation through the analysis and protype test results. The verified results for the proposed model will be extended to meet the required cogging torque variation for the various applications driven by SPMSM with the robust design model. Full article
Show Figures

Figure 1

10 pages, 2566 KB  
Article
Performance Prediction of Outer Rotor PMSM Considering 3-D Flux Coefficient Using Equivalent 2-D FEA
by Moo-Hyun Sung, Kyoung-Soo Cha, Young-Hoon Jung, Jae-Han Sim and Myung-Seop Lim
Machines 2025, 13(8), 692; https://doi.org/10.3390/machines13080692 - 6 Aug 2025
Viewed by 468
Abstract
In this article, we propose an equivalent 2-D finite element analysis (FEA) process considering the 3-D flux of an outer rotor permanent magnet synchronous motor (PMSM). In the motor, 3-D flux such as axial leakage flux (ALF) and overhang fringing flux (OFF) are [...] Read more.
In this article, we propose an equivalent 2-D finite element analysis (FEA) process considering the 3-D flux of an outer rotor permanent magnet synchronous motor (PMSM). In the motor, 3-D flux such as axial leakage flux (ALF) and overhang fringing flux (OFF) are influenced based on design variables. Three-dimensional FEA is required to consider the components of 3-D flux. However, 3-D FEA is inefficient to use during the design process because of time-consuming. Therefore, we propose an equivalent FEA that considers the 3-D flux. First, the effects of ALF and OFF according to design variables such as rotor inner and outer diameter, stack length, and overhang length. Second, the 3-D flux is converted into a coefficient. Finally, it is applied to 2-D FEA. Using the proposed process, motor performance considering 3-D flux can be quickly predicted. The proposed performance prediction process is verified through simulation and experiment. Full article
Show Figures

Figure 1

22 pages, 9235 KB  
Article
Temperature Analysis of Secondary Plate of Linear Induction Motor on Maglev Train Under Periodic Running Condition and Its Optimization
by Wenxiao Wu, Yunfeng He, Jien Ma, Qinfen Lu, Lin Qiu and Youtong Fang
Machines 2025, 13(6), 495; https://doi.org/10.3390/machines13060495 - 6 Jun 2025
Cited by 1 | Viewed by 1126
Abstract
The propulsion system is a critical component of medium–low-speed maglev trains and the single-sided linear induction motor (SLIM) has been adopted to generate thrust. However, the SLIM operates periodically in maglev trains. The temperature of the secondary plate of the SLIM rises significantly [...] Read more.
The propulsion system is a critical component of medium–low-speed maglev trains and the single-sided linear induction motor (SLIM) has been adopted to generate thrust. However, the SLIM operates periodically in maglev trains. The temperature of the secondary plate of the SLIM rises significantly due to eddy currents when the train enters and leaves the station, where large slip occurs. Subsequently, the temperature decreases through natural cooling during the shift interval time. This periodic operating condition is rarely addressed in the existing literature and warrants attention, as the temperature accumulates over successive periods, potentially resulting in thermal damage and thrust variation. Furthermore, the conductivity of plate varies significantly in the process, which affects the losses and thrust, requiring a coupled analysis. To investigate the temperature variation patterns, this paper proposes a coupled model integrating the lumped parameter thermal network (LPTN) and the equivalent circuit (EC) of the SLIM. Given the unique structure of the F-shaped rail, the LPTN mesh is well designed to account for the skin effect. Three experiments and a finite element method (FEM)-based analysis were conducted to validate the proposed model. Finally, optimizations were performed with respect to different shift interval time, plate materials, and carriage numbers. The impact of temperature on thrust is also discussed. The results indicate that the minimum shift interval time and maximum carriage number are 70.7 s and 9, respectively, with thrust increasing by 22.0% and 22.0%. Furthermore, the use of copper as the plate material can reduce the maximum temperature by 22.01% while decreasing propulsion thrust by 26.1%. Full article
Show Figures

Figure 1

Back to TopTop