Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (358)

Search Parameters:
Keywords = SNS fatigue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5167 KiB  
Article
Comparative Study of Local Stress Approaches for Fatigue Strength Assessment of Longitudinal Web Connections
by Ji Hoon Kim, Jae Sung Lee and Myung Hyun Kim
J. Mar. Sci. Eng. 2025, 13(8), 1491; https://doi.org/10.3390/jmse13081491 - 1 Aug 2025
Viewed by 142
Abstract
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data [...] Read more.
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data and comparative studies for actual ship structure details. This study addresses this limitation by evaluating the fatigue strength of longi-web connections in hull structures using local stress approaches, including hot spot stress, effective notch stress, notch stress intensity factor, and structural stress methods. Finite element analyses were conducted, and the predicted fatigue lives and failure locations were compared with experimental results. Although there are some differences between each method, all methods are valid and reasonable for predicting the primary failure locations and evaluating fatigue life. These findings provide a basis for considering suitable fatigue assessment methods for welded ship structures with respect to joint geometry and failure mechanisms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4992 KiB  
Article
Effect of Heat Treatments and Related Microstructural Modifications on High-Cycle Fatigue Behavior of Powder Bed Fusion–Laser Beam-Fabricated Ti-6Al-2Sn-4Zr-6Mo Alloy
by Gianluca Pirro, Alessandro Morri, Alessandra Martucci, Mariangela Lombardi and Lorella Ceschini
Metals 2025, 15(8), 849; https://doi.org/10.3390/met15080849 (registering DOI) - 29 Jul 2025
Viewed by 126
Abstract
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 [...] Read more.
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 °C (AN875) and solution treatment at 825 °C followed by aging at 500 °C (STA825), on the alloy’s rotating and bending fatigue behavior. The results indicate that the STA825 condition provides superior fatigue resistance (+25%) compared to AN875, due to the presence of a finer bilamellar microstructure, characterized by thinner primary α lamellae (αp) and a more homogeneous distribution of secondary α lamellae (αs) within the β matrix. Additionally, an investigation conducted using the Kitagawa–Takahashi (KT) approach and the El-Haddad model, based on the relationship between the fatigue limit and defect sensitivity, revealed improved crack propagation resistance from pre-existing defects (ΔKth) for the STA825 condition compared to AN875. Notably, the presence of fine αs after aging for STA825 is effective in delaying crack nucleation and propagation at early stages, while refined αp contributes to hindering macrocrack growth. The fatigue behavior of the STA825-treated Ti6246 alloy was even superior to that of the PBF-LB-processed Ti64, representing a viable alternative for the production of high-performance components in the automotive and aerospace sectors. Full article
Show Figures

Graphical abstract

26 pages, 3943 KiB  
Article
Effect of Corrosion-Induced Damage on Fatigue Behavior Degradation of ZCuAl8Mn13Fe3Ni2 Nickel–Aluminum Bronze Under Accelerated Conditions
by Ruonan Zhang, Junqi Wang, Pengyu Wei, Lian Wang, Chihui Huang, Zeyu Dai, Jinguang Zhang, Chaohe Chen and Xinyan Guo
Materials 2025, 18(15), 3551; https://doi.org/10.3390/ma18153551 - 29 Jul 2025
Viewed by 305
Abstract
Corrosion fatigue damage significantly affects the long-term service of marine platforms such as propellers. Fatigue testing of pre-corrosion specimens is essential for understanding damage mechanisms and accurately predicting fatigue life. However, traditional seawater-based tests are time-consuming and yield inconsistent results, making them unsuitable [...] Read more.
Corrosion fatigue damage significantly affects the long-term service of marine platforms such as propellers. Fatigue testing of pre-corrosion specimens is essential for understanding damage mechanisms and accurately predicting fatigue life. However, traditional seawater-based tests are time-consuming and yield inconsistent results, making them unsuitable for rapid evaluation of newly developed equipment. This study proposes an accelerated corrosion testing method for ZCuAl8Mn13Fe3Ni2 nickel–aluminum bronze, simulating the marine full immersion zone by increasing temperature, adding H2O2, reducing the solution pH, and preparing the special solution. Coupled with the fatigue test of pre-corrosion specimens, the corrosion damage characteristics and their influence on fatigue performance were analyzed. A numerical simulation method was developed to predict the fatigue life of pre-corrosion specimens, showing an average error of 13.82%. The S–N curves under different pre-corrosion cycles were also established. The research results show that using the test solution of 0.6 mol/L NaCl + 0.1 mol/L H3PO4-NaH2PO4 buffer solution + 1.0 mol/L H2O2 + 0.1 mL/500 mL concentrated hydrochloric acid for corrosion acceleration testing shows good corrosion acceleration. Moreover, the test methods ensure accuracy and reliability of the fatigue behavior evaluation of pre-corrosion specimens of the structure under actual service environments, offering a robust foundation for the material selection, corrosion resistance evaluation, and fatigue life prediction of marine structural components. Full article
Show Figures

Figure 1

28 pages, 8135 KiB  
Article
Drastically Accelerating Fatigue Life Assessment: A Dual-End Multi-Station Spindle Approach for High-Throughput Precision Testing
by Abdurrahman Doğan, Kürşad Göv and İbrahim Göv
Machines 2025, 13(8), 665; https://doi.org/10.3390/machines13080665 - 29 Jul 2025
Viewed by 339
Abstract
This study introduces a time-efficient rotating bending fatigue testing system featuring 11 dual-end spindles, enabling simultaneous testing of 22 specimens. Designed for high-throughput fatigue life (S–N curve) assessment, the system theoretically allows over 93% reduction in total test duration, with 87.5% savings demonstrated [...] Read more.
This study introduces a time-efficient rotating bending fatigue testing system featuring 11 dual-end spindles, enabling simultaneous testing of 22 specimens. Designed for high-throughput fatigue life (S–N curve) assessment, the system theoretically allows over 93% reduction in total test duration, with 87.5% savings demonstrated in validation experiments using AISI 304 stainless steel. The PLC-based architecture provides autonomous operation, real-time failure detection, and automatic cycle logging. ER16 collet holders are easily replaceable within one minute, and all the components are selected from widely available industrial-grade parts to ensure ease of maintenance. The modular design facilitates straightforward adaptation to different station counts. The validation results confirmed an endurance limit of 421 MPa, which is consistent with the established literature and within ±5% deviation. Fractographic analysis revealed distinct crack initiation and propagation zones, supporting the observed fatigue behavior. This high-throughput methodology significantly improves testing efficiency and statistical reliability, offering a practical solution for accelerated fatigue life evaluation in structural, automotive, and aerospace applications. Full article
Show Figures

Figure 1

13 pages, 2500 KiB  
Article
The Impact of Gear Meshing in High-Speed EMU Gearboxes on Fatigue Strength of the Gearbox Housing
by Changqing Liu, Shouguang Sun and Qiang Li
Technologies 2025, 13(8), 311; https://doi.org/10.3390/technologies13080311 - 22 Jul 2025
Viewed by 242
Abstract
As high-speed electric multiple units (EMUs) advance in speed and complexity, quasi-static design methods may underestimate the fatigue risks associated with high-frequency dynamic excitations. This study quantifies the contribution of gear meshing-induced vibrations (2512 Hz) to fatigue damage in EMU gearbox housings, revealing [...] Read more.
As high-speed electric multiple units (EMUs) advance in speed and complexity, quasi-static design methods may underestimate the fatigue risks associated with high-frequency dynamic excitations. This study quantifies the contribution of gear meshing-induced vibrations (2512 Hz) to fatigue damage in EMU gearbox housings, revealing resonance amplification of local stresses up to 1.8 MPa at 300 km/h operation. Through integrated field monitoring and bench testing, we demonstrated that gear meshing excites structural modes, generating sustained, very high-cycle stresses (>108 cycles). Crucially, fatigue specimens were directly extracted from in-service gearbox housings—overcoming the limitations of standardized coupons—passing the very high-cycle fatigue (VHCF) test to derive S-N characteristics beyond 108 cycles. Results show a continuous decline in fatigue strength (with no traditional fatigue limit) from 108 to 109 cycles. This work bridges the gap between static design standards (e.g., FKM) and actual dynamic environments, proving that accumulated damage from low-amplitude gear-meshing stresses (3.62 × 1011 cycles over a 12 million km lifespan) contributes to a 16% material utilization ratio. The findings emphasize that even low-magnitude gear-meshing stresses can significantly influence gearbox fatigue life due to their ultra-high frequency, warranting design consideration beyond current standards. Full article
Show Figures

Figure 1

31 pages, 8853 KiB  
Article
Atomistic-Based Fatigue Property Normalization Through Maximum A Posteriori Optimization in Additive Manufacturing
by Mustafa Awd, Lobna Saeed and Frank Walther
Materials 2025, 18(14), 3332; https://doi.org/10.3390/ma18143332 - 15 Jul 2025
Viewed by 359
Abstract
This work presents a multiscale, microstructure-aware framework for predicting fatigue strength distributions in additively manufactured (AM) alloys—specifically, laser powder bed fusion (L-PBF) AlSi10Mg and Ti-6Al-4V—by integrating density functional theory (DFT), instrumented indentation, and Bayesian inference. The methodology leverages principles common to all 3D [...] Read more.
This work presents a multiscale, microstructure-aware framework for predicting fatigue strength distributions in additively manufactured (AM) alloys—specifically, laser powder bed fusion (L-PBF) AlSi10Mg and Ti-6Al-4V—by integrating density functional theory (DFT), instrumented indentation, and Bayesian inference. The methodology leverages principles common to all 3D printing (additive manufacturing) processes: layer-wise material deposition, process-induced defect formation (such as porosity and residual stress), and microstructural tailoring through parameter control, which collectively differentiate AM from conventional manufacturing. By linking DFT-derived cohesive energies with indentation-based modulus measurements and a MAP-based statistical model, we quantify the effect of additive-manufactured microstructural heterogeneity on fatigue performance. Quantitative validation demonstrates that the predicted fatigue strength distributions agree with experimental high-cycle and very-high-cycle fatigue (HCF/VHCF) data, with posterior modes and 95 % credible intervals of σ^fAlSi10Mg=867+8MPa and σ^fTi6Al4V=1159+10MPa, respectively. The resulting Woehler (S–N) curves and Paris crack-growth parameters envelop more than 92 % of the measured coupon data, confirming both accuracy and robustness. Furthermore, global sensitivity analysis reveals that volumetric porosity and residual stress account for over 70 % of the fatigue strength variance, highlighting the central role of process–structure relationships unique to AM. The presented framework thus provides a predictive, physically interpretable, and data-efficient pathway for microstructure-informed fatigue design in additively manufactured metals, and is readily extensible to other AM alloys and process variants. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Figure 1

18 pages, 5060 KiB  
Article
Research on Fatigue Strength Evaluation Method of Welded Joints in Steel Box Girders with Open Longitudinal Ribs
by Bo Shen, Ming Liu, Yan Wang and Hanqing Zhuge
Crystals 2025, 15(7), 646; https://doi.org/10.3390/cryst15070646 - 15 Jul 2025
Viewed by 250
Abstract
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale [...] Read more.
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale fatigue loading test for the steel box girder local component were carried out. The accuracy of the finite-element model was verified by comparing it with the test results, and the rationality of the fatigue strength evaluation methods for welded joints was deeply explored. The results indicate that the maximum nominal stress occurs at the weld toe between the transverse diaphragm and the top plate at the edge of the loading area, which is the fatigue-vulnerable location for the steel box girder local components. The initial static-load stresses at each measuring point were in good agreement with the finite-element calculation results. However, the static-load stress at the measuring point in the fatigue-vulnerable position shows a certain decrease with the increase in the number of cyclic loads, while the stress at other measuring points remains basically unchanged. According to the finite-element model, the fatigue strengths obtained by the nominal stress method and the hot-spot stress method are 72.1 MPa and 93.8 MPa, respectively. It is reasonable to use the nominal stress S-N curve with a fatigue life of 2 million cycles at 70 MPa and the hot-spot stress S-N curve with a fatigue life of 2 million cycles at 90 MPa (FAT90) to evaluate the fatigue of the welded joints in steel box girders with open longitudinal ribs. According to the equivalent structural stress method, the fatigue strength corresponding to 2 million cycles is 94.1 MPa, which is slightly lower than the result corresponding to the main S-N curve but within the range of the standard deviation curve. The research results of this article can provide important guidance for the anti-fatigue design of welded joints in steel box girders with open longitudinal ribs. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

22 pages, 5614 KiB  
Article
Fatigue Design Research on Notch–Stud Connectors of Timber–Concrete Composite Structures
by Zuen Zheng, Shuai Yuan and Guojing He
Buildings 2025, 15(12), 2033; https://doi.org/10.3390/buildings15122033 - 12 Jun 2025
Viewed by 531
Abstract
To investigate the mechanical behavior and damage mechanism of notch–stud connectors in timber–concrete composites under fatigue loading, fifteen push-out specimens in five groups were designed with load cycles as the key variable. Fatigue failure modes and mechanisms were analyzed to examine fatigue life, [...] Read more.
To investigate the mechanical behavior and damage mechanism of notch–stud connectors in timber–concrete composites under fatigue loading, fifteen push-out specimens in five groups were designed with load cycles as the key variable. Fatigue failure modes and mechanisms were analyzed to examine fatigue life, stiffness degradation, and cumulative damage laws of connectors. Numerical simulations with up to 100 load cycles explored timber/concrete damage effects on stud fatigue performance. Based on the results, an S-N curve was established, a fatigue damage model developed, and a fatigue design method proposed for such connectors. Primary failure modes were stud fracture and local concrete crushing in notches. Stiffness degradation followed an inverted “S”-shaped “fast–slow–fast” pattern. Using residual slip as the damage variable, a two-stage fatigue damage evolution model was constructed from the damage–cycle ratio relationship, offering a new method for shear connector fatigue damage calculation in timber–concrete composites and enabling remaining life prediction for similar composite beam connectors. Finite element simulations of push-out specimens showed high consistency between calculated and experimental fatigue life/damage results, validating the conclusions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

27 pages, 3753 KiB  
Article
A Surrogate Artificial Neural Network Model for Estimating the Fatigue Life of Steel Components Based on Finite Element Simulations
by Ela Marković, Tea Marohnić and Robert Basan
Materials 2025, 18(12), 2756; https://doi.org/10.3390/ma18122756 - 12 Jun 2025
Viewed by 478
Abstract
A surrogate artificial neural network (ANN) model trained on the data generated from a computational finite element-based (FE-based) model is developed. The developed ANN model enables the estimation of the fatigue life (number of load cycles to failure) of component-like specimens with stress [...] Read more.
A surrogate artificial neural network (ANN) model trained on the data generated from a computational finite element-based (FE-based) model is developed. The developed ANN model enables the estimation of the fatigue life (number of load cycles to failure) of component-like specimens with stress concentrators. Using the developed model, the component-specific S-N curves can be generated with an accuracy comparable to that of the computational FE-based model. The investigation covered through- and surface-hardened steel components with different numbers and types of stress concentrators. The basis for data generation is the parametrized computational FE-based model, which enables the determination of the stress–strain response and the calculation of the fatigue life of examined components under cyclic loading conditions. The computational FE-based model can be adjusted to include components with different geometries and heat treatment conditions. The computational FE-based model incorporates nonlinear material behavior to provide a more accurate representation of the component’s behavior, which results in higher computational costs. In contrast, the developed ANN model provides a quicker and more efficient way to assess the fatigue life of both through- and surface-hardened components, overcoming these limitations. Full article
Show Figures

Figure 1

18 pages, 7815 KiB  
Article
Short-Beam Shear Fatigue Behavior on Unidirectional GLARE: Mean Shear Stress Effect, Scatter, and Anisotropy
by Douglas G. Caetano, Hector G. Kotik, Juan E. Perez Ipiña and Enrique M. Castrodeza
Fibers 2025, 13(6), 77; https://doi.org/10.3390/fib13060077 - 9 Jun 2025
Viewed by 989
Abstract
This paper investigates the effect of mean shear stress on short-beam shear fatigue in a GLARE 1-3/2 commercial fiber–metal laminate (FML). This study explores three shear stress ratios (Rτ 0.1, 0.3, and 0.5) and two material orientations (longitudinal and transversal) under [...] Read more.
This paper investigates the effect of mean shear stress on short-beam shear fatigue in a GLARE 1-3/2 commercial fiber–metal laminate (FML). This study explores three shear stress ratios (Rτ 0.1, 0.3, and 0.5) and two material orientations (longitudinal and transversal) under constant amplitude fatigue. Different stress levels for each Rτ value were explored to obtain failures between 103 and 106 load cycles. The experimental results reveal anisotropy, with transversal specimens exhibiting lower performance and increased scatter. The mean shear stress effect is discussed herein, with insights into the critical role of mean shear of fatigue performance. Rτ 0.1 was the most severe condition and Rτ 0.5 was the least severe. The Rτ 0.3 condition produced steeper S-N curves, indicating that the combined effect of mean shear stress and shear stress amplitude led to a higher rate of damage accumulation. The fractographic analysis investigated the failure modes and confirmed the damage dominated by Mode II, supporting the test methodology employed. Full article
Show Figures

Figure 1

15 pages, 9452 KiB  
Article
Thermal Fatigue Behaviors of BGA Packages with an Optimized Solder Joint Layout
by Mohammed Abdel Razzaq, Michael Meilunas, Xian A. Cao, Jim Wilcox and Abdallah Ramini
Electronics 2025, 14(11), 2286; https://doi.org/10.3390/electronics14112286 - 4 Jun 2025
Viewed by 770
Abstract
Ball Grid Array (BGA) failures are often dominated by stress concentrations at the outer solder joints, particularly under thermomechanical loading. To mitigate this issue, this study investigates the mechanical and reliability implications of optimizing the BGA solder joint array by removing the outermost [...] Read more.
Ball Grid Array (BGA) failures are often dominated by stress concentrations at the outer solder joints, particularly under thermomechanical loading. To mitigate this issue, this study investigates the mechanical and reliability implications of optimizing the BGA solder joint array by removing the outermost rows and columns, positioning all connections directly beneath the silicon die. Two commonly used solder alloys—SAC305 and Sn37Pb—were selected to evaluate the effects of this optimized array design. A combined experimental and numerical approach was employed, including accelerated thermal cycling (–40 °C to 125 °C), in situ resistance monitoring, cross-sectional failure analysis, and finite element modeling (FEM) to assess fatigue behavior under the altered layout. The optimized array significantly improved performance for SAC305, yielding a 1.67× increase in mean cycles-to-failure and a 29% reduction in peak von Mises stress, with failure locations shifting from the corners to more evenly distributed areas beneath the die. Sn37Pb assemblies showed only a 1.01× improvement despite an 11% stress reduction, attributed to persistent shear-dominated failures at second-row joints. These results highlight the critical influence of joint array architecture and solder alloy selection on reliability, offering design-level guidance for applications prioritizing thermomechanical robustness with reduced I/O counts. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

15 pages, 6019 KiB  
Article
Effect of Service Temperature on the Mechanical and Fatigue Behaviour of Metal–Polymer Friction Stir Composite Joints
by Arménio N. Correia, Rodrigo J. Coelho, Daniel F. O. Braga, Mafalda Guedes, Ricardo Baptista and Virgínia Infante
Polymers 2025, 17(10), 1366; https://doi.org/10.3390/polym17101366 - 16 May 2025
Cited by 1 | Viewed by 464
Abstract
This study investigates the mechanical and fatigue behaviour of friction stir composite joints fabricated from an aluminum alloy (AA6082-T6) and a glass fibre-reinforced polymer (Noryl® GFN2) under different service temperature conditions. The joints were tested under both quasi-static and cyclic loading at [...] Read more.
This study investigates the mechanical and fatigue behaviour of friction stir composite joints fabricated from an aluminum alloy (AA6082-T6) and a glass fibre-reinforced polymer (Noryl® GFN2) under different service temperature conditions. The joints were tested under both quasi-static and cyclic loading at three different temperatures (23, 75, and 130 °C). Fracture surfaces were analyzed, and the probabilistic S–N curves were derived using Weibull distribution. Results indicated that increasing the service temperature caused a non-linear decrease in both the quasi-static and fatigue strength of the joints. Compared to room temperature, joints tested at 75 °C and 130 °C showed a 10% and 50% reduction in average tensile strength, respectively. The highest fatigue strength occurred at 23 °C, while the lowest was at 130 °C, in line with the quasi-static results. Fatigue stress-life plots displayed a semi-logarithmic nature, with lives ranging from 102 to 105 cycles for stress amplitudes between 7.7 and 22.2 MPa at 23 °C, 7.2 to 19.8 MPa at 75 °C, and 6.2 to 13.5 MPa at 130 °C. The joints’ failure occurred in the polymeric base material close to joints’ interface, highlighting the critical role of the polymer in limiting joints’ performance, as confirmed by thermal and scanning electron microscopy analyses. Full article
Show Figures

Figure 1

19 pages, 7082 KiB  
Article
The Fatigue Life Prediction of Welded Joints in Orthotropic Steel Bridge Decks Considering Weld-Induced Residual Stress and Its Relaxation Under Vehicle Loads
by Wen Zhong, Youliang Ding, Yongsheng Song, Sumei Liu, Mengyao Xu and Xin Wang
Buildings 2025, 15(10), 1644; https://doi.org/10.3390/buildings15101644 - 14 May 2025
Viewed by 510
Abstract
The welded joints in steel bridges have a complicated structure, and their fatigue life is mainly determined by the real stress under the coupling effect of vehicle load stress, as well as weld-induced residual stress and its relaxation. Traditional fatigue analysis methods are [...] Read more.
The welded joints in steel bridges have a complicated structure, and their fatigue life is mainly determined by the real stress under the coupling effect of vehicle load stress, as well as weld-induced residual stress and its relaxation. Traditional fatigue analysis methods are inadequate for effectively accounting for weld-induced residual stress and its relaxation, resulting in a significant discrepancy between the predicted fatigue life and the actual fatigue cracking time. A fatigue damage assessment model of welded joints was developed in this study, considering weld-induced residual stress and its relaxation under vehicle load stress. A multi-scale finite element model (FEM) for vehicle-induced coupled analysis was established to investigate the weld-induced initial residual stress and its relaxation effect associated with cyclic bend fatigue due to vehicles. The fatigue damage assessment, considering the welding residual stress and its relaxation, was performed based on the S–N curve model from metal fatigue theory and Miner’s linear damage theory. Based on this, the impact of variations in traffic load on fatigue life was forecasted. The results show that (1) the state of tension or compression in vehicle load stress notably impacts the residual stress relaxation effect observed in welded joints, of which the relaxation magnitude of the von Mises stress amounts to 81.2% of the average vehicle load stress value under tensile stress working conditions; (2) the predicted life of deck-to-rib welded joints is 28.26 years, based on traffic data from Jiangyin Bridge, which is closer to the monitored fatigue cracking life when compared with the Eurocode 3 and AASHTO LRFD standards; and (3) when vehicle weight and traffic volume increase by 30%, the fatigue life significantly drops to just 9.25 and 12.13 years, receptively. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 22095 KiB  
Article
Experimental and Numerical Investigation of Constant-Amplitude Fatigue Performance in Welded Joints of Steel Tubular Flange Connections for Steel Structures
by Huaguang Ni, Saicong Guo, Shujia Zhang and Honggang Lei
Buildings 2025, 15(9), 1574; https://doi.org/10.3390/buildings15091574 - 7 May 2025
Viewed by 451
Abstract
Welded joints of tubular flange connections (TFCs) for steel structures are prone to cumulative fatigue breakdown under oscillatory loading regimes. This study investigates the constant-amplitude fatigue performance of these welded connections through combined experimental testing and finite element analysis. Seven tubular flange connection [...] Read more.
Welded joints of tubular flange connections (TFCs) for steel structures are prone to cumulative fatigue breakdown under oscillatory loading regimes. This study investigates the constant-amplitude fatigue performance of these welded connections through combined experimental testing and finite element analysis. Seven tubular flange connection specimens were subjected to constant-amplitude fatigue tests, and the nominal stress range approach was employed to establish S-N curves for the TFC welds, which were then compared with existing design codes. Stress concentration behavior at the weld toe was analyzed using ABAQUS finite element software. Macro- and micro-scale examinations of fatigue fracture surfaces were conducted to elucidate the fatigue crack mechanisms. The results demonstrate an allowable stress range of 82.41 MPa at a 2-million-cycle fatigue strength, exceeding the specifications of current fatigue design codes. The finite element analysis shows that there is a significant stress concentration at the weld toe of the steel tube–flange weld, and the uneven stress distribution in the circumferential direction of the weld makes this position more prone to fatigue failure, which is consistent with the experimental phenomena. The derived fatigue design method for TFCs provides practical guidance for engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

9 pages, 1613 KiB  
Proceeding Paper
Study of Additive Manufacturing Intrinsic Defects on Fatigue Life of Ti-6Al-4V
by Teresa Morgado, João Alves, António Pereira, Manuel Pereira and Rui F. Martins
Eng. Proc. 2025, 90(1), 107; https://doi.org/10.3390/engproc2025090107 - 6 May 2025
Viewed by 579
Abstract
The present work presents a new approach to studying the structural integrity of a Ti-6Al-4V alloy obtained by Selective Laser Melting (SLM). This approach is based on the intrinsic addictive manufacturing defects analysis obtained by nanotomography, the experimental S-N curve, and the small [...] Read more.
The present work presents a new approach to studying the structural integrity of a Ti-6Al-4V alloy obtained by Selective Laser Melting (SLM). This approach is based on the intrinsic addictive manufacturing defects analysis obtained by nanotomography, the experimental S-N curve, and the small crack growth Murakami and Endo model. Also, two counting methods of 3D manufacturing intrinsic defects were considered. The simulation of S-N curves and the small crack propagation curves were successfully obtained. New models for predicted fatigue limit were developed, one using the (3D) variable area of the defects observed as the total area and the other using the total project area. The 3D total surface area counting method presents more conservative values on crack propagation studies, so it is recommended for integrity studies of Ti6Al4V alloy obtained by SLM. Full article
Show Figures

Figure 1

Back to TopTop