Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = SIRT1/Nrf2 signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5270 KiB  
Article
Gallic Acid and Taurine Attenuate Thiamethoxam-Induced Hepatotoxicity in Rats by Modulating SIRT-1/PGC-1α, NF-κB/iNOS, and p53/Bax/Caspase-3 Pathways
by Sara T. Elazab, Fatmah A. Safhi, Rasha K. Al-Akeel, Raghda H. Deraz, Souvarish Sarkar and Rania Essam Ali Gamal Eldin
Pharmaceuticals 2025, 18(8), 1112; https://doi.org/10.3390/ph18081112 - 25 Jul 2025
Viewed by 353
Abstract
Background/Objectives: Thiamethoxam (TMX) is one of the most extensively utilized insecticides of the neonicotinoid family; however, its application is associated with notable toxic effects on multiple organs of mammals. Our purpose was to explore the potential hepatoprotective effect of taurine (TAU) and/or [...] Read more.
Background/Objectives: Thiamethoxam (TMX) is one of the most extensively utilized insecticides of the neonicotinoid family; however, its application is associated with notable toxic effects on multiple organs of mammals. Our purpose was to explore the potential hepatoprotective effect of taurine (TAU) and/or gallic acid (GA) against TMX-induced liver damage, with an emphasis on their role in regulating SIRT-1/PGC-1α, NF-κB/iNOS, and p53/Bax/caspase-3 pathways. Methods: Rats were assigned to seven groups (n = 6) and gavaged daily for 28 days with saline (control group), TAU at 50 mg/kg, GA at 20 mg/kg, TMX at 78.15 mg/kg, TMX + TAU, TMX + GA, and TMX + TAU + GA. Results: The findings revealed that TAU and/or GA attenuated TMX-induced liver injury, as demonstrated by the restoration of hepatic performance hallmarks and histological structure. TAU and GA mitigated TMX-mediated oxidative stress and boosted the antioxidant defense mechanism by upregulating the transcription levels of SIRT-1, PGC-1α, Nrf2, and HO-1. Moreover, TAU and GA suppressed TMX-associated inflammatory response by increasing IL-10 concentration and lowering the levels of NF-κB, IL-1β, and iNOS; the mRNA levels of NLRP3; and TNF-α immunoexpression. Both compounds, individually or concurrently, exerted an anti-apoptotic effect in TMX-treated rats, evidenced by increased Bcl-2 expression and reduced p53 mRNA level, Bax expression, and caspase-3 concentration. Conclusions: TAU and/or GA may be regarded as promising remedies that can alleviate TMX-induced hepatotoxicity by activating SIRT-1/PGC-1α signaling and abolishing inflammation and apoptosis. Full article
Show Figures

Figure 1

24 pages, 3224 KiB  
Review
Quercetin in Idiopathic Pulmonary Fibrosis and Its Comorbidities: Gene Regulatory Mechanisms and Therapeutic Implications
by Verónica Rocío Vásquez-Garzón, Juan Manuel Velázquez-Enríquez, Jovito Cesar Santos-Álvarez, Alma Aurora Ramírez-Hernández, Jaime Arellanes-Robledo, Cristian Jiménez-Martínez and Rafael Baltiérrez-Hoyos
Genes 2025, 16(8), 856; https://doi.org/10.3390/genes16080856 - 23 Jul 2025
Viewed by 381
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, has emerged as a promising compound due to its antioxidant, anti-inflammatory, and antifibrotic properties. Preclinical and clinical studies have demonstrated its ability to modulate key molecular pathways involved in IPF, including Nrf2, SIRT1/AMPK, and the regulation of fibrosis-associated microRNAs (miRNAs). Furthermore, quercetin shows therapeutic potential across a range of IPF-related comorbidities, including chronic obstructive pulmonary disease, pulmonary hypertension, lung cancer, cardiovascular disease, diabetes, and psychiatric disorders. Under these conditions, quercetin acts via epigenetic modulation of miRNAs and regulation of oxidative stress and inflammatory signaling pathways. This review highlights the multifunctional role of quercetin in IPF and its comorbidities, emphasizing its gene regulatory mechanisms and potential as an adjunctive or alternative therapeutic strategy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 2095 KiB  
Article
Maternal Nutrient Excess Induces Stress Signaling and Decreases Mitochondrial Number in Term Fetal Baboon Skeletal Muscle
by Xu Yan, Carolina Tocantins, Mei-Jun Zhu, Susana P. Pereira and Min Du
Biology 2025, 14(7), 868; https://doi.org/10.3390/biology14070868 - 17 Jul 2025
Viewed by 433
Abstract
Maternal obesity programs the fetus for increased risk of chronic disease development in early life and adulthood. We hypothesized that maternal nutrient excess leads to fetal inflammation and impairs offspring skeletal muscle mitochondrial biogenesis in non-human primates. At least 12 months before pregnancy, [...] Read more.
Maternal obesity programs the fetus for increased risk of chronic disease development in early life and adulthood. We hypothesized that maternal nutrient excess leads to fetal inflammation and impairs offspring skeletal muscle mitochondrial biogenesis in non-human primates. At least 12 months before pregnancy, female baboons were fed a normal chow (CTR, 12% energy fat) or a maternal nutrient excess (MNE, 45% energy fat, and ad libitum fructose sodas) diet, with the latter to induce obesity. After 165 days of gestation (0.9 G), offspring baboons were delivered by cesarean section, and the soleus muscle was collected (CTR n = 16, MNE n = 5). At conception, MNE mothers presented increased body fat and weighed more than controls. The soleus muscle of MNE fetuses exhibited increased levels of stress signaling associated with inflammation (TLR4, TNFα, NF-kB p65, and p38), concomitant with reduced expression of key regulators of mitochondrial biogenesis, including PGC1α, both at the protein and transcript levels, as well as downregulation of PPARGC1B, PPARA, PPARB, CREB1, NOS3, SIRT1, SIRT3. Decreased transcript levels of NRF1 were observed alongside diminished mitochondrial DNA copy number, mitochondrial fusion elements (MFN1, MFN2), cytochrome C protein levels, and cytochrome C oxidase subunits I and II transcripts (cox1 and cox2). MNE coupled to MO-induced stress signaling in fetal baboon soleus muscle is associated with impaired mitochondrial biogenesis and lower mitochondrial content, resembling the changes observed in metabolic dysfunctions, such as diabetes. The observed fetal alterations may have important implications for postnatal development and metabolism, potentially increasing the risk of early-onset metabolic disorders and other non-communicable diseases. Full article
(This article belongs to the Special Issue Mitochondria: The Diseases' Cause and Cure)
Show Figures

Figure 1

31 pages, 7349 KiB  
Article
Melatonin Alleviates MBP-Induced Oxidative Stress and Apoptosis in TM3 Cells via the SIRT1/PGC-1α Signaling Pathway
by Jingjing Liu, Qingcan Guan, Shuang Li, Qi Qi and Xiaoyan Pan
Int. J. Mol. Sci. 2025, 26(12), 5910; https://doi.org/10.3390/ijms26125910 - 19 Jun 2025
Viewed by 505
Abstract
This study investigates the role of melatonin in alleviating the oxidative stress and apoptosis of TM3 Leydig cells induced by 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), the primary active metabolite of Bisphenol A, and clarifies its potential mechanisms involving the SIRT1/PGC-1α pathway. We found that melatonin effectively [...] Read more.
This study investigates the role of melatonin in alleviating the oxidative stress and apoptosis of TM3 Leydig cells induced by 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), the primary active metabolite of Bisphenol A, and clarifies its potential mechanisms involving the SIRT1/PGC-1α pathway. We found that melatonin effectively mitigated MBP-induced cytotoxicity in TM3 cells (p < 0.05). The testosterone levels and steroid hormone synthesis proteins were significantly restored by melatonin. Furthermore, there was a significant reduction in apoptosis after melatonin treatment both in MBP-treated TM3 cells and Bisphenol A-treated testicular interstitial tissues (p < 0.05), along with a significant decrease in the pro-apoptotic markers Bax and cleaved caspase 3, and a significant increase in the anti-apoptotic Bcl-2 level and the Bcl-2/Bax ratio in TM3 cells (p < 0.05). Additionally, the mitochondrial membrane potential improved significantly, ROS and MDA levels were down-regulated, and ATP production was elevated following melatonin treatment in TM3 cells. Mechanistically, melatonin promoted PGC-1α expression and activated the SIRT1 signaling pathway in MBP-treated TM3 cells and Bisphenol A-treated testicular interstitial tissues. This leads to increased expression of NRF2 and its downstream antioxidant genes, mitochondrial respiratory chain complex-related genes, mitochondrial biogenesis genes, and mitochondrial fusion genes while significantly reducing mitochondrial fission genes (p < 0.05). The PGC-1α inhibitor SR-18292 reversed these protective effects, confirming the critical role of this pathway. Conclusively, melatonin exerts a protective effect against MBP-induced oxidative stress and apoptosis in TM3 cells through the SIRT1/PGC-1α pathway, indicating its potential as a therapeutic agent for improving male reproductive health compromised by environmental toxins. Full article
Show Figures

Figure 1

25 pages, 6477 KiB  
Article
Endarachne binghamiae Ameliorates Hepatic Steatosis, Obesity, and Blood Glucose via Modulation of Metabolic Pathways and Oxidative Stress
by Sang-Seop Lee, Sang-Hoon Lee, So-Yeon Kim, Ga-Young Lee, Seung-Yun Han, Bong-Ho Lee and Yung-Choon Yoo
Int. J. Mol. Sci. 2025, 26(11), 5103; https://doi.org/10.3390/ijms26115103 - 26 May 2025
Viewed by 747
Abstract
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a [...] Read more.
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a type of brown algae, hot water extract (EB-WE) in ameliorating obesity and MASLD using high-fat diet (HFD)-induced ICR mice for an acute obesity model (4-week HFD feeding) and C57BL/6 mice for a long-term MASLD model (12-week HFD feeding). EB-WE administration significantly reduced body and organ weights and improved serum lipid markers, such as triglycerides (TG), total cholesterol (T-CHO), HDL (high-density lipoprotein), LDL (low-density lipoprotein), adiponectin, and apolipoprotein A1 (ApoA1). mRNA expression analysis of liver and skeletal muscle tissues revealed that EB-WE upregulated Ampkα and Cpt1 while downregulating Cebpα and Srebp1, suppressing lipogenic signaling. Additionally, EB-WE activated brown adipose tissue through Pgc1α and Ucp1, contributing to fatty liver alleviation. Western blot analysis of liver tissues demonstrated that EB-WE enhanced AMPK phosphorylation and modulated lipid metabolism by upregulating PGC-1α and UCP-1 and downregulating PPAR-γ, C/EBP-α, and FABP4 proteins. It also reduced oxidation markers, such as OxLDL (oxidized low-density lipoprotein) and ApoB (apolipoprotein B), while increasing ApoA1 levels. EB-WE suppressed lipid peroxidation by modulating oxidative stress markers, such as SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), and MDA (malondialdehyde), in liver tissues. Furthermore, EB-WE regulated the glucose regulatory pathway in the liver and muscle by inhibiting the expression of Sirt1, Sirt4, Glut2, and Glut4 while increasing the expression of Nrf2 and Ho1. Tentative liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis for EB-WE identified bioactive compounds, such as pyropheophorbide A and digiprolactone, which are known to have antioxidant or metabolic regulatory activities. These findings suggest that EB-WE improves obesity and MASLD through regulation of metabolic pathways, glucose homeostasis, and antioxidant activity, making it a promising candidate for natural product-based functional foods and pharmaceuticals targeting metabolic diseases. Full article
(This article belongs to the Special Issue Advances and Emerging Trends in Marine Natural Products)
Show Figures

Figure 1

20 pages, 23873 KiB  
Article
Engeletin Targets Mitochondrial Dysfunction to Attenuate Oxidative Stress and Experimental Colitis in Intestinal Epithelial Cells Through AMPK/SIRT1/PGC-1α Signaling
by Jing Li, Zhijun Geng, Lixia Yin, Ju Huang, Minzhu Niu, Keni Zhang, Xue Song, Yueyue Wang, Lugen Zuo and Jianguo Hu
Antioxidants 2025, 14(5), 524; https://doi.org/10.3390/antiox14050524 - 27 Apr 2025
Viewed by 839
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, is characterized by chronic intestinal inflammation and epithelial barrier disruption. Emerging evidence highlights mitochondrial dysfunction as a pivotal contributor to IBD pathogenesis, where impaired mitochondrial homeostasis in intestinal epithelial cells (IECs) disrupts redox [...] Read more.
Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, is characterized by chronic intestinal inflammation and epithelial barrier disruption. Emerging evidence highlights mitochondrial dysfunction as a pivotal contributor to IBD pathogenesis, where impaired mitochondrial homeostasis in intestinal epithelial cells (IECs) disrupts redox balance, exacerbates oxidative stress, and triggers apoptosis, further compromising barrier integrity. This study investigated the therapeutic effects of Engeletin (Eng), a dihydroflavonoid from Smilax glabra Roxb., in dextran sulfate sodium (DSS)-induced colitis mice and colonic organoid models. Eng administration (10, 20, 40 mg/kg) significantly alleviated colitis symptoms, including weight loss, disease activity index (DAI) scores, and colon shortening, while restoring intestinal barrier integrity through the upregulation of tight junction proteins (ZO-1, claudin-1) and goblet cell preservation. Eng suppressed NF-κB-mediated inflammation and activated the Nrf2 antioxidant pathway, as well as reduced oxidative stress markers (MDA, CAT, GSH, and SOD). It attenuated epithelial apoptosis by balancing pro- and anti-apoptotic proteins (Bax/Bcl2, c-caspase3) and ameliorated mitochondrial dysfunction via enhanced ATP production, mtDNA levels, and complex I/IV activity. Mechanistically, Eng activated the AMPK/SIRT1/PGC-1α axis, and pharmacological inhibition of PGC-1α abolished its mitochondrial protective and anti-apoptotic effects. These findings demonstrate that Eng alleviates colitis by targeting mitochondrial homeostasis and oxidative stress through AMPK/SIRT1/PGC-1α signaling, offering a multitargeted strategy for IBD therapy. Full article
(This article belongs to the Special Issue Antioxidants as Adjuvants for Inflammatory Bowel Disease Treatment)
Show Figures

Graphical abstract

12 pages, 2262 KiB  
Review
From Skeletal Muscle to Myocardium: Molecular Mechanisms of Exercise-Induced Irisin Regulation of Cardiac Fibrosis
by Zhao Wang, Lin Li, Meng Yang, Biao Li and Siyuan Hu
Int. J. Mol. Sci. 2025, 26(8), 3550; https://doi.org/10.3390/ijms26083550 - 10 Apr 2025
Cited by 1 | Viewed by 909
Abstract
This study systematically elucidates the regulatory mechanisms and potential therapeutic value of the exercise-induced hormone Irisin in the pathological progression of cardiac fibrosis. Through comprehensive analysis and multidimensional data integration, we constructed a complete regulatory network of Irisin within the cardiovascular system, spanning [...] Read more.
This study systematically elucidates the regulatory mechanisms and potential therapeutic value of the exercise-induced hormone Irisin in the pathological progression of cardiac fibrosis. Through comprehensive analysis and multidimensional data integration, we constructed a complete regulatory network of Irisin within the cardiovascular system, spanning its secretion, signal transduction, and precise regulatory control. Our findings demonstrate that exercise intervention significantly elevates circulating Irisin levels via the skeletal muscle–peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)–fibronectin type III domain-containing protein 5 (FNDC5) signaling axis. Irisin establishes a multidimensional molecular barrier against cardiac fibrosis by targeting Sirtuin 1 (Sirt1) activation, inhibiting the transforming growth factor-beta (TGF-β)/Smad3 signaling pathway, and modulating the transcriptional activity of the mitochondrial biogenesis core factors PGC-1α and nuclear respiratory factor 1 (NRF-1). Moreover, the dual regulatory mechanism of the exercise–skeletal muscle–heart axis not only effectively suppresses the aberrant activation of cardiac fibroblasts but also significantly reduces collagen deposition, oxidative stress, and inflammatory infiltration by restoring mitochondrial dynamics balance. Taken together, this study reveals a novel exercise-mediated cardioprotective mechanism at the molecular interaction network level, thereby providing a theoretical basis for the development of non-pharmacological bio-intervention strategies targeting the Irisin signaling pathway and laying a translational foundation for precise exercise prescriptions in cardiovascular diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 1009 KiB  
Article
Tetraselmis chuii Supplementation Increases Skeletal Muscle Nuclear Factor Erythroid 2-Related Factor 2 and Antioxidant Enzyme Gene Expression, and Peak Oxygen Uptake in Healthy Adults: A Randomised Crossover Trial
by Stuart P. Cocksedge, Carlos Infante, Sonia Torres, Carmen Lama, Lalia Mantecón, Manuel Manchado, Jarred P. Acton, Nehal S. Alsharif, Tom Clifford, Alex J. Wadley, Richard A. Ferguson, Nicolette C. Bishop, Neil R. W. Martin and Stephen J. Bailey
Antioxidants 2025, 14(4), 435; https://doi.org/10.3390/antiox14040435 - 3 Apr 2025
Cited by 1 | Viewed by 743
Abstract
Superoxide dismutase-rich Tetraselmis chuii (T. chuii) is derived from marine microalgae and has been reported to increase gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and related antioxidant enzymes in myoblast tissue culture models. Human research has indicated that [...] Read more.
Superoxide dismutase-rich Tetraselmis chuii (T. chuii) is derived from marine microalgae and has been reported to increase gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and related antioxidant enzymes in myoblast tissue culture models. Human research has indicated that T. chuii supplementation can improve recovery from exercise-induced muscle damage, but its effects on endurance exercise performance and the molecular bases that may underlie any ergogenic effects are unclear. Healthy participants underwent 14 days of supplementation with 25 mg·day−1T. chuii and placebo in a randomized, double-blind, crossover experimental design. Prior to and following each supplementation period, participants completed a high-intensity cycling test to assess time to exhaustion and peak oxygen uptake (V˙O2peak). A resting skeletal muscle biopsy was collected after both supplementation periods to assess gene expression changes. Compared to pre-supplementation values, V˙O2peak was increased following T. chuii (p = 0.013) but not placebo (p = 0.66). Fold-change in glutathione peroxidase 7 [(GPX7) 1.26 ± 1.37], glutathione-disulfide reductase [(GSR) 1.22 ± 1.41], glutathione S-transferase Mu 3 [(GSTM3) 1.34 ± 1.49], peroxiredoxin 6 [(PRDX6) 1.36 ± 1.57], extracellular signal-regulated kinase 3 [(ERK3) 1.92 ± 2.42], NRF2 (1.62 ± 2.16), p38 alpha [(p38a) 1.33 ± 1.58] and sirtuin 1 [(SIRT1) 1.73 ± 2.25] gene expression were higher after T. chuii compared to placebo supplementation (p < 0.05). Short-term T. chuii supplementation increased V˙O2peak and skeletal muscle gene expression of key enzymatic antioxidants (GPX7, GSR, GSTM3, and PRDX6), signalling kinases (ERK3 and p38a), post-translational regulators (SIRT1), and transcription factors (NRF2) that may protect against cellular stress insults. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

20 pages, 1277 KiB  
Review
A Systematic Review on the Molecular Mechanisms of Resveratrol in Protecting Against Osteoporosis
by Ahmad Nazrun Shuid, Nurul Alimah Abdul Nasir, Norasikin Ab Azis, Ahmad Naqib Shuid, Norhafiza Razali, Haryati Ahmad Hairi, Mohd Fairudz Mohd Miswan and Isa Naina Mohamed
Int. J. Mol. Sci. 2025, 26(7), 2893; https://doi.org/10.3390/ijms26072893 - 22 Mar 2025
Cited by 1 | Viewed by 1736
Abstract
Osteoporosis is a prevalent metabolic bone disorder characterized by decreased bone mineral density and increased fracture risk, particularly among aging populations. While conventional pharmacological treatments exist, they often have adverse effects, necessitating the search for alternative therapies. Resveratrol, a naturally occurring polyphenol, has [...] Read more.
Osteoporosis is a prevalent metabolic bone disorder characterized by decreased bone mineral density and increased fracture risk, particularly among aging populations. While conventional pharmacological treatments exist, they often have adverse effects, necessitating the search for alternative therapies. Resveratrol, a naturally occurring polyphenol, has gained significant attention for its potential osteoprotective properties through various molecular mechanisms. This systematic review aims to comprehensively analyze the molecular pathways through which resveratrol protects against osteoporosis. Using an advanced search strategy in the Scopus, PubMed, and Web of Science databases, we identified 513 potentially relevant articles. After title and abstract screening, followed by full-text review, 28 studies met the inclusion criteria. The selected studies comprised 14 in vitro studies, 8 mixed in vitro and in vivo studies, 6 in vivo studies, and 1 cross-sectional study in postmenopausal women. Our findings indicate that resveratrol exerts its osteoprotective effects by enhancing osteoblast differentiation through the activation of the Phosphoinositide 3-Kinase/Protein Kinase B (PI3K/Akt), Sirtuin 1 (SIRT1), AMP-Activated Protein Kinase (AMPK), and GATA Binding Protein 1 (GATA-1) pathways while simultaneously inhibiting osteoclastogenesis by suppressing Mitogen-Activated Protein Kinase (MAPK) and TNF Receptor-Associated Factor 6/Transforming Growth Factor-β-Activated Kinase 1 (TRAF6/TAK1). Additionally, resveratrol mitigates oxidative stress and inflammation-induced bone loss by activating the Hippo Signaling Pathway/Yes-Associated Protein (Hippo/YAP) and Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) pathways and suppressing Reactive Oxygen Species/Hypoxia-Inducible Factor-1 Alpha (ROS/HIF-1α) and NADPH Oxidase 4/Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (Nox4/NF-κB). Despite promising preclinical findings, the low bioavailability of resveratrol remains a significant challenge, highlighting the need for novel delivery strategies to improve its therapeutic potential. This review provides critical insights into the molecular mechanisms of resveratrol in bone health, supporting its potential as a natural alternative for osteoporosis prevention and treatment. Further clinical studies are required to validate its efficacy and establish optimal dosing strategies. Full article
Show Figures

Graphical abstract

29 pages, 1588 KiB  
Review
The Potential of Superoxide Dismutase-Rich Tetraselmis chuii as a Promoter of Cellular Health
by Stuart P. Cocksedge, Lalia Mantecón, Enrique Castaño, Carlos Infante and Stephen J. Bailey
Int. J. Mol. Sci. 2025, 26(4), 1693; https://doi.org/10.3390/ijms26041693 - 16 Feb 2025
Cited by 3 | Viewed by 1643
Abstract
Tetraselmis chuii (T. chuii) is a green, marine, eukaryotic, microalgae that was authorized in the European Union (EU) as a novel food for human consumption in 2014, and as a food supplement in 2017. This narrative review will provide an overview [...] Read more.
Tetraselmis chuii (T. chuii) is a green, marine, eukaryotic, microalgae that was authorized in the European Union (EU) as a novel food for human consumption in 2014, and as a food supplement in 2017. This narrative review will provide an overview of preclinical and clinical trials assessing the efficacy of a T. chuii-derived ingredient, characterized by a high superoxide dismutase (SOD) activity (SOD-rich T. chuii), to improve various aspects of cellular health. Collectively, results from in vitro, and more importantly in vivo research, support SOD-rich T. chuii as a potential promoter of cellular health. Principally, the ingredient appears to function as an indirect antioxidant by boosting intracellular antioxidant systems. Moreover, it can positively modulate inflammatory status by up-regulating anti-inflammatory and down-regulating pro-inflammatory cytokines and factors. In addition, SOD-rich T. chuii appears to promote cellular health though protecting from DNA damage, boosting immune function, strengthening cell structure and integrity, and positively modulating cell signaling pathways. There is also some evidence to suggest that SOD-rich T. chuii may improve aspects of mitochondrial function through the up-regulation of genes linked to mitochondrial biogenesis and ATP synthesis. From the trials conducted to date, transcriptional activation of nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) appear to be important in mediating the effects of SOD-rich T. chuii on cellular health. These exciting preliminary observations suggest that SOD-rich T. chuii may represent a natural blue food supplement with the potential to enhance various aspects of cellular health. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Bioactive Nutrients Promoting Human Health)
Show Figures

Figure 1

22 pages, 8089 KiB  
Article
Effects of 3-(4-Hydroxy-3-methoxyphenyl)propionic Acid on Regulating Oxidative Stress and Muscle Fiber Composition
by Yishan Tong, Sihui Ma, Riyo Awa, Takashi Tagawa, Yasuhiro Seki, Tiehan Cao, Haruki Kobori and Katsuhiko Suzuki
Nutrients 2025, 17(4), 668; https://doi.org/10.3390/nu17040668 - 13 Feb 2025
Viewed by 1392
Abstract
Background/Objectives: Our previous study demonstrated that 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HMPA) administration improved grip strength and reduced blood urea nitrogen levels, but its underlying mechanisms remain unclear. This study aimed to investigate the effects of HMPA on oxidative stress and muscle fiber composition, emphasizing [...] Read more.
Background/Objectives: Our previous study demonstrated that 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HMPA) administration improved grip strength and reduced blood urea nitrogen levels, but its underlying mechanisms remain unclear. This study aimed to investigate the effects of HMPA on oxidative stress and muscle fiber composition, emphasizing its potential role in modulating redox signaling pathways and influencing muscle development. Methods: Eight-week-old male C57BL/6 mice were orally administered HMPA solution (50 or 500 mg/kg/day) or distilled water (10 mL/kg) for 14 days, and then divided into sedentary and exhaustive exercise groups to evaluate oxidative stress status, myosin heavy chain (MHC) isoform expression, and underlying mechanisms. Results: Both low and high doses of HMPA reduced oxidative stress by decreasing plasma reactive oxygen metabolites. High-dose HMPA reduced plasma nitrite/nitrate levels and enhanced antioxidant capacity post-exercise, accompanied by changes in the mRNA abundance of antioxidant enzymes (e.g., Sod1 and Nqo1) and reductions in the mRNA abundance of nitric oxide synthases (e.g., Nos2 and Nos3) in the soleus. Additionally, high-dose HMPA administration increased the protein expression of MYH4 in the soleus, while low-dose HMPA enhanced the gene expression of Myh4 and Igf1, suggesting that HMPA may promote fast-twitch fiber hypertrophy through the activation of the IGF-1 pathway. Furthermore, low-dose HMPA significantly increased the gene expression of Sirt1 and Nrf1, as well as AMPK phosphorylation post-exercise, suggesting low-dose HMPA may improve mitochondrial biogenesis and exercise adaptation. Conclusions: These findings suggest that HMPA may serve as a dietary supplement to regulate redox balance, enhance antioxidant defenses, and promote the formation of fast-twitch fibers. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Graphical abstract

15 pages, 7166 KiB  
Article
Ameliorative Effects of Raisin Polyphenol Extract on Oxidative Stress and Aging In Vitro and In Vivo via Regulation of Sirt1–Nrf2 Signaling Pathway
by Wenjing Gao, Caiyun Zhao, Xin Shang, Bin Li, Jintian Guo, Jingteng Wang, Bin Wu and Yinghua Fu
Foods 2025, 14(1), 71; https://doi.org/10.3390/foods14010071 - 30 Dec 2024
Cited by 3 | Viewed by 1374
Abstract
Raisins are an important source of polyphenolic compounds in plant foods, and polyphenols are associated with antioxidant and anti-aging activity. In this work, 628 polyphenols in raisin extracts were characterized using UPLC-MS/MS, mainly including tricetin 3′-glucuronide, diisobutyl phthalate, butyl isobutyl phthalate, isoquercitrin and [...] Read more.
Raisins are an important source of polyphenolic compounds in plant foods, and polyphenols are associated with antioxidant and anti-aging activity. In this work, 628 polyphenols in raisin extracts were characterized using UPLC-MS/MS, mainly including tricetin 3′-glucuronide, diisobutyl phthalate, butyl isobutyl phthalate, isoquercitrin and 6-hydroxykaempferol-7-O-glucoside. The oxidative stress in H2O2-induced HepG2 cells and D-gal-induced aging mice was alleviated by raisin polyphenols (RPs) via increases in the cellular levels of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), along with decreases in malonaldehyde (MDA), reactive oxygen species (ROS) and advanced glycosylation end-products (AGEs) levels. In addition, it was observed that RPs enhanced Sirt1 and Sirt3 expression, initiating the Keap1-Nrf2 signaling pathway, by upregulating the levels of nuclear Nrf2, facilitating the expressions of the antioxidant proteins NQO1 and HO-1, and downregulating Keap1 and cytoplasmic Nrf2 protein levels in H2O2-induced HepG2 cells and D-gal-induced aging mice. In summary, RP exerted antioxidant and anti-aging effects via regulating the Sirt1–Nrf2 signaling pathway in vitro and in vivo. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

31 pages, 3194 KiB  
Review
The Role of MicroRNAs in the Pathogenesis of Doxorubicin-Induced Vascular Remodeling
by Ekaterina Podyacheva, Julia Snezhkova, Anatoliya Onopchenko, Vyacheslav Dyachuk and Yana Toropova
Int. J. Mol. Sci. 2024, 25(24), 13335; https://doi.org/10.3390/ijms252413335 - 12 Dec 2024
Cited by 4 | Viewed by 2112
Abstract
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need [...] Read more.
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity. miRNAs, such as miR-21, miR-22, miR-25, miR-126, miR-140-5p, miR-330-5p, miR-146, miR-143, miR-375, miR-125b, miR-451, miR-34a-5p, and miR-9, influence signaling pathways like TGF-β/Smad, AMPKa/SIRT, NF-κB, mTOR, VEGF, and PI3K/AKT/Nrf2, impacting vascular homeostasis, angiogenesis, and endothelial-to-mesenchymal transition. Despite existing studies, gaps remain in understanding the full spectrum of miRNAs involved and their downstream effects on vascular remodeling. This review synthesizes the current knowledge on miRNA dysregulation during DOX exposure, focusing on their dual roles in cardiovascular pathology and tumor progression. Strategies to reduce DOX cardiotoxicity include modulating miRNA expression to restore signaling balance, targeting pro-inflammatory and pro-fibrotic pathways, and leveraging miRNA inhibitors or mimics. This review aims to organize and integrate the existing knowledge on the role of miRNAs in vascular remodeling, particularly in the contexts of DOX treatment and the progression of various cardiovascular diseases, including their potential involvement in tumor growth. Full article
Show Figures

Figure 1

45 pages, 2120 KiB  
Review
Functional Food Nutrients, Redox Resilience Signaling and Neurosteroids for Brain Health
by Maria Scuto, Miroslava Majzúnová, Gessica Torcitto, Silvia Antonuzzo, Francesco Rampulla, Eleonora Di Fatta and Angela Trovato Salinaro
Int. J. Mol. Sci. 2024, 25(22), 12155; https://doi.org/10.3390/ijms252212155 - 12 Nov 2024
Cited by 14 | Viewed by 3888
Abstract
The interplay between functional food nutrients and neurosteroids has garnered significant attention for its potential to enhance stress resilience in health and/or disease. Several bioactive nutrients, including medicinal herbs, flavonoids, and bioavailable polyphenol-combined nanoparticles, as well as probiotics, vitamin D and omega-3 fatty [...] Read more.
The interplay between functional food nutrients and neurosteroids has garnered significant attention for its potential to enhance stress resilience in health and/or disease. Several bioactive nutrients, including medicinal herbs, flavonoids, and bioavailable polyphenol-combined nanoparticles, as well as probiotics, vitamin D and omega-3 fatty acids, have been shown to improve blood–brain barrier (BBB) dysfunction, endogenous neurosteroid homeostasis and brain function. These nutrients can inhibit oxidative stress and neuroinflammation, which are linked to the pathogenesis of various neurological disorders. Interestingly, flavonoids exhibit dose-dependent effects, activating the nuclear factor erythroid 2–related factor 2 (Nrf2) pathway at the physiological/low dose (neurohormesis). This leads to the upregulation of antioxidant phase II genes and proteins such as heme oxygenase-1 (HO-1) and sirtuin-1 (Sirt1), which are activated by curcumin and resveratrol, respectively. These adaptive neuronal response mechanisms help protect against reactive oxygen species (ROS) and neurotoxicity. Impaired Nrf2 and neurosteroid hormone signaling in the brain can exacerbate selective vulnerability to neuroinflammatory conditions, contributing to the onset and progression of neurodegenerative and psychiatric disorders, including Alzheimer’s disease, anxiety and depression and other neurological disorders, due to the vulnerability of neurons to stress. This review focuses on functional food nutrients targeting Nrf2 antioxidant pathway and redox resilience genes to regulate the neurosteroid homeostasis and BBB damage associated with altered GABAergic neurotransmission. By exploring the underlying molecular mechanisms using innovative technologies, we aim to develop promising neuroprotective strategies and personalized nutritional and neuroregenerative therapies to prevent or attenuate oxidative stress and neuroinflammation, ultimately promoting brain health. Full article
(This article belongs to the Special Issue The Role of Hormones and Nutrients in Health and Disease)
Show Figures

Figure 1

19 pages, 4182 KiB  
Article
Rutin-Activated Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Attenuates Corneal and Heart Damage in Mice
by Promise M. Emeka, Lorina I. Badger-Emeka, Krishnaraj Thirugnanasambantham and Abdulaziz S. Alatawi
Pharmaceuticals 2024, 17(11), 1523; https://doi.org/10.3390/ph17111523 - 12 Nov 2024
Cited by 1 | Viewed by 1436
Abstract
Background: Corneal degeneration is a form of progressive cell death caused by multiple factors, such as diabetic retinopathy. It is the most well-known neural degenerative disease caused by macular degeneration in the aged and those with retinitis pigmentosa. Myocardial infarction is becoming a [...] Read more.
Background: Corneal degeneration is a form of progressive cell death caused by multiple factors, such as diabetic retinopathy. It is the most well-known neural degenerative disease caused by macular degeneration in the aged and those with retinitis pigmentosa. Myocardial infarction is becoming a more common burden, causing cardiomyocyte degeneration, ischemia, and heart tissue death. This study examined the preventive effects of rutin on isoproterenol (ISO)-induced oxidative damage (that is, inflammation) on rabbit corneal epithelial cells and mouse heart injuries. Methods: These investigations involved a cytotoxicity test, biochemical analysis, qRT-PCR, Western blotting, and mouse cardiac histopathology. Results: The results showed that rutin enhanced ADH7 and ALDH1A1, retinoic acid signaling components in SIRC1 rabbit corneal cell lines. The production of NO by ocular epithelial cells was significantly reduced. It reduced cTnT and cTnI, CK-MB, and LDH contents in mouse cardiac tissue. The nuclear expressions of Nrf2, Sirt, and HO-1 were all increased by rutin. Docking studies revealed a good interaction between rutin and the Keap protein, enhancing Nrf2 nuclear activity. Conclusions: This showed that rutin can potentially enhance ADH7 and ALDH1A1 corneal signaling components, preventing corneal degeneration and mitigating ISO-induced myocardial infarction (MI) via Keap/Nrf2 expressions. Full article
Show Figures

Figure 1

Back to TopTop