Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = SI/NSI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6987 KB  
Article
Bi2Se3/n-Si Schottky Junctions for Near-Infrared Photodetectors
by Matteo Salvato, Riccardo Ciciotti, Filippo Pierucci, Mattia Scagliotti, Matteo Rapisarda, Antonio Vecchione, Anita Guarino, Michele Crivellari and Paola Castrucci
Nanomaterials 2026, 16(1), 67; https://doi.org/10.3390/nano16010067 - 2 Jan 2026
Viewed by 446
Abstract
Bi2Se3 thin films with different thicknesses are deposited on prepatterned n-Si substrates by the vapor–solid deposition method, demonstrating photodetector performances in the visible and near-infrared range up to the telecommunication wavelength 1550 nm and showing response times as low as [...] Read more.
Bi2Se3 thin films with different thicknesses are deposited on prepatterned n-Si substrates by the vapor–solid deposition method, demonstrating photodetector performances in the visible and near-infrared range up to the telecommunication wavelength 1550 nm and showing response times as low as 126 ns. The current voltage characteristics measured in the temperature range 77–300 K indicate the formation of Schottky junctions at the interface between the two materials. The nature of the junctions is discussed considering the effect of disorder at the interface induced by the Bi2Se3 film granularity. The temperature dependence of the ideality factors and the Schottky barrier heights is consistent with a thermionic field effect mechanism governing the electron motion through the interface, which is responsible for the fast response of the photodetectors. Full article
Show Figures

Figure 1

12 pages, 3494 KB  
Proceeding Paper
A Numerical Study on Ag/CZTS/n-Si/Al Heterojunction Solar Cells Fabricated via Laser Ablation
by Serap Yigit Gezgin, Yasemin Gundogdu Kabakci and Hamdi Sukur Kilic
Eng. Proc. 2025, 104(1), 36; https://doi.org/10.3390/engproc2025104036 - 25 Aug 2025
Viewed by 605
Abstract
CZTS (C-I/C-II) ultrathin films in 61 nm and 313 nm thicknesses were grown on microscopic glass and n-Si wafer substrates via laser ablation, respectively. C-II ultrathin film with higher thickness has a more developed crystal structure and consists of larger particles compared to [...] Read more.
CZTS (C-I/C-II) ultrathin films in 61 nm and 313 nm thicknesses were grown on microscopic glass and n-Si wafer substrates via laser ablation, respectively. C-II ultrathin film with higher thickness has a more developed crystal structure and consists of larger particles compared to C-I ultrathin film with reduced thickness. C-II ultrathin film absorbs more photons and has a lower band gap. The photovoltaic performance of the produced Ag/CZTS (C-II)/n-Si/Al solar cell is higher compared to the other solar cell-based C-I ultrathin film. The more improved crystal structure of C-II ultrathin film has increased the efficiency of the solar cell. The calculated photovoltaic parameters of the solar cells modeled with the SCAPS-1D simulation program were found to be compatible with the experimental parameters. This situation has proven that the operating performance of solar cells is reliable. Full article
Show Figures

Figure 1

16 pages, 3346 KB  
Article
Optimizing the PECVD Process for Stress-Controlled Silicon Nitride Films: Enhancement of Tensile Stress via UV Curing and Layered Deposition
by Jianping Ning, Chunjie Niu, Zhen Tang, Yue Sun, Hao Yan and Dayu Zhou
Coatings 2025, 15(6), 708; https://doi.org/10.3390/coatings15060708 - 12 Jun 2025
Viewed by 6579
Abstract
Silicon nitride (SiN) films deposited via plasma-enhanced chemical vapor deposition (PECVD) exhibit tunable tensile stress, which is critical for various microelectronic and optoelectronic applications. In this paper, the effects of silane (SiH4) flow rate during PECVD deposition, ultraviolet (UV) curing, and [...] Read more.
Silicon nitride (SiN) films deposited via plasma-enhanced chemical vapor deposition (PECVD) exhibit tunable tensile stress, which is critical for various microelectronic and optoelectronic applications. In this paper, the effects of silane (SiH4) flow rate during PECVD deposition, ultraviolet (UV) curing, and layered deposition on the tensile stress of SiN films are mainly investigated. The results reveal that increasing the SiH4 concentration raises hydrogen incorporation, which modifies internal stress dynamics. UV curing significantly increases tensile stress by breaking N-H and Si-H bonds, facilitating hydrogen desorption, and promoting Si-N-Si crosslinking. The optimal UV curing duration stabilizes tensile stress at approximately 1570 MPa, while excessive UV power alters hydrogen content dynamics, reducing stress. Additionally, layered deposition further amplifies stress enhancement, with films subjected to multiple deposition cycles exhibiting increased densification and crosslinking. The combined optimization of PECVD deposition parameters, UV curing, and layered deposition provides a robust strategy for tailoring SiN film stress, offering a versatile approach to engineering mechanical properties for advanced applications. Full article
Show Figures

Graphical abstract

9 pages, 2484 KB  
Article
Processing and Characterization of High-Density Fe-Silicide/Si Core–Shell Quantum Dots for Light Emission
by Katsunori Makihara, Yuji Yamamoto, Markus Andreas Schubert, Andreas Mai and Seiichi Miyazaki
Nanomaterials 2025, 15(10), 733; https://doi.org/10.3390/nano15100733 - 14 May 2025
Viewed by 836
Abstract
Si-based photonics has garnered considerable attention as a future device for complementary metal–oxide–semiconductor (CMOS) computing. However, few studies have investigated Si-based light sources highly compatible with Si ultra large-scale integration processing. In this study, we observed stable light emission at room temperature from [...] Read more.
Si-based photonics has garnered considerable attention as a future device for complementary metal–oxide–semiconductor (CMOS) computing. However, few studies have investigated Si-based light sources highly compatible with Si ultra large-scale integration processing. In this study, we observed stable light emission at room temperature from superatom-like β–FeSi2–core/Si–shell quantum dots (QDs). The β–FeSi2–core/Si–shell QDs, with an areal density as high as ~1011 cm−2 were fabricated by self-aligned silicide process of Fe–silicide capped Si–QDs on ~3.0 nm SiO2/n–Si (100) substrates, followed by SiH4 exposure at 400 °C. From the room temperature photoluminescence characteristics, β–FeSi2 core/Si–shell QDs can be regarded as active elements in optical applications because they offer the advantages of photonic signal processing capabilities and can be combined with electronic logic control and data storage. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

9 pages, 2242 KB  
Communication
Stability Improvement of Solution-Processed Metal Oxide Thin-Film Transistors Using Fluorine-Doped Zirconium Oxide Dielectric
by Haoxuan Xu, Bo Deng and Xinan Zhang
Materials 2025, 18(9), 1980; https://doi.org/10.3390/ma18091980 - 27 Apr 2025
Cited by 2 | Viewed by 1507
Abstract
Solution-processed metal oxide dielectrics often result in unstable thin-film transistor (TFT) performance, hindering the development of next-generation metal oxide electronics. In this study, we prepared fluorine (F)-doped zirconium oxide (ZrO2) dielectric layers using a chemical solution method to construct TFTs. The [...] Read more.
Solution-processed metal oxide dielectrics often result in unstable thin-film transistor (TFT) performance, hindering the development of next-generation metal oxide electronics. In this study, we prepared fluorine (F)-doped zirconium oxide (ZrO2) dielectric layers using a chemical solution method to construct TFTs. The characterization by X-ray photoelectron spectroscopy (XPS) revealed that appropriate fluoride doping significantly reduces oxygen vacancies and the concentration of hydroxyl groups, thereby suppressing polarization processes. Subsequently, the electrical properties of Al/F:ZrO2/n++Si capacitors were evaluated, demonstrating that the optimized 10% F:ZrO2 dielectric exhibits a low leakage current density and stable capacitance across a wide frequency range. Indium zinc oxide (IZO) TFTs incorporating 10% F:ZrO2 dielectric layers were then fabricated. These devices displayed reliable electrical characteristics, including high mobility over a broad frequency range, reduced dual-sweep hysteresis, and excellent stability under positive-bias stress (PBS) after three months of aging. These findings indicate that the use of the fluorine-doped ZrO2 dielectric is a versatile strategy for achieving high-performance metal oxide thin-film electronics. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Figure 1

16 pages, 3096 KB  
Article
Silicon Speciation and Its Relationship with Carbon and Nitrogen in the Sediments of a Macrophytic Eutrophic Lake
by Yong Liu, Guoli Xu, Guocheng Wang, Haiquan Yang, Jv Liu, Hai Guo, Jiaxi Wu, Lujia Jiang and Jingfu Wang
Toxics 2025, 13(4), 266; https://doi.org/10.3390/toxics13040266 - 31 Mar 2025
Viewed by 794
Abstract
Silicon (Si) is one of the biogenic elements in lake aquatic ecosystems. Sediments are both sinks and sources of Si, but little is known about its influence on the biogeochemical cycle of Si in lakes and its relationship to other biogenic factors such [...] Read more.
Silicon (Si) is one of the biogenic elements in lake aquatic ecosystems. Sediments are both sinks and sources of Si, but little is known about its influence on the biogeochemical cycle of Si in lakes and its relationship to other biogenic factors such as carbon and nitrogen. Examining Caohai Lake, a typical macrophytic lake in China, this study systematically examined the different Si forms and biogenic silica (BSi) distribution characteristics and their coupling relationships with total organic carbon (TOC) and total nitrogen (TN) in surface sediments. Iron–manganese-oxide-bonded silicon (IMOF-Si) and organic sulfide-bonded silicon (OSF-Si) jointly accounted for 95.9% of Valid-Si in the sediments, indicating that the fixation of Si by organic matter and iron–manganese oxides was the main mechanism underlying the formation of the different forms of Valid-Si in sediments. The release and recycling of Si in sediments may be mainly driven by mineralized degradation of organic matter and anoxic reduction conditions at the sediment–water interface. The content of biogenic Si (BSi) in the sediments was relatively higher in the southern and eastern areas, which could be explained by the intensification of eutrophication and the increased abundance of diatomaceous siliceous organisms in these areas seen in recent years. The TOC and TN contents in the sediments were generally high, and the sources of organic matter in the sediments included both the residues of endophytes (main contributors) and the input of terrigenous organic matter. TOC and TN both had highly significant correlations with OSF-Si and Valid-Si, which demonstrated that Valid-Si had excellent coupling relationships with C and N in the sediments. The good correlation between BSi, TOC and TN (p < 0.01), as well as the high C/Si, N/Si mole ratio of TOC and TN to BSi, respectivelny, indicating that the dissolution and release rate of BSi may be much higher than the degradation rate of organic matter from the sediments, especially in the areas with a higher abundance of siliceous organisms. Full article
Show Figures

Figure 1

10 pages, 4178 KB  
Brief Report
Optimization of Cross-Bridge Kelvin Resistor (CBKR) Layout for the Precise Contact Resistance Measurement of TiSi2/n+ Si
by Hyungju Noh, Changmin Chae, Yelim Jeon, Dongseok Oh and Sangwan Kim
Electronics 2025, 14(4), 762; https://doi.org/10.3390/electronics14040762 - 15 Feb 2025
Viewed by 2857
Abstract
This study investigates the impact of cross-bridge Kelvin resistor (CBKR) layout designs on specific contact resistivity (ρc) measurements between TiSi2 and n+ Si. The theoretical ρc is calculated as a function of silicon doping concentration (N [...] Read more.
This study investigates the impact of cross-bridge Kelvin resistor (CBKR) layout designs on specific contact resistivity (ρc) measurements between TiSi2 and n+ Si. The theoretical ρc is calculated as a function of silicon doping concentration (NSi) and Schottky barrier height (ϕb) to evaluate the measurement value. Various CBKR patterns are fabricated and measured with different contact hole areas (Ac) and aligned margins (δ) to evaluate measurement accuracy. The results show that CBKR with a narrow active width (W) can more accurately measure the ρc compared to the conventional layout mainly attributed to the current path confinement. In addition, if the contact hole length (L) is smaller than the transfer length (LT), the entire Ac contributes to the voltage drop of contact resistance (Rc), resulting in improved measurement accuracy. In contrast, if δ is increased, the measurement error decreases due to current dispersion near the recessed TiSi2 region, which is different from conventional CBKR layouts. Consequently, the measured ρc with an optimized layout shows a close value to the theoretical ρc. Full article
Show Figures

Figure 1

13 pages, 3375 KB  
Article
Effect of Deposition Temperature and Thermal Annealing on the Properties of Sputtered NiOx/Si Heterojunction Photodiodes
by Roumen Nedev, David Mateos-Anzaldo, Eddue Osuna-Escalante, Oscar Perez-Landeros, Mario Curiel-Alvarez, Esteban Osorio-Urquizo, Jhonathan Castillo-Saenz, Javier Lopez-Medina, Benjamin Valdez-Salas and Nicola Nedev
Inorganics 2025, 13(1), 11; https://doi.org/10.3390/inorganics13010011 - 3 Jan 2025
Cited by 2 | Viewed by 2646
Abstract
NiOx is a p-type semiconductor with excellent stability, which makes it interesting for a wide range of applications. Broadband photodetectors with high responsivity (R) were fabricated by depositing r.f.-sputtered NiOx layers on n-Si at room temperature (RT), 50 °C [...] Read more.
NiOx is a p-type semiconductor with excellent stability, which makes it interesting for a wide range of applications. Broadband photodetectors with high responsivity (R) were fabricated by depositing r.f.-sputtered NiOx layers on n-Si at room temperature (RT), 50 °C and 100 °C. In self-powered mode the RT diodes have R between 0.95 and 0.39 A/W for wavelengths between 365 and 635 nm, while at a reverse bias of −4 V, the responsivity increases to values between 22 A/W and 10.7 A/W for wavelengths in the same range. The increase of the deposition temperature leads to a decrease of R but also to a smaller reverse dark current. Thus, the 100 °C photodiodes might be more appropriate for applications where high responsivity is required, because of their smaller power consumption compared to the RT diodes. In addition, it was found that the increase of the deposition temperature leads to an increase of the diodes’ series resistance and the resistivity of NiOx. The effect of Rapid Thermal Annealing (RTA) on the properties of the photodiodes was studied. Annealing at 550 °C for 6 min leads to much higher responsivity compared to R of diodes with as-deposited NiOx. However, a disadvantage of the annealed diode is that the reverse current depends on the amplitude and polarity of previously applied bias voltage. The higher responsivity of the RTA photodiodes makes them useful as light sensors. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 2nd Edition)
Show Figures

Figure 1

17 pages, 6361 KB  
Article
Supramolecular Structure of Sulfonamide-Substituted Silatranes: Quantum Chemical DFT Calculations
by Nina N. Chipanina, Sergey N. Adamovich, Arailym M. Nalibayeva, Yerlan N. Abdikalykov, Larisa P. Oznobikhina, Elizaveta N. Oborina and Igor B. Rozentsveig
Int. J. Mol. Sci. 2024, 25(22), 11920; https://doi.org/10.3390/ijms252211920 - 6 Nov 2024
Cited by 3 | Viewed by 2028
Abstract
The supramolecular structure of the crystal products–N-[2-chloro-2-(silatranyl)ethyl]-4-nitro-benzenesulfonamide 4d and N-chloro-N-[2-chloro-1-(silatran-1-yl-methyl)ethyl]benzene-sulfonamide 5a was established by X-ray diffraction analysis data, FTIR spectroscopy and DFT quantum chemical calculations. Their crystal lattice is formed by cyclic dimers with intermolecular hydrogen NH∙∙∙O-Si bonds [...] Read more.
The supramolecular structure of the crystal products–N-[2-chloro-2-(silatranyl)ethyl]-4-nitro-benzenesulfonamide 4d and N-chloro-N-[2-chloro-1-(silatran-1-yl-methyl)ethyl]benzene-sulfonamide 5a was established by X-ray diffraction analysis data, FTIR spectroscopy and DFT quantum chemical calculations. Their crystal lattice is formed by cyclic dimers with intermolecular hydrogen NH∙∙∙O-Si bonds and CH∙∙∙O=S short contacts. The distribution of electron density in the monomers was determined using quantum chemical calculations of their molecular electrostatic potential (MESP) in an isolated state (in gas) and in a polar medium. The transition from covalent N–Si bonds in crystal compounds and polar medium to non-covalent N∙∙∙Si bonds happened while performing the calculations on the monomer molecules and their dimers in gas. The effect of intermolecular interactions on the strength of the N–Si and N∙∙∙Si bonds in molecules was evaluated through calculations of their complexes with H2O and DMSO. Full article
Show Figures

Graphical abstract

9 pages, 2316 KB  
Article
Highly Efficient Organic/Silicon Hybrid Solar Cells with a MoO3 Capping Layer
by Jiahui Chen, Zhangbo Lu, Xiaoting Wang, Yuner Luo, Yun Ma, Gang Lou, Dan Chi and Shihua Huang
Nanomaterials 2024, 14(20), 1630; https://doi.org/10.3390/nano14201630 - 11 Oct 2024
Cited by 3 | Viewed by 2380
Abstract
Organic/Si hybrid solar cells have attracted considerable attention for their uncomplicated fabrication process and superior device efficiency, making them a promising candidate for sustainable energy applications. However, the efficient collection and separation of charge carriers at the organic/Si heterojunction interface are primarily hindered [...] Read more.
Organic/Si hybrid solar cells have attracted considerable attention for their uncomplicated fabrication process and superior device efficiency, making them a promising candidate for sustainable energy applications. However, the efficient collection and separation of charge carriers at the organic/Si heterojunction interface are primarily hindered by the inadequate work function of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS). Here, the application of a high-work-function MoO3 film onto the n-Si/PEDOT:PSS surface leads to a notable enhancement in the device’s built-in potential. This enhancement results in the creation of an inversion layer near the n-Si surface and facilitates charge separation at the interface. Simultaneously, it inhibits charge recombination at the heterojunction interface. As a result, the champion PEDOT:PSS/Si solar cell, which incorporates a MoO3 interface layer, demonstrates an efficiency of 16.0% and achieves a high fill factor of 80.8%. These findings provide a straightforward and promising strategy for promoting the collection and transmission of charge carriers at the interface of photovoltaic devices. Full article
(This article belongs to the Special Issue Low-Dimensional Perovskite Materials and Devices)
Show Figures

Figure 1

16 pages, 3963 KB  
Article
Effect of Delayed Irrigation at the Jointing Stage on Nitrogen, Silicon Nutrition and Grain Yield of Winter Wheat in the North China Plain
by Hao Zheng, Jinyang Sun, Yueping Liang, Caiyun Cao, Yang Gao, Junpeng Zhang, Hongkai Dang and Chunlian Zheng
Plants 2024, 13(18), 2648; https://doi.org/10.3390/plants13182648 - 21 Sep 2024
Cited by 2 | Viewed by 1724
Abstract
Water scarcity is a key limitation to winter wheat production in the North China Plain, and it is essential to explore the optimal timing of spring irrigation to optimize N and Si uptake as well as to safeguard yields. The aim of this [...] Read more.
Water scarcity is a key limitation to winter wheat production in the North China Plain, and it is essential to explore the optimal timing of spring irrigation to optimize N and Si uptake as well as to safeguard yields. The aim of this study was to systematically study the effect mechanism of nitrogen and silicon absorption of winter wheat on yield under spring irrigation and to provide a scientific basis for optimizing irrigation strategy during the growth period of winter wheat. In this experiment, the winter wheat ‘Heng 4399’ was used. Five irrigation periods, i.e., 0 d (CK), 5 d (AJ5), 10 d (AJ10), 15 d (AJ15), and 20 d (AJ20) after the jointing stage, were set up to evaluate the nitrogen (N) and silicon (Si) absorption and grain yield (GY). The results showed that delayed irrigation for 5–10 days at the jointing stage had increased the GY. With the delay of irrigation time, the N/Si content of the entire plant at the maturity period increased first and then decreased; among that, the maximum N contents appeared in AJ15 and AJ5 in 2015 and 2020, respectively, while the Si concentrations appeared in AJ5 and AJ10 in sequence. Compared with AJ15 and AJ20, the N accumulation of vegetative organs in AJ5 increased by 3.05~23.13% at the flowering stage, 14.12~40.12% after the flowering stage, and a 1.76~6.45% increase in the N distribution rate at maturity stage. A correlation analysis revealed that the GY was significantly and positively correlated with the N/Si accumulation at the anthesis and N translocation after the anthesis stage. In conclusion, under limited irrigation conditions, delaying watering for 5 to 10 days at the jointing stage can improve the nitrogen and silicon absorption and nutrient status of wheat plants and increase wheat yield. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

18 pages, 2994 KB  
Article
Intensive Cycloalkyl-Fused Pyridines for Aminopyridyl–Zinc–Heteroimidazoles Achieving High Efficiency toward the Ring-Opening Polymerization of Lactides
by Yun Wang, Wenjuan Zhang, Pengjiang Zhu, Wei You, Xiaopan Xue, Rui Wang, Yanping Ma and Wen-Hua Sun
Molecules 2024, 29(17), 4150; https://doi.org/10.3390/molecules29174150 - 31 Aug 2024
Cited by 1 | Viewed by 1889
Abstract
The model precatalyst sp3- and sp2-N dinitrogen-coordinated zinc–heteroimidazole has been used as an efficient catalyst for the ring-opening polymerization of cyclic esters. Subsequent to our exceptional active 5,6,7-trihydroquinolin-8-amine-zinc catalysts for the ring-opening polymerization (ROP) of ε-caprolactone, various pyridine-fused [...] Read more.
The model precatalyst sp3- and sp2-N dinitrogen-coordinated zinc–heteroimidazole has been used as an efficient catalyst for the ring-opening polymerization of cyclic esters. Subsequent to our exceptional active 5,6,7-trihydroquinolin-8-amine-zinc catalysts for the ring-opening polymerization (ROP) of ε-caprolactone, various pyridine-fused cycloalkanones (ring size from five to eight) are developed for the correspondent fused amine–pyridine derivatives and their zinc–heteroimidazole chloride complexes Zn1Zn8 (LZnCl2) bearing N-diphenylphosphinoethyl pendants. Activated with two equivalents of LiN(SiMe3)2, the title zinc complexes efficiently promote the ROP of L-lactide (L-LA) in situ; among them, Zn4/2Li(NSiMe3)2 catalyzed 500 equivalent L-LA at 80 °C with 92% conversion in 5 min (TOF: 5520 h−1). Under the same conditions, the catalytic efficiency for the ROP of rac-LA by Zn1Zn8/2Li(NSiMe3)2 was slightly lower than that for L-LA (highest TOF: 4440 h−1). In both cases, cyclooctyl-fused pyridyl–zinc complexes exhibited higher activity than others, while the cycloheptyl-fused zinc complexes showed the lowest activity. The microstructure analysis of the polymers showed they possessed a linear structure capped with CH3O as major and cyclic structure as minor. In this work, all the ligands and zinc complexes were well characterized by 1H/13C/31P NMR, FT-IR spectroscopy as well as elemental analysis. Full article
(This article belongs to the Special Issue Organometallic Compounds: Design, Synthesis and Application)
Show Figures

Figure 1

12 pages, 3792 KB  
Article
Controlling the Superconducting Critical Temperature and Resistance of NbN Films through Thin Film Deposition and Annealing
by Yang Pei, Qian Fan, Xianfeng Ni and Xing Gu
Coatings 2024, 14(4), 496; https://doi.org/10.3390/coatings14040496 - 17 Apr 2024
Cited by 5 | Viewed by 4546
Abstract
This study investigated the relationship between the superconducting properties, electrical properties, sputtering process parameters, and post-growth annealing of NbN films. Four series of NbN films were deposited by DC magnetron sputtering using different process parameters. With the assistance of a four-probe method, the [...] Read more.
This study investigated the relationship between the superconducting properties, electrical properties, sputtering process parameters, and post-growth annealing of NbN films. Four series of NbN films were deposited by DC magnetron sputtering using different process parameters. With the assistance of a four-probe method, the superconducting performance presented first an increase and then a decreasing trend as the resistance of the prepared films increased, which could be attributed to the variation of the N/Nb ratio in the films. This correlation implied that it is very challenging to fabricate films with both high Tc and high resistance or high Tc and low resistance by adjusting the sputtering process parameters. In order to overcome these bottlenecks, a series of films were deposited on Si, GaN/Si, SiN/Si, AlN/Si, and AlN/sapphire substrates, and the film deposited on Si was annealed at 900 °C. Annealing reduced the stress of the films on the buffer layer and increased the grain size and crystallinity of the films, except for the films on the GaN/Si substrates. This resulted in a significant decrease in the resistivity of the film and a significant increase in the superconducting transition temperature. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

11 pages, 211 KB  
Article
Evaluation of Self-Inflicted versus Non-Self-Inflicted Gunshot Wounds and Associated Injuries Involving the Hand and Upper Extremity
by Tommy Pan, Brianne M. Giuffrida, Amol H. Trivedi, Dom Contestabile, Praveer S. Vyas, Boyle C. Cheng, Daniel T. Altman and Steven M. Regal
Healthcare 2024, 12(5), 564; https://doi.org/10.3390/healthcare12050564 - 29 Feb 2024
Viewed by 3383
Abstract
Orthopedic costs associated with gunshot wounds (GSWs) totaled approximately USD 510 million from 2005 to 2014. Previous studies have identified differences in injuries associated with self-inflicted (SI) GSWs; however, there remains a gap in understanding injury patterns. This study aims to expand upon [...] Read more.
Orthopedic costs associated with gunshot wounds (GSWs) totaled approximately USD 510 million from 2005 to 2014. Previous studies have identified differences in injuries associated with self-inflicted (SI) GSWs; however, there remains a gap in understanding injury patterns. This study aims to expand upon the current literature and shed light on injury patterns and outcomes associated with SI vs. non-self-inflicted (NSI) GSWs. This is a retrospective cohort study of upper extremity GSWs from January 2012 to December 2022. Data were analyzed using the two-sample t-test, Pearson’s chi-squared test, and Fisher’s exact test. SI GSWs tended to be high-velocity GSWs and occurred more often in distal locations compared to NSI GSWs (p = 0.0014 and p < 0.0001, respectively). SI GSWs were associated with higher Gustilo–Anderson (GA) and Tscherne classifications (p < 0.0001 and p = 0.0048, respectively) and with a greater frequency of neurovascular damage (p = 0.0048). There was no difference in fracture rate or need for operative intervention between the groups. GA and Tscherne classifications were associated with the need for and type of surgery (p < 0.0001), with a higher classification being associated with more intricate operative intervention; however, GSW velocity was not associated with operative need (p = 0.42). Our findings demonstrate that velocity, wound grading systems, and other factors are associated with the manner in which GSWs to the upper extremity are inflicted and may thus have potential for use in the prediction of injury patterns and planning of trauma management and surgical intervention. Full article
12 pages, 3851 KB  
Article
Si-N Matrix as an Effective Fire Retardant Source for Cotton Fabric, Prepared through Sol–Gel Process
by Zeeshan Ur Rehman, Laila Khan, Lee Hwain, Yun Chiho and Bon Heun Koo
Fire 2024, 7(3), 69; https://doi.org/10.3390/fire7030069 - 26 Feb 2024
Cited by 2 | Viewed by 2367
Abstract
In this study, process control factors such as dipping time, heat treatment time and curing conditions were optimized to prepare N-Si network sol–gel-based coatings on a cotton fabric. The dipping time was varied from 14 h to 30 min, the heat treatment time [...] Read more.
In this study, process control factors such as dipping time, heat treatment time and curing conditions were optimized to prepare N-Si network sol–gel-based coatings on a cotton fabric. The dipping time was varied from 14 h to 30 min, the heat treatment time at ~90 °C was varied between no heating conditions to 15 h and the curing was performed at 165 °C. The microstructure of the coating was analyzed using low electron scanning microscopy (LV-SEM), while a compositional study of the coated substrate was carried out using FTIR and EDS techniques. From the thermal and combustion analysis of the coated samples using thermogravimetric and vertical flame test techniques, significant resistance to the degradation process was observed, particularly in the initial stages, in addition to the highest char residue for DI-0.5 h-15~32.93%. Similarly, for DI–5 h–RT, the peak degradation temperature was around ~372 °C, accompanied by a notable char residue of approximately 31.12%. The flame spread and burning rate profile further supported the findings; DI-0.5 h-15 and DI-5 h-RT had the lowest flame spread. Full article
(This article belongs to the Special Issue Recent Developments in Flame Retardant Materials)
Show Figures

Figure 1

Back to TopTop