Controlling the Superconducting Critical Temperature and Resistance of NbN Films through Thin Film Deposition and Annealing
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cucciniello, N.; Lee, D.; Feng, H.Y.; Yang, Z.; Zeng, H.; Patibandla, N.; Zhu, M.; Jia, Q. Superconducting Niobium Nitride: A Perspective from Processing, Microstructure, and Superconducting Property for Single Photon Detectors. J. Phys. Condens. Matter 2022, 34, 374003. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Roy, P.; Yang, Z.; Zhang, D.; He, Z.; Lu, P.; Licata, O.; Wang, H.; Mazumder, B.; Patibandla, N.; et al. Ultrathin Epitaxial NbN Superconducting Films with High Upper Critical Field Grown at Low Temperature. Mater. Res. Lett. 2021, 9, 336–342. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Bondar, O.V.; Abadias, G.; Ivashchenko, V.; Sobol, O.V.; Jurga, S.; Coy, E. Structural and Mechanical Properties of NbN and Nb-Si-N Films: Experiment and Molecular Dynamics Simulations. Ceram. Int. 2016, 42, 11743–11756. [Google Scholar] [CrossRef]
- Jia, X.Q.; Kang, L.; Gu, M.; Yang, X.Z.; Chen, C.; Tu, X.C.; Jin, B.B.; Xu, W.W.; Chen, J.; Wu, P.H. Fabrication of a Strain-Induced High Performance NbN Ultrathin Film by a Nb 5 N 6 Buffer Layer on Si Substrate. Supercond. Sci. Technol. 2014, 27, 035010. [Google Scholar] [CrossRef]
- Li, J.; Takeda, M.; Wang, Z.; Shi, S.C. Characterization of the Mixing Performance of All-NbN Superconducting Tunnel Junctions at 0.5 THz. IEEE Trans. Appl. Supercond. 2009, 19, 417–422. [Google Scholar] [CrossRef]
- Esmaeil Zadeh, I.; Chang, J.; Los, J.W.N.; Gyger, S.; Elshaari, A.W.; Steinhauer, S.; Dorenbos, S.N.; Zwiller, V. Superconducting Nanowire Single-Photon Detectors: A Perspective on Evolution, State-of-the-Art, Future Developments, and Applications. Appl. Phys. Lett. 2021, 118, 190502. [Google Scholar] [CrossRef]
- Il’in, K.S.; Stockhausen, A.; Scheuring, A.; Siegel, M.; Semenov, A.D.; Richter, H.; Huebers, H.-W. Technology and Performance of THz Hot-Electron Bolometer Mixers. IEEE Trans. Appl. Supercond. 2009, 19, 269–273. [Google Scholar] [CrossRef]
- Mazzocchi, F.; Ilin, K.; Kempf, S.; Kuzmin, A.; Strauß, D.; Scherer, T. Design and Comparison of Diamond- and Sapphire-Based NbN KIDs for Fusion Plasma Polarimetric Diagnostics. Physica Status Solidi (a) 2023, 220, 2200271. [Google Scholar] [CrossRef]
- Rhazi, R.; Machhadani, H.; Bougerol, C.; Lequien, S.; Robin, E.; Rodriguez, G.; Souil, R.; Thomassin, J.-L.; Mollard, N.; Désières, Y.; et al. Improvement of Critical Temperature of Niobium Nitride Deposited on 8-Inch Silicon Wafers Thanks to an AlN Buffer Layer. Supercond. Sci. Technol. 2021, 34, 045002. [Google Scholar] [CrossRef]
- Hazra, D.; Tsavdaris, N.; Jebari, S.; Grimm, A.; Blanchet, F.; Mercier, F.; Blanquet, E.; Chapelier, C.; Hofheinz, M. Superconducting Properties of Very High Quality NbN Thin Films Grown by High Temperature Chemical Vapor Deposition. Supercond. Sci. Technol. 2016, 29, 105011. [Google Scholar] [CrossRef]
- Shoji, A.; Kiryu, S.; Kohjiro, S. Superconducting Properties and Normal-State Resistivity of Single-Crystal NbN Films Prepared by a Reactive Rf-Magnetron Sputtering Method. Appl. Phys. Lett. 1992, 60, 1624–1626. [Google Scholar] [CrossRef]
- Babu, K.R. Electron-Phonon Coupling, Superconductivity, and Nontrivial Band Topology in NbN Polytypes. Phys. Rev. B 2019, 99, 104508. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Nevala, M.R.; Hakkarainen, T.; Niemi, T.; Maasilta, I.J. Infrared Pulsed Laser Deposition of Niobium Nitride Thin Films. IEEE Trans. Appl. Supercond. 2011, 21, 143–146. [Google Scholar] [CrossRef]
- Chockalingam, S.P.; Chand, M.; Jesudasan, J.; Tripathi, V.; Raychaudhuri, P. Superconducting Properties and Hall Effect of Epitaxial NbN Thin Films. Phys. Rev. B 2008, 77, 214503. [Google Scholar] [CrossRef]
- Schneider, R.; Freitag, B.; Gerthsen, D.; Ilin, K.S.; Siegel, M. Structural, Microchemical and Superconducting Properties of Ultrathin NbN Films on Silicon. Cryst. Res. Technol. 2009, 44, 1115–1121. [Google Scholar] [CrossRef]
- Baskaran, R.; Thanikai Arasu, A.V.; Amaladass, E.P.; Janawadkar, M.P. High Upper Critical Field in Disordered Niobium Nitride Superconductor. J. Appl. Phys. 2014, 116, 163908. [Google Scholar] [CrossRef]
- Kobayashi, A.; Ueno, K.; Fujioka, H. Autonomous Growth of NbN Nanostructures on Atomically Flat AlN Surfaces. Appl. Phys. Lett. 2020, 117, 231601. [Google Scholar] [CrossRef]
- Semenov, A.; Günther, B.; Böttger, U.; Hübers, H.-W.; Bartolf, H.; Engel, A.; Schilling, A.; Ilin, K.; Siegel, M.; Schneider, R.; et al. Optical and Transport Properties of Ultrathin NbN Films and Nanostructures. Phys. Rev. B 2009, 80, 054510. [Google Scholar] [CrossRef]
- Makise, K.; Odou, T.; Ezaki, S.; Asano, T.; Shinozaki, B. Superconductor–Insulator Transition in Two-Dimensional NbN/MgO and NbN/AlN/MgO Films. Mater. Res. Express 2015, 2, 106001. [Google Scholar] [CrossRef]
- Zhang, K.; Balasubramanian, K.; Ozsdolay, B.D.; Mulligan, C.P.; Khare, S.V.; Zheng, W.T.; Gall, D. Growth and Mechanical Properties of Epitaxial NbN(001) Films on MgO(001). Surf. Coat. Technol. 2016, 288, 105–114. [Google Scholar] [CrossRef]
- Licata, O.G.; Sarker, J.; Bachhav, M.; Roy, P.; Wei, X.; Yang, Z.; Patibandla, N.; Zeng, H.; Zhu, M.; Jia, Q.; et al. Correlation between Thickness Dependent Nanoscale Structural Chemistry and Superconducting Properties of Ultrathin Epitaxial NbN Films. Mater. Chem. Phys. 2022, 282, 125962. [Google Scholar] [CrossRef]
- Zhang, J.J.; Su, X.; Zhang, L.; Zheng, L.; Wang, X.F.; You, L. Improvement of the Superconducting Properties of NbN Thin Film on Single-Crystal Silicon Substrate by Using a TiN Buffer Layer. Supercond. Sci. Technol. 2013, 26, 045010. [Google Scholar] [CrossRef]
- Kim, S.; Terai, H.; Yamashita, T.; Qiu, W.; Fuse, T.; Yoshihara, F.; Ashhab, S.; Inomata, K.; Semba, K. Enhanced Coherence of All-Nitride Superconducting Qubits Epitaxially Grown on Silicon Substrate. Commun. Mater. 2021, 2, 98. [Google Scholar] [CrossRef]
- Krause, S.; Meledin, D.; Desmaris, V.; Pavolotsky, A.; Belitsky, V.; Rudziński, M.; Pippel, E. Epitaxial Growth of Ultra-Thin NbN Films on Alx Ga1− x N Buffer-Layers. Supercond. Sci. Technol. 2014, 27, 065009. [Google Scholar] [CrossRef]
- Tian, L.; Bottala-Gambetta, I.; Marchetto, V.; Jacquemin, M.; Crisci, A.; Reboud, R.; Mantoux, A.; Berthomé, G.; Mercier, F.; Sulpice, A.; et al. Improved Critical Temperature of Superconducting Plasma-Enhanced Atomic Layer Deposition of Niobium Nitride Thin Films by Thermal Annealing. Thin Solid Films 2020, 709, 138232. [Google Scholar] [CrossRef]
- Hotovy, I.; Buc, D.; Brcka, J.; Srnanek, R. Study of Niobium Nitride Films Produced by DC Reactive Magnetron Sputtering. Phys. Stat. Sol. (a) 1997, 161, 97–104. [Google Scholar] [CrossRef]
- Hotový, I.; Huran, J.; Búc, D.; Srnánek, R. Thermal Stability of NbN Films Deposited on GaAs Substrates. Vacuum 1998, 50, 45–48. [Google Scholar] [CrossRef]
- Katz, M.B.; Liu, C.-I.; Kruskopf, M.; Hill, H.M.; Hight Walker, A.R.; Elmquist, R.E.; Davydov, A.V.; Rigosi, A.F. Microstructural Evolution at the Interface of Superconducting Thin Films and SiC Substrate. MRS Commun. 2022, 12, 1168–1173. [Google Scholar] [CrossRef]
- Guziewicz, M.; Slysz, W.; Borysiewicz, M.; Kruszka, R.; Sidor, Z.; Juchniewicz, M.; Golaszewska, K.; Domagala, J.Z.; Rzodkiewicz, W.; Ratajczak, J.; et al. Technology of Ultrathin NbN and NbTiN Films for Superconducting Photodetectors. Acta Phys. Pol. A 2011, 120, A-76–A-79. [Google Scholar] [CrossRef]
- Hatano, M.; Nishino, T.; Kawabe, U. Effects of Thermal Annealing on Superconducting Nb and NbN Films. J. Vac. Sci. Technol. A Vac. Surf. Film. 1988, 6, 2381–2385. [Google Scholar] [CrossRef]
- Mazzocchi, F.; Driessen, E.; Shu, S.; Merker, M.; Ilin, K.; Siegel, M.; Meier, A.; Straus, D.; Scherer, T. Design of NbN Based Kinetic Inductance Detectors for Polarimetric Plasma Diagnostics. IEEE Trans. Appl. Supercond. 2021, 31, 1–7. [Google Scholar] [CrossRef]
- Mazzocchi, F.; Driessen, E.F.C.; Shu, S.; Grossetti, G.; Strauss, D.; Scherer, T. Development of NbN Polarization Sensitive KID for Fusion Applications. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018; pp. 1–2. [Google Scholar]
- Ezaki, S.; Makise, K.; Shinozaki, B.; Odo, T.; Asano, T.; Terai, H.; Yamashita, T.; Miki, S.; Wang, Z. Localization and Interaction Effects in Ultrathin Epitaxial NbN Superconducting Films. J. Phys. 2012, 24, 475702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; You, L.; Chen, L.; Peng, W.; Wang, Z. Superconductivity of Disordered NbN Films Deposited on Magnesium Oxide and Oxidized Silicon Substrates. Supercond. Sci. Technol. 2022, 35, 105008. [Google Scholar] [CrossRef]
- Kang, L.; Jin, B.B.; Liu, X.Y.; Jia, X.Q.; Chen, J.; Ji, Z.M.; Xu, W.W.; Wu, P.H.; Mi, S.B.; Pimenov, A.; et al. Suppression of Superconductivity in Epitaxial NbN Ultrathin Films. J. Appl. Phys. 2011, 109, 033908. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Tang, X.; Peng, W.; Wang, Z. Superconductivity Dependence on Epitaxial NbN Film Thickness. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Reithmaier, G.; Senf, J.; Lichtmannecker, S.; Reichert, T.; Flassig, F.; Voss, A.; Gross, R.; Finley, J.J. Optimisation of NbN Thin Films on GaAs Substrates for in-Situ Single Photon Detection in Structured Photonic Devices. J. Appl. Phys. 2013, 113, 143507. [Google Scholar] [CrossRef]
- Strijckmans, K.; Schelfhout, R.; Depla, D. Tutorial: Hysteresis during the Reactive Magnetron Sputtering Process. J. Appl. Phys. 2018, 124, 241101. [Google Scholar] [CrossRef]
- Marquardt, R.; Cipo, J.; Schlichting, F.; Kolhatkar, G.; Kohlstedt, H.; Kersten, H. Correlation between Properties of Direct Current Magnetron Sputtered Thin Niobium Nitride Films and Plasma Parameters. Thin Solid Films 2022, 742, 139046. [Google Scholar] [CrossRef]
Samples | Power (W) | Temperature (°C) | N2/Ar | Tc (K) | Growth Rate (nm/min) | Resistance (μΩ·cm) |
---|---|---|---|---|---|---|
1%–30% | 150 | 500 | 30% | 5.5 | 5.2 | 781 |
1%–17.1%, 2–150 W, 4–500 °C | 150 | 500 | 17.1% | 10.2 | 7.6 | 475 |
1%–7.9%, 3–150 W | 150 | 500 | 7.9% | 3 | 9.6 | 336 |
2–120 W | 120 | 500 | 17.1% | 8.1 | 4.9 | 636 |
2–180 W | 180 | 500 | 17.1% | 11.2 | 9.5 | 330 |
3–120 W | 120 | 500 | 7.9% | 7 | 7.2 | 380 |
3–180 W | 180 | 500 | 7.9% | 3.3 | 11.5 | 322 |
4–600 °C | 150 | 600 | 17.1% | 10.1 | 7.4 | 410 |
4–300 °C | 150 | 300 | 17.1% | 11.8 | 7.4 | 447 |
Si | GaN/Si | SiN/Si | AlN/Si | AlN/Sapphire | |
---|---|---|---|---|---|
Substrate | 1.1 | 0.46 | 1.4 | 1.7 | 9.2 |
As-deposited film | 0.7 | 0.67 | 3.4 | 1.4 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Y.; Fan, Q.; Ni, X.; Gu, X. Controlling the Superconducting Critical Temperature and Resistance of NbN Films through Thin Film Deposition and Annealing. Coatings 2024, 14, 496. https://doi.org/10.3390/coatings14040496
Pei Y, Fan Q, Ni X, Gu X. Controlling the Superconducting Critical Temperature and Resistance of NbN Films through Thin Film Deposition and Annealing. Coatings. 2024; 14(4):496. https://doi.org/10.3390/coatings14040496
Chicago/Turabian StylePei, Yang, Qian Fan, Xianfeng Ni, and Xing Gu. 2024. "Controlling the Superconducting Critical Temperature and Resistance of NbN Films through Thin Film Deposition and Annealing" Coatings 14, no. 4: 496. https://doi.org/10.3390/coatings14040496
APA StylePei, Y., Fan, Q., Ni, X., & Gu, X. (2024). Controlling the Superconducting Critical Temperature and Resistance of NbN Films through Thin Film Deposition and Annealing. Coatings, 14(4), 496. https://doi.org/10.3390/coatings14040496