A Numerical Study on Ag/CZTS/n-Si/Al Heterojunction Solar Cells Fabricated via Laser Ablation †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Results
3.2. TEM and SEM Property
3.3. Optical Property
3.4. Modeling of Ag/CZTS/n-Si/Al Heterojunction Solar Cell and Calculation of Photovoltaic Parameters Using SCAPS-1D Simulation Software
3.4.1. The Effect of Radiative Recombination Coefficient (Br) in CZTS (C-II) Ultrathin Film
3.4.2. The Effect of Defect Density (Nt) at the Interface of CZTS (C-II)/n-Si Heterojunction
3.4.3. The Effect of Operating Temperature of Ag/CZTS (C-II) /n-Si/Al Heterojunction Solar Cell
3.4.4. The Effect of the Shallow Acceptor Defect Density (Na) in CZTS (C-II) Ultrathin Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cu2ZnSnS4 | Copper Zinc Tin Sulfide. |
CuInGaSe2 | Copper Indium Gallium Selenide. |
CdTe | Cadmium Tellur. |
CdS | Cadmium Sulfide. |
I-ZnO | Intrinsic Zinc Oxide. |
ITO | Indium–Tin Oxide. |
SGSC | Second Generation Solar Cells. |
Si | Silicon. |
SCAPS-1D | One-dimensional Solar Cell Capacitance Simulator. |
Jsc | Short-Circuit Current Density. |
Voc | Open-Circuit Voltage. |
FF | Fill Factor. |
η | Power Conversion Efficiency. |
Ag | Silver. |
Al | Aluminum. |
C-I | Copper Zinc Tin Sulfide -1. |
C-II | Copper Zinc Tin Sulfide -2. |
PLD | Pulse Laser Deposition. |
SEM | Scanning Electron Microscope. |
HR-TEM | High-Resolution Transmission Electron Microscopy. |
XRD | X-ray Diffraction. |
UVvis | Ultraviolet–visible. |
eV | Electron Volt. |
nm | Nanometer. |
α | Absorption coefficient. |
W | Thickness. |
A | Absorbance. |
Br | Radiative Recombination Coefficient. |
PV | Photovoltaic. |
Nt | Interface Defect Density. |
K | Kelvin. |
Na | Shallow Acceptor Defect Density. |
References
- Song, X.; Ji, X.; Li, M.; Lin, W.; Luo, X.; Zhang, H. A review on development prospect of CZTS based thin film solar cells. Int. J. Photoenergy 2014, 1, 613173. [Google Scholar] [CrossRef]
- Kişnişci, Z.; Özel, F.; Tuğluoğlu, N.; Yüksel, Ö.F. Structural and optical properties of Cu2ZnSnSe4 nanocrystals thin film. Opt. Quantum Electron. 2024, 56, 1239. [Google Scholar] [CrossRef]
- Kişnişci, Z.; Özel, F.; Karadeniz, S.; Tuğluoğlu, N.; Özel, S.S.; Yüksel, Ö.F. Electrical properties of Al/CZTSe nanocrystal Schottky diode. J. Mater. Sci. Mater. Electron. 2024, 35, 773. [Google Scholar] [CrossRef]
- Yeh, M.-Y.; Lei, P.-H.; Lin, S.-H.; Yang, C.-D. Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology. Materials 2016, 9, 526. [Google Scholar] [CrossRef]
- Tanaka, K.; Oonuki, M.; Moritake, N.; Uchiki, H. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol. Cells 2009, 93, 583–587. [Google Scholar] [CrossRef]
- Cui, H.; Liu, X.; Sun, L.; Liu, F.; Yan, C.; Hao, X. Fabrication of Efficient Cu2ZnSnS4 Solar Cells by Sputtering Single Stoichiometric Target. Coatings 2017, 7, 19. [Google Scholar] [CrossRef]
- Dalapati, G.K.; Zhuk, S.; Masudy-Panah, S.; Kushwaha, A.; Seng, H.L.; Chellappan, V.; Suresh, V.; Su, Z.; Batabyal, S.K.; Tan, C.C.; et al. Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells. Sci. Rep. 2017, 7, 1350. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Katiyar, A.K.; Midya, A.; Ghorai, A.; Ray, S.K. Superior heterojunction properties of solution processed copper-zinc-tin-sulphide quantum dots on Si. Nanotechnology 2017, 28, 435704. [Google Scholar] [CrossRef]
- Elhmaidi, Z.; Pandiyan, R.; Abd-Lefdil, M.; Saucedo, E.; El Khakani, M. In-situ tuning of the zinc content of pulsed-laser-deposited CZTS films and its effect on the photoconversion efficiency of p-CZTS/n-Si heterojunction photovoltaic devices. Appl. Surf. Sci. 2020, 507, 145003. [Google Scholar] [CrossRef]
- Oulad Elhmaidi, Z.; Abd-Lefdil, M.; El Khakani, M.A. Photoconversion Optimization of Pulsed-Laser-Deposited p-CZTS/n-Si-Nanowires Heterojunction-Based Photovoltaic Devices. Nanomaterials 2020, 10, 1393. [Google Scholar] [CrossRef]
- Yiğit gezgin, S.; Houimi, A.; Kiliç, H.Ş. Comparison of electrical and photovoltaic parameters of the hetero-junction solar cells based on CZTS and CIGS ultrathin films. Mater. Technol. 2022, 37, 1573–1585. [Google Scholar] [CrossRef]
- Song, N.; Young, M.; Liu, F.; Erslev, P.; Wilson, S.; Harvey, S.P.; Teeter, G.; Huang, Y.; Hao, X.; Green, M.A. Epitaxial Cu2ZnSnS4 thin film on Si (111) 4 substrate. Appl. Phys. Lett. 2015, 106, 252102. [Google Scholar] [CrossRef]
- Song, N.; Green, M.A.; Sun, K.; Hu, Y.; Yan, C.; Hao, X. Epitaxial Growth of Cu2ZnSnS4 Thin Films. Appl. Phys. Lett. 2020, 116, 123901. [Google Scholar] [CrossRef]
- Yiğit Gezgin, S.; Kiliç, H.Ş. The effect of Ag plasmonic nanoparticles on the efficiency of CZTS solar cell: An experimental investigation and numerical modelling. Indian J. Phys. 2023, 97, 779–796. [Google Scholar] [CrossRef]
- Gezgin, S.Y. Modelling and investigation of the electrical properties of CIGS/n-Si heterojunction solar cells. Opt. Mater. 2022, 131, 112738. [Google Scholar] [CrossRef]
- Houimi, A.; Gezgin, S.Y.; Mercimek, B.; Kılıç, H.Ş. Numerical analysis of CZTS/n-Si solar cells using SCAPS-1D. A comparative study between experimental and calculated outputs. Opt. Mater. 2021, 121, 111544. [Google Scholar] [CrossRef]
- Cazzaniga, A.C. Fabrication of Thin Film CZTS Solar Cells with Pulsed Laser Deposition. Ph.D. Thesis, Technical University of Denmark (DTU), Kongens Lyngby, Denmark, 2016. [Google Scholar]
- Dikovska, A.O.; Atanasov, P.A.; Vasileva, C.; Dimitrov, I.G.; Stoyanchov, T.R. Thin ZnO films produced by pulsed laser deposition. J. Optoelectron. Adv. Mater. 2005, 7, 1329–1334. [Google Scholar]
- Ghimbeu, C.M.; Sima, F.; Ostaci, R.; Socol, G.; Mihailescu, I.; Vix-Guterl, C. Crystalline vanadium nitride ultra-thin films obtained at room temperature by pulsed laser deposition. Surf. Coat. Technol. 2012, 211, 158–162. [Google Scholar] [CrossRef]
- Gezgin, S.Y.; Kepceoğlu, A.; Kılıç, H.Ş. An investigation of localised surface plasmon resonance (LSPR) of Ag nanoparticles produced by pulsed laser deposition (PLD) technique. AIP Conf. Proc. 2017, 1815, 030019. [Google Scholar] [CrossRef]
- Camara, S.M.; Wang, L.; Zhang, X. Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology 2013, 24, 495401. [Google Scholar] [CrossRef]
- Gezgin, S.Y.; Kiliç, H.Ş. The Electrical Characteristics of ITO/CZTS/ZnO/Al and ITO/ZnO/CZTS/Al Heterojunction Diodes. Optik 2019, 182, 356–371. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, K.; Zhang, C.; Chen, L.; Cao, H.; Liu, J.; Jiang, J.; Sun, L.; Yang, P.; Chu, J. A sputtered CdS buffer layer for co-electrodeposited Cu 2 ZnSnS 4 solar cells with 6.6% efficiency. Chem. Commun. 2015, 51, 10337–10340. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, X.; Zhao, Y.; Zhang, W. Preparation and photocatalytic properties of Cu2ZnSnS4 for H2 production. Mater. Res. Express 2020, 7, 095902. [Google Scholar] [CrossRef]
- Đekić, M.; Fetic, A.S. Influence of deposition parameters on pulsed laser deposition of K0.3MoO3 thin films. Bull. Chem. Technol. Bosnia Herzeg. 2017, 48, 1. [Google Scholar]
- Vakulov, Z.; Ivonin, M.; Zamburg, E.G.; Klimin, V.S.; Volik, D.P.; A Golosov, D.; Zavadskiy, S.M.; Dostanko, A.P.; Miakonkikh, A.V.; E Clemente, I.; et al. Size effects in LiNbO3 thin films fabricated by pulsed laser deposition. J. Phys. Conf. Ser. 2018, 1124, 022032. [Google Scholar] [CrossRef]
- Cazzaniga, A.; Crovetto, A.; Yan, C.; Sun, K.; Hao, X.; Estelrich, J.R.; Canulescu, S.; Stamate, E.; Pryds, N.; Hansen, O.; et al. Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition. Sol. Energy Mater. Sol. Cells 2017, 166, 91–99. [Google Scholar] [CrossRef]
- Kim, C.; Hong, S. Optical and electrical properties of Cu2ZnSnS4 thin films grown using spray pyrolysis technique and annealing in air. Mol. Cryst. Liq. Cryst. 2017, 645, 217–224. [Google Scholar] [CrossRef]
- Gupta, G.K.; Reddy, V.; Dixit, A. Impact of excess and disordered Sn sites on Cu2ZnSnS4 absorber material and device performance: A 119Sn Mössbauer study. Mater. Chem. Phys. 2019, 225, 410–416. [Google Scholar] [CrossRef]
- Mustafa, F.A. Optical properties of NaI doped polyvinyl alcohol films. Phys. Sci. Res. Int. 2013, 1, 1–9. [Google Scholar] [CrossRef]
- Antar, E. Effect of γ-ray on optical characteristics of dyed PVA films. J. Radiat. Res. Appl. Sci. 2014, 7, 129–134. [Google Scholar] [CrossRef]
- Akın, Ü.; Houimi, A.; Gezgin, B.; Gündoğdu, Y.; Kılıç, S.; Mercimek, B.; Berber, A.; Gezgin, S.Y. The electrical properties of ZnO/Si heterojunction diode depending on thin film thickness. J. Korean Phys. Soc. 2022, 81, 139–149. [Google Scholar] [CrossRef]
- Adewoyin, A.D.; Olopade, M.A.; Chendo, M. Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik 2017, 133, 122–131. [Google Scholar] [CrossRef]
- He, Y.; Chen, H.; Wang, S.; Wang, Q.; Zhang, C.; Hao, Q.; Li, R.; Li, S.; Liu, X.; Guo, X. Unveiling recombination in top cells: SCAPS-1D simulations for high-efficiency bifacial planar perovskite/silicon tandem solar cells. Sol. Energy 2024, 282, 112921. [Google Scholar] [CrossRef]
- Peksu, E.; Karaagac, H. A third generation solar cell based on wet-chemically etched Si nanowires and sol-gel derived Cu2ZnSnS4 thin films. J. Alloys Compd. 2019, 774, 1117–1122. [Google Scholar] [CrossRef]
- Gupta, G.K.; Dixit, A. Simulation studies of CZT (S, Se) single and tandem junction solar cells towards possibilities for higher efficiencies up to 22%. arXiv 2018, arXiv:1801.08498. [Google Scholar] [CrossRef]
- Meher, S.; Balakrishnan, L.; Alex, Z. Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: A numerical simulation approach. Superlattices Microstruct. 2016, 100, 703–722. [Google Scholar] [CrossRef]
Ultrathin Films | Thickness | Crystal Size |
---|---|---|
C-I | 61 nm | 7.34 nm |
C-II | 313 nm | 22.25 nm |
Samples | Cu-(%) | Zn-(%) | Sn-(%) | S-(%) | Cu/(Zn + Sn) | Zn/Sn | S/Metal |
---|---|---|---|---|---|---|---|
C-I | 11.20 | 17.34 | 32.60 | 38.78 | 0.22 | 0.53 | 0.63 |
C-II | 19.54 | 15.78 | 18.23 | 46.45 | 0.57 | 0.86 | 0.86 |
Parameters of These Layers | n-Si | CZTS (C-I/C-II) |
---|---|---|
Band Gap—(eV) | 1.12 | 1.95/1.45 |
Electron affinity—(eV) | 4.05 | 3.9 |
Dielectric permittivity—(relative) | 11.7 | 7 |
Conduction band effective density of states—(cm−3) | 2.80 × 1019 | 2.20 × 1018 |
Valence band effective density of states—(cm−3) | 1.04 × 1019 | 1.80 × 1019 |
Electron thermal velocity—(cm/s) | 1.00 × 107 | 1.00 × 107 |
Hole thermal velocity—(cm/s) | 1.00 × 107 | 1.00 × 107 |
Electron mobility—(cm2/Vs) | 350 | 10 |
Hole mobility—(cm2/Vs) | 450 | 26 |
Shallow donor density ND—(cm−3) | 1.5 × 1017 | 0 |
Shallow acceptor density NA—(cm−3) | 0 | 5.00 × 1015 |
Defect type | Donner | Acceptor |
Absorption coefficient | SCAPS | Absorption coefficients (Calculated) |
Thickness | 500 μm | 61/313 nm |
Solar Cells | Jsc (mA/cm2) | Voc (mV) | FF (%) | η (%) |
---|---|---|---|---|
C-I (exp.) | 1.34 | 300 | 32 | 0.16 |
C-I (calc.) | 1.36 | 305 | 40 | 0.17 |
C-II (exp.) | 14.62 | 320 | 29 | 1.73 |
C-II (calc.) | 14.73 | 324 | 25 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gezgin, S.Y.; Kabakci, Y.G.; Kilic, H.S. A Numerical Study on Ag/CZTS/n-Si/Al Heterojunction Solar Cells Fabricated via Laser Ablation. Eng. Proc. 2025, 104, 36. https://doi.org/10.3390/engproc2025104036
Gezgin SY, Kabakci YG, Kilic HS. A Numerical Study on Ag/CZTS/n-Si/Al Heterojunction Solar Cells Fabricated via Laser Ablation. Engineering Proceedings. 2025; 104(1):36. https://doi.org/10.3390/engproc2025104036
Chicago/Turabian StyleGezgin, Serap Yigit, Yasemin Gundogdu Kabakci, and Hamdi Sukur Kilic. 2025. "A Numerical Study on Ag/CZTS/n-Si/Al Heterojunction Solar Cells Fabricated via Laser Ablation" Engineering Proceedings 104, no. 1: 36. https://doi.org/10.3390/engproc2025104036
APA StyleGezgin, S. Y., Kabakci, Y. G., & Kilic, H. S. (2025). A Numerical Study on Ag/CZTS/n-Si/Al Heterojunction Solar Cells Fabricated via Laser Ablation. Engineering Proceedings, 104(1), 36. https://doi.org/10.3390/engproc2025104036