Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,213)

Search Parameters:
Keywords = SC-CO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 (registering DOI) - 1 Aug 2025
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

14 pages, 834 KiB  
Review
Immunization as Protection Against Long COVID in the Americas: A Scoping Review
by Gabriela Zambrano-Sánchez, Josue Rivadeneira, Carlos Manterola, Tamara Otzen and Luis Fuenmayor-González
Vaccines 2025, 13(8), 822; https://doi.org/10.3390/vaccines13080822 (registering DOI) - 31 Jul 2025
Viewed by 25
Abstract
Introduction: Long COVID syndrome is defined as persistent or new symptoms that appear after an acute SARS-CoV-2 infection and last at least three months without explanation. It is estimated that between 10% and 20% of those infected develop long COVID; however, data is [...] Read more.
Introduction: Long COVID syndrome is defined as persistent or new symptoms that appear after an acute SARS-CoV-2 infection and last at least three months without explanation. It is estimated that between 10% and 20% of those infected develop long COVID; however, data is not precise in Latin America. Although high immunization rates have reduced acute symptoms and the pandemic’s impact, there is a lack of evidence of its efficacy in preventing long COVID in the region. Methods: This scoping review followed PRISMA-ScR guidelines. Studies on vaccinated adults with long COVID from Central and South America and the Caribbean were included (Mexico was also considered). A comprehensive search across multiple databases was conducted. Data included study design, participant characteristics, vaccine type, and efficacy outcomes. Results are presented narratively and in tables. Results: Out of 3466 initial records, 8 studies met the inclusion criteria after rigorous selection processes. These studies encompassed populations from Brazil, Mexico, Latin America, and Bonaire, with 11,333 participants, 69.3% of whom were female. Vaccination, particularly with three or more doses, substantially reduces the risk and duration of long COVID. Variability was noted in the definitions and outcomes assessed across studies. Conclusions: This scoping review highlights that SARS-CoV-2 vaccination exhibits potential in reducing the burden of long COVID in the Americas. However, discrepancies in vaccine efficacy were observed depending on the study design, the population studied, and the vaccine regimen employed. Further robust, region-specific investigations are warranted to delineate the effects of vaccination on long COVID outcomes. Full article
Show Figures

Figure 1

21 pages, 6921 KiB  
Article
Transcriptomic Analysis Identifies Oxidative Stress-Related Hub Genes and Key Pathways in Sperm Maturation
by Ali Shakeri Abroudi, Hossein Azizi, Vyan A. Qadir, Melika Djamali, Marwa Fadhil Alsaffar and Thomas Skutella
Antioxidants 2025, 14(8), 936; https://doi.org/10.3390/antiox14080936 - 30 Jul 2025
Viewed by 220
Abstract
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved [...] Read more.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function. Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection. Enriched cultures were assessed through morphological criteria and immunocytochemistry using VASA and SSEA4. Transcriptomic profiling was performed using microarray and single-cell RNA sequencing (scRNA-seq) to identify oxidative stress-related genes. Bioinformatic analyses included STRING-based protein–protein interaction (PPI) networks, FunRich enrichment, weighted gene co-expression network analysis (WGCNA), and predictive modeling using machine learning algorithms. Results: The enriched SSC populations displayed characteristic morphology, positive germline marker expression, and minimal fibroblast contamination. Microarray analysis revealed six significantly upregulated oxidative stress-related genes in SSCs—including CYB5R3 and NDUFA10—and three downregulated genes, such as TXN and SQLE, compared to fibroblasts. PPI and functional enrichment analyses highlighted tightly clustered gene networks involved in mitochondrial function, redox balance, and spermatogenesis. scRNA-seq data further confirmed stage-specific expression of antioxidant genes during spermatogenic differentiation, particularly in late germ cell stages. Among the machine learning models tested, logistic regression demonstrated the highest predictive accuracy for antioxidant gene expression, with an area under the curve (AUC) of 0.741. Protein oxidation was implicated as a major mechanism of oxidative damage, affecting sperm motility, metabolism, and acrosome integrity. Conclusion: This study identifies key oxidative stress-related genes and pathways in human SSCs that may regulate spermatogenesis and impact sperm function. These findings offer potential targets for future functional validation and therapeutic interventions, including antioxidant-based strategies to improve male fertility outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

19 pages, 1230 KiB  
Article
Bioactive Potential of Rheum cordatum Losinsk. Leaf Extracts: Phytochemical Insights from Supercritical CO2, Subcritical Ethanol and Ultrasound-Assisted Extractions
by Madina Amangeldinova, Mehmet Ersatır, Pınar Küce Cevik, Mustafa Abdullah Yilmaz, Oguz Cakır, Nataliya Kudrina, Aizhan Mussayeva, Timur Kulmanov, Nina Terletskaya and Metin Yildirim
Plants 2025, 14(15), 2314; https://doi.org/10.3390/plants14152314 - 26 Jul 2025
Viewed by 259
Abstract
Rheum cordatum Losinsk is a plant species distributed in Kazakhstan but remains relatively understudied despite its promising biological potential. The present study aimed to explore leaf extracts of R. cordatum by utilizing advanced green extraction technologies including supercritical CO2 (ScCO2), [...] Read more.
Rheum cordatum Losinsk is a plant species distributed in Kazakhstan but remains relatively understudied despite its promising biological potential. The present study aimed to explore leaf extracts of R. cordatum by utilizing advanced green extraction technologies including supercritical CO2 (ScCO2), subcritical ethanol (Sc) and ultrasound-assisted extraction (UAE) to characterize their phytochemical composition and evaluate their antioxidant and antimicrobial activities. A total of 53 phytochemical compounds were identified, with gallic acid (30.71 µg/mg UAE-EtOH-4h), rutin (21.93 µg/mg ScCO2-150) and hesperidin (14.98 µg/mg ScCO2-150) being notably abundant. Among the tested extracts, ScCO2 extraction at 150 bar (ScCO2-150) demonstrated the highest antioxidant activity, exhibiting IC50 values of 0.0132 mg/mL (DPPH) and 0.0462 mg/mL (ABTS), coupled with the highest total phenolic content (140 mg GAE/g). Moreover, the ScCO2-150 extract showed pronounced antimicrobial efficacy, particularly against Bacillus subtilis Pseudomonas aeruginosa and Staphylococcus aureus, with minimum inhibitory concentrations (MIC) ranging from 125 to 250 µg/mL. These findings highlight the considerable potential of R. cordatum leaves as a valuable, abundant and sustainable source of natural antioxidants and antimicrobial agents, with supercritical CO2 extraction presenting substantial advantages in selectively obtaining bioactive phytochemicals. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 651 KiB  
Review
Communication Disorders and Mental Health Outcomes in Children and Adolescents: A Scoping Review
by Lifan Xue, Yifang Gong, Shane Pill and Weifeng Han
Healthcare 2025, 13(15), 1807; https://doi.org/10.3390/healthcare13151807 - 25 Jul 2025
Viewed by 377
Abstract
Background/Objectives: Communication disorders in childhood, including expressive, receptive, pragmatic, and fluency impairments, have been consistently linked to mental health challenges such as anxiety, depression, and behavioural difficulties. However, existing research remains fragmented across diagnostic categories and developmental stages. This scoping review aimed [...] Read more.
Background/Objectives: Communication disorders in childhood, including expressive, receptive, pragmatic, and fluency impairments, have been consistently linked to mental health challenges such as anxiety, depression, and behavioural difficulties. However, existing research remains fragmented across diagnostic categories and developmental stages. This scoping review aimed to synthesise empirical evidence on the relationship between communication disorders and mental health outcomes in children and adolescents and to identify key patterns and implications for practice and policy. Methods: Following the PRISMA Extension for Scoping Reviews (PRISMA-ScR) and Arksey and O’Malley’s framework, this review included empirical studies published in English between 2000 and 2024. Five databases were searched, and ten studies met the inclusion criteria. Data were charted and thematically analysed to explore associations across communication profiles and emotional–behavioural outcomes. Results: Four interconnected themes were identified: (1) emotional and behavioural manifestations of communication disorders; (2) social burden linked to pragmatic and expressive difficulties; (3) family and environmental stressors exacerbating child-level challenges; and (4) a lack of integrated care models addressing both communication and mental health needs. The findings highlight that communication disorders frequently co-occur with emotional difficulties, often embedded within broader social and systemic contexts. Conclusions: This review underscores the need for developmentally informed, culturally responsive, and interdisciplinary service models that address both communication and mental health in children. Early identification, family-centred care, and policy reforms are critical to reducing inequities and improving outcomes for this underserved population. Full article
Show Figures

Figure 1

20 pages, 9891 KiB  
Article
3D-Printed Poly (l-lactic acid) Scaffolds for Bone Repair with Oriented Hierarchical Microcellular Foam Structure and Biocompatibility
by Cenyi Luo, Juan Xue, Qingyi Huang, Yuxiang Deng, Zhixin Zhao, Jiafeng Li, Xiaoyan Gao and Zhengqiu Li
Biomolecules 2025, 15(8), 1075; https://doi.org/10.3390/biom15081075 - 25 Jul 2025
Viewed by 306
Abstract
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a [...] Read more.
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a novel extrusion foaming technology that integrates fused deposition modeling (FDM) 3D printing with supercritical carbon dioxide (SC-CO2) microcellular foaming technology. The influence of the 3D-printed structure on the microcellular morphology of the oriented multi-stage microporous scaffold was investigated and optimized. The combination of FDM and SC-CO2 foaming technology enables a continuous extrusion foaming process for preparing oriented multi-stage microporous scaffolds. The mechanical strength of the scaffold reached 15.27 MPa, meeting the requirements for bone repair in a low-load environment. Notably, the formation of open pores on the surface of the oriented multi-stage microporous scaffold positively affected cell proliferation, differentiation, and activity, as well as the expression of anti-inflammatory and pro-inflammatory factors. In vitro cell experiments (such as CCK-8) showed that the cell proliferation rate in the oriented multi-stage microporous scaffold reached 100–300% after many days of cultivation. This work provides a strategy for the design and manufacture of PLLA scaffolds with hierarchical microcellular structures and biocompatibility for bone repair. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 312
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

23 pages, 15083 KiB  
Article
Reactivity of Shale to Supercritical CO2: Insights from Microstructural Characterization and Mineral Phase Evolution in Caney Shales for CCUS Applications
by Loic Bethel Dje and Mileva Radonjic
Materials 2025, 18(14), 3382; https://doi.org/10.3390/ma18143382 - 18 Jul 2025
Viewed by 333
Abstract
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock [...] Read more.
Understanding mineral–fluid interactions in shale under supercritical CO2 (scCO2) conditions is relevant for assessing long-term geochemical containment. This study characterizes mineralogical transformations and elemental redistribution in five Caney Shale samples serving as proxies for reservoir (R1, R2, R3) and caprock (D1, D2) facies, subjected to 30-day static exposure to pure scCO2 at 60 °C and 17.23 MPa (2500 psi), with no brine or impurities introduced. SEM-EDS analyses were conducted before and after exposure, with mineral phases classified into silicates, carbonates, sulfides, and organic matter. Initial compositions were dominated by quartz (38–47 wt.%), illite (16–23 wt.%), carbonates (12–18 wt.%), and organic matter (8–11 wt.%). Post-exposure, carbonate loss ranged from 15 to 40% in reservoir samples and up to 20% in caprock samples. Illite and K-feldspar showed depletion of Fe2+, Mg2+, and K+ at grain edges and cleavages, while pyrite underwent oxidation with Fe redistribution. Organic matter exhibited scCO2-induced surface alteration and apparent sorption effects, most pronounced in R2 and R3. Elemental mapping revealed Ca2+, Mg2+, Fe2+, and Si4+ mobilization near reactive interfaces, though no secondary mineral precipitates formed. Reservoir samples developed localized porosity, whereas caprock samples retained more structural clay integrity. The results advance understanding of mineral reactivity and elemental fluxes in shale-based CO2 sequestration. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Graphical abstract

23 pages, 3053 KiB  
Article
MICA+ Tumor Cells Modulate Macrophage Phenotype and Function via PPAR/EHHADH-Mediated Fatty Acid Metabolism in Hepatocellular Carcinoma (HCC)
by Jingquan Huang, Yumeng Teng, Peng Yan, Yan Yang, Shixun Lin, Qiulin Wu, Qiang Du, Xicai Li, Ming Yao, Jianjun Li, Yubin Huang, Xiaoyong Cai, David A. Geller and Yihe Yan
Cancers 2025, 17(14), 2365; https://doi.org/10.3390/cancers17142365 - 16 Jul 2025
Viewed by 316
Abstract
Background: Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment (TME), and the metabolic activities of both tumor cells and TAMs have an impact on the TME. Moreover, the expression of MICA in tumor cells is closely associated with immune cells [...] Read more.
Background: Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment (TME), and the metabolic activities of both tumor cells and TAMs have an impact on the TME. Moreover, the expression of MICA in tumor cells is closely associated with immune cells in hepatocellular carcinoma (HCC). However, it remains unclear whether MICA expression correlates with TAMs and influences the switch in macrophage phenotype by mediating metabolic alterations. Methods: Various biostatistical tools, qPCR, and IHC staining experiments were utilized to analyze data from The Cancer Genome Atlas (TCGA) and collected HCC tumor tissues. Single-cell RNA sequencing (scRNA-seq) analyses and a co-culture model of HCC cells with macrophages were performed to validate the findings from the biostatistical analyses. Results: Through the intersection of differentially expressed genes (DEGs), metabolism-related genes (MRGs), and co-expression genes (CEGs) with MICA in HCC, the EHHADH gene was identified. Gene set enrichment analyses were conducted to further confirm the role of EHHADH. EHHADH expression is decreased in HCC tumors and can serve as a prognostic biomarker for HCC. Expressions of MICA and EHHADH exhibited significant correlations with various phenotypic macrophages and exerted opposing effects on M1-like and M2-like macrophages infiltrating HCC. The underlying metabolic and molecular mechanisms revealed that MICA in tumor cells induced M2-like polarization through the PPAR/EHHADH pathway, which regulates the fatty acid oxidation (FAO) in macrophages. Conclusions: The metabolic gene EHHADH, which is associated with MICA, led to alterations in M2-like macrophages by promoting heightened fatty acid uptake and augmenting levels of FAO within macrophages. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

14 pages, 4424 KiB  
Article
Electrochemical and Kinetic Performance of Low-Cobalt and Cobalt-Free Rare-Earth AB5-Type Hydrogen Storage Alloys
by Yingying Shen, Fengji Zhang, Hengyu Ma, Yun Zhao, Yong Wang, Xinfeng Wang, Xiuyan Li, Youcheng Luo and Bingang Lu
Materials 2025, 18(14), 3317; https://doi.org/10.3390/ma18143317 - 14 Jul 2025
Viewed by 272
Abstract
To address the high cost of cobalt in rare-earth hydrogen storage alloys, this study developed cost-effective low-cobalt and cobalt-free AB5-type alloys. The results demonstrate that all synthesized alloys displayed a single-phase LaNi5 structure possessing a homogeneous elemental distribution. Low-cobalt (La, [...] Read more.
To address the high cost of cobalt in rare-earth hydrogen storage alloys, this study developed cost-effective low-cobalt and cobalt-free AB5-type alloys. The results demonstrate that all synthesized alloys displayed a single-phase LaNi5 structure possessing a homogeneous elemental distribution. Low-cobalt (La, Ce) (Ni, Co, Mn, Al)5 alloy 4SC and cobalt-free (La, Ce) (Ni, Mn, Al)5 alloy 7D exhibited similarly excellent electrochemical performance, including high discharge capacity, long cycle life, and superior high-rate discharge (HRD) capability. In addition, the kinetic test results show that the exchange current densities of these two alloys were quite similar, measuring 302.97 mA g−1 and 317.70 mA g−1, respectively. However, the hydrogen diffusion coefficient of 7D was significantly higher than that of 4SC, reaching 9.45 × 10−10 cm2 s−1, while that of 4SC was only 5.88 × 10−10 cm2/s. This work establishes a theoretical foundation for industrial-scale and cost-effective AB5-type hydrogen storage alloys, offering significant commercial potential. Full article
(This article belongs to the Special Issue Advances in Efficient Utilization of Metallurgical Solid Waste)
Show Figures

Figure 1

16 pages, 1286 KiB  
Communication
Pectins as Brakes? Their Potential Implication in Adjusting Mesophyll Conductance Under Water Deficit and Salt Stresses
by Margalida Roig-Oliver, Josefina Bota and Jaume Flexas
Plants 2025, 14(14), 2180; https://doi.org/10.3390/plants14142180 - 14 Jul 2025
Viewed by 274
Abstract
Water and salt stresses reduce net CO2 assimilation (AN) primarily by restricting stomatal conductance (gs) and mesophyll conductance (gm), while altering leaf structure, anatomy, and cell wall composition. Although some reports observed relationships [...] Read more.
Water and salt stresses reduce net CO2 assimilation (AN) primarily by restricting stomatal conductance (gs) and mesophyll conductance (gm), while altering leaf structure, anatomy, and cell wall composition. Although some reports observed relationships between these modifications and gm, in others they remain less clear. Here, we compiled data on studies in which major cell wall components (cellulose; C, hemicellulose; H; pectins; P) were determined with photosynthetic, structural and anatomical features, obtaining a dataset presenting distinct species subjected to both stresses. Among parameters previously reported to affect gm (leaf mass per area: LMA; chloroplast surface area exposed to intercellular air spaces per unit of leaf surface area: Sc/S; fraction of intercellular air spaces: fias; cell wall thickness: Tcw), pectins and the P/(C + H) ratio were the unique consistently varying in salt- and water-stressed plants. Despite no single trait correlated with gm, it was positively linked with [P/(C + H) × Sc/S × fias]/[Tcw × Lignin × LMA] in studies in which all parameters were tested, suggesting that distinct traits may exert antagonistic influences on gm. Although further experiments are needed to reinforce our findings, we hypothesize that increases in pectins under stress could limit larger gm declines, improving gm/gs ratio and water use efficiency (WUE). Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 11950 KiB  
Article
Enhancing Tensile Performance of Cemented Tailings Backfill Through 3D-Printed Polymer Lattices: Mechanical Properties and Microstructural Investigation
by Junzhou Huang, Lan Deng, Haotian Gao, Cai Wu, Juan Li and Daopei Zhu
Materials 2025, 18(14), 3314; https://doi.org/10.3390/ma18143314 - 14 Jul 2025
Viewed by 280
Abstract
This study presents an innovative solution to improve the mechanical performance of traditional cemented tailings backfill (CTB) by incorporating 3D-printed polymer lattice (3DPPL) reinforcements. We systematically investigated three distinct 3DPPL configurations (four-column FC, six-column SC, and cross-shaped CO) through comprehensive experimental methods including [...] Read more.
This study presents an innovative solution to improve the mechanical performance of traditional cemented tailings backfill (CTB) by incorporating 3D-printed polymer lattice (3DPPL) reinforcements. We systematically investigated three distinct 3DPPL configurations (four-column FC, six-column SC, and cross-shaped CO) through comprehensive experimental methods including Brazilian splitting tests, digital image correlation (DIC), and scanning electron microscopy (SEM). The results show that the 3DPPL reinforcement significantly enhances the CTB’s tensile properties, with the CO structure demonstrating the most substantial improvement—increasing the tensile strength by 85.6% (to 0.386 MPa) at a cement-to-tailings ratio of 1:8. The 3DPPL-modified CTB exhibited superior ductility and progressive failure characteristics, as evidenced by multi-stage load-deflection behavior and a significantly higher strain capacity (41.698–51.765%) compared to unreinforced specimens (2.504–4.841%). The reinforcement mechanism involved synergistic effects of macroscopic truss behavior and microscopic interfacial bonding, which effectively redistributed the stress and dissipated energy. This multi-scale approach successfully transforms CTB’s failure mode from brittle to progressive while optimizing both strength and toughness, providing a promising advancement for mine backfill material design. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

33 pages, 20199 KiB  
Review
Composition Optimization in Alloy Design for Nickel-Based Single Crystal Superalloy: A Review
by Yu Zhou, Xinbao Zhao, Yunpeng Fan, Quanzhao Yue, Wanshun Xia, Qinghai Pan, Yuan Cheng, Weiqi Li, Yuefeng Gu and Ze Zhang
Metals 2025, 15(7), 793; https://doi.org/10.3390/met15070793 - 13 Jul 2025
Viewed by 364
Abstract
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, [...] Read more.
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, microstructure characteristics, oxidation resistance, castability, density, and cost of superalloys is analyzed and discussed. In order to obtain better high-temperature performance, the content of refractory elements (Ta + Re + W + Mo) and Co was increased gradually. The addition of Ru was added in the fourth-generation nickel-based SC superalloy to stabilize the microstructures and suppress the precipitation of the topologically close-packed (TCP) phase. However, the content of the antioxidant element Cr significantly decreased, while the synergistic effect of Al, Cr, and Ta received more attention. Therefore, synergistic effects should also receive more attention to meet the practical needs of reducing the content of refractory elements to reduce costs and density in future single crystal alloy designs without compromising critical performance. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 13222 KiB  
Article
Limited Myelination Capacity in Human Schwann Cells in Experimental Models in Comparison to Rodent and Porcine Schwann Cells
by Tak-Ho Chu and Rajiv Midha
Int. J. Mol. Sci. 2025, 26(13), 6457; https://doi.org/10.3390/ijms26136457 - 4 Jul 2025
Viewed by 358
Abstract
Schwann cells (SCs) play a crucial role in peripheral nerve repair by supporting axonal regeneration and remyelination. While extensive research has been conducted using rodent SCs, increasing attention is being directed toward human SCs due to species-specific differences in phenotypical and functional properties, [...] Read more.
Schwann cells (SCs) play a crucial role in peripheral nerve repair by supporting axonal regeneration and remyelination. While extensive research has been conducted using rodent SCs, increasing attention is being directed toward human SCs due to species-specific differences in phenotypical and functional properties, and accessibility of human SCs derived from diverse sources. A major challenge in translating SC-based therapies for nerve repair lies in the inability to replicate human SC myelination in vitro, posing a significant obstacle to drug discovery and preclinical research. In this study, we compared the myelination capacity of human, rodent, and porcine SCs in various co-culture conditions, including species-matched and cross-species neuronal environments in a serum-free medium. Our results confirmed that rodent and porcine SCs readily myelinate neurites under standard culture conditions after treatment with ascorbic acid for two weeks, whereas human SCs, at least within the four-week observation period, failed to show myelin staining in all co-cultures. Furthermore, we investigated whether cell culture manipulation impairs human SC myelination by transplanting freshly harvested and predegenerated human nerve segments into NOD-SCID mice for four weeks. Despite supporting host axonal regeneration into the grafts, human SCs exhibited very limited myelination, suggesting an intrinsic species-specific restriction rather than a cell culture-induced defect. These observations suggest fundamental differences between human and rodent SCs and highlight the need for human-specific models and protocols to advance our understanding of SC myelination. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

26 pages, 8474 KiB  
Article
Centralised Smart EV Charging in PV-Powered Parking Lots: A Techno-Economic Analysis
by Mattia Secchi, Jan Martin Zepter and Mattia Marinelli
Smart Cities 2025, 8(4), 112; https://doi.org/10.3390/smartcities8040112 - 4 Jul 2025
Viewed by 563
Abstract
The increased uptake of Electric Vehicles (EVs) requires the installation of charging stations in parking lots, both to facilitate charging while running daily errands and to support EV owners with no access to home charging. Photovoltaic (PV) generation is ideal for powering up [...] Read more.
The increased uptake of Electric Vehicles (EVs) requires the installation of charging stations in parking lots, both to facilitate charging while running daily errands and to support EV owners with no access to home charging. Photovoltaic (PV) generation is ideal for powering up EVs, both for environmental reasons and for the benefit it creates for Charging Point Operators (CPOs). In this paper, we propose a centralised V1G Smart Charging (SC) algorithm for EV parking lots, considering real EV charging dynamics, which minimises both the EV charging costs for their owners and the CPO electricity provision costs or the related CO2 emissions. We also introduce an innovative SC benefit-splitting algorithm that makes sure SC savings are fairly split between EV owners. Eight scenarios are described, considering costs or emissions minimisation, with and without a PV system. The centralised algorithm is benchmarked against a decentralised one, and tested in an exemplary workplace parking lot in Denmark, that includes includes 12 charging stations and one PV system, owned by the same entity. Reductions of up to 11% in EV charging costs, 67% in electricity provision costs for the CPO, and 8% in CO2 emissions are achieved by making smart use of a 35 kWp rooftop PV system. Additionally, the SC benefit-splitting algorithm successfully ensures that EV owners save money when adopting SC. Full article
(This article belongs to the Section Energy and ICT)
Show Figures

Figure 1

Back to TopTop