Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (337)

Search Parameters:
Keywords = SBS-modified asphalt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 10339 KiB  
Review
Performance of Asphalt Materials Based on Molecular Dynamics Simulation: A Review
by Chengwei Xing, Zhihang Xiong, Tong Lu, Haozongyang Li, Weichao Zhou and Chen Li
Polymers 2025, 17(15), 2051; https://doi.org/10.3390/polym17152051 - 27 Jul 2025
Viewed by 341
Abstract
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes [...] Read more.
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes the recent advances in applying MD to asphalt research. It first outlines molecular model construction approaches, including average models, three- and four-component systems, and modified models incorporating SBS, SBR, PU, PE, and asphalt–aggregate interfaces. It then analyzes how MD reveals the key performance aspects—such as high-temperature stability, low-temperature flexibility, self-healing behavior, aging processes, and interfacial adhesion—by capturing the molecular interactions. While MD offers significant advantages, challenges remain: idealized modeling, high computational demands, limited chemical reaction simulation, and difficulties in multi-scale coupling. This paper aims to provide theoretical insights and methodological support for future studies on asphalt performance and highlights MD simulation as a promising tool in pavement material science. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 1251 KiB  
Article
Research on the Adhesion Performance of Fast-Melting SBS-Modified Emulsified Asphalt–Aggregate Based on the Surface Free Energy Theory
by Hao Zhang, Haowei Li, Fei Guo, Shige Wang and Jinchao Yue
Materials 2025, 18(15), 3523; https://doi.org/10.3390/ma18153523 - 27 Jul 2025
Viewed by 290
Abstract
Aiming at the problems of complex process flow, high energy consumption, and difficult emulsification in the preparation of traditional SBS-modified emulsified asphalt, a preparation method of fast-melting SBS (referred to as SBS-T) modified emulsified asphalt based on the integration of modification and emulsification [...] Read more.
Aiming at the problems of complex process flow, high energy consumption, and difficult emulsification in the preparation of traditional SBS-modified emulsified asphalt, a preparation method of fast-melting SBS (referred to as SBS-T) modified emulsified asphalt based on the integration of modification and emulsification is proposed. Based on surface free energy theory, the contact angles between three rapid-melting SBS-modified emulsified asphalts with different dosages and three probe liquids (deionized water, glycerol, and formamide) were measured using the sessile drop method. The adhesion performance of the asphalt–aggregate system was studied by means of micromechanical methods. The evaluation indicators such as the cohesion work of the emulsified asphalt, the adhesion work of asphalt–aggregate, the spalling work, and the energy ratio were analyzed. The results show that the SBS-T modifier can significantly improve the thermodynamic properties of emulsified asphalt. With increasing modifier content, the SBS-T-modified emulsified asphalt demonstrated enhanced cohesive work, improved asphalt–aggregate adhesive work, and increased energy ratio, while showing reduced stripping work. At equivalent dosage levels, the SBS-T-modified emulsified asphalt demonstrates a slight improvement in adhesion performance to aggregates compared to conventional SBS-modified emulsified asphalt. The SBS-T emulsified modified asphalt provides an effective technical solution for the preventive maintenance of asphalt pavements. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

17 pages, 7033 KiB  
Article
A Study on the Low-Intensity Cracking Resistance of Drainage Asphalt Mixtures by Graphene/Rubber Powder Compound Modified Asphalt
by Jingcheng Chen, Yongqiang Cheng, Ke Liang, Xiaojian Cao, Yanchao Wang and Qiangru Shen
Materials 2025, 18(15), 3451; https://doi.org/10.3390/ma18153451 - 23 Jul 2025
Viewed by 229
Abstract
In order to investigate the influence of graphene/rubber powder compound modified asphalt on the low-temperature cracking resistance of drainage asphalt mixtures, graphene/rubber powder compound modified asphalt mixtures were prepared using graphene/rubber powder compound modified asphalt for drainage asphalt mixtures, and compared with SBS-modified [...] Read more.
In order to investigate the influence of graphene/rubber powder compound modified asphalt on the low-temperature cracking resistance of drainage asphalt mixtures, graphene/rubber powder compound modified asphalt mixtures were prepared using graphene/rubber powder compound modified asphalt for drainage asphalt mixtures, and compared with SBS-modified asphalt and rubber powder-modified asphalt, and the low-temperature cracking resistance of graphene/rubber powder compound modification asphalt mixtures was investigated through the Marshall Stability Test, Semi-circular Bending Test (SCB), and Freeze–Thaw Split Test. Research was carried out. At the same time, a scanning electric microscope (SEM) was adopted to analyze the micro-mechanism of the graphene/rubber powder compound modified asphalt mixtures under the microscopic condition. The findings showed that graphene dispersed the aggregation of rubber powder effectively in the microscopic state and improved the stability of the composite modified asphalt. The addition of graphene improved the fracture energy of rubber powder composite modified asphalt by 15.68% under the condition of −15 °C to 0 °C, which effectively slowed down the decrease of fracture energy; at −15 °C and −10 °C, the largest stresses were improved by 7.50% and 26.71%, respectively, compared to the drainage asphalt mixtures prepared as rubber powder-modified asphalt and SBS-modified asphalt. After a freeze–thaw cycle, the maximum stress decrease of graphene/rubber powder compound modified asphalt was 21.51% and 10.37% at −15 °C and 0 °C, respectively. When compared to rubber powder-modified asphalt, graphene/rubber powder compound modified asphalt significantly improved the low-intensity cracking resistance of drainage asphalt mixtures at low temperatures, slowed down the decrease of the maximum stress, and its low-temperature cracking resistance was more stable. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 1869 KiB  
Article
Cost Efficiency Evaluation of Ceramic Fiber, Glass Fiber, and Basalt Fiber-Reinforced Asphalt Mixtures
by Mohammad Fahad and Nagy Richard
Appl. Sci. 2025, 15(14), 7919; https://doi.org/10.3390/app15147919 - 16 Jul 2025
Viewed by 249
Abstract
The performance of SBS (Styrene Butadiene Styrene) modified asphalt mixtures can be enhanced through the addition of fibers including basalt, ceramic, and glass. This study investigates whether a reduced SBS content of 3%, combined with 0.3% fiber reinforcement can match or exceed the [...] Read more.
The performance of SBS (Styrene Butadiene Styrene) modified asphalt mixtures can be enhanced through the addition of fibers including basalt, ceramic, and glass. This study investigates whether a reduced SBS content of 3%, combined with 0.3% fiber reinforcement can match or exceed the performance of a traditional 7% SBS mixture. A comparative analysis was carried out by examining both performance efficiency and life cycle costs across ceramic, basalt, and glass fiber-reinforced mixtures. Maintenance requirements for each scenario were factored into the life cycle analysis. To assess structural integrity, 3D finite element simulations were conducted using the Burger’s logit model while focusing on fatigue and rutting damage. Findings indicate that basalt and ceramic fiber mixtures deliver better asphalt mixtures, thereby outperforming the 7% SBS mix by requiring fewer maintenance interventions. However, due to the higher cost of ceramic fiber mixtures at 831 Eur/m3, basalt fiber emerges as the more cost-effective option, achieving a performance efficiency gain of 20% with reduced costs at 532 Eur/m3. Among the fiber-reinforced variants, glass fiber showed the least improvement in performance, with a difference in 11% and 13% when compared to ceramic fiber and basal fiber, respectively. Full article
Show Figures

Figure 1

19 pages, 5562 KiB  
Article
Research on the Milling Characteristics of SBS Modified Asphalt Pavement with Different Service Years Using the Discrete Element Method
by Xiujun Li, Zhipeng Zhang, Hao Liu, Hao Feng, Heng Zhang, Fangzhi Shi and Zhi Gou
Materials 2025, 18(14), 3226; https://doi.org/10.3390/ma18143226 - 8 Jul 2025
Viewed by 323
Abstract
The service years of the milled pavement are varied in numerous SBS modified asphalt pavement milling assignments. To investigate the milling characteristics of SBS (styrene–butadiene–styrene) modified asphalt pavements with different service years, the values of the bonding parameters were calibrated and verified and [...] Read more.
The service years of the milled pavement are varied in numerous SBS modified asphalt pavement milling assignments. To investigate the milling characteristics of SBS (styrene–butadiene–styrene) modified asphalt pavements with different service years, the values of the bonding parameters were calibrated and verified and then used to build three simulation models for the milling of old asphalt pavements with service years of 2~3 years, 7~8 years, and 11~12 years, respectively. The milling characteristics of SBS modified asphalt pavements with different service years were investigated using the moving speed v and rotating speed ω of the milling rotor as test factors, and the particle bonding ratio (Rb) and rotor average force (Fa) as test indexes. The results demonstrate that the following: The regularity of the effects of milling rotor moving speed and rotating speed on the particle bonding ratio and milling rotor average forces remained consistent overall as the pavement age increased. For the same milling parameters, the particle bonding ratio and the rotor average force are reduced. From 2~3 years old pavements to 7~8 years old pavements, the overall reduction in the particle bonding ratio indicator is about 12%, and the average force on the milling rotor is about 24%. From 7~8 years old pavements to 11~12 years old pavements, the overall reduction in the particle bonding ratio indicator is about 3%, and the average force on the milling rotor is about 15%. Full article
(This article belongs to the Special Issue Materials Informatics and Machine Learning in Pavement Engineering)
Show Figures

Figure 1

12 pages, 3805 KiB  
Article
Preparation of Graft-Functionalized SBS/SBS Composite Latex Modifier and Its Effect on Emulsified Asphalt Properties
by Kunyu Wang, Yifan Liu, Zhenhao Cao, Yanyan Zhang, Jia Wang and Xue Li
Processes 2025, 13(7), 2125; https://doi.org/10.3390/pr13072125 - 3 Jul 2025
Viewed by 343
Abstract
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS [...] Read more.
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS composite latex-modified emulsified asphalt (MSMEA) with varying ratios to determine the optimal composition. The ideal ratio was found to be MA-g-SBS:SBS = 1:4. Subsequently, conventional property tests, rheological analyses, microphase structure observations, and bending beam creep tests were conducted on MSMEA with the optimal ratio to assess the impact of the composite latex on asphalt performance. Findings indicated that increasing the latex content significantly enhanced the softening point and ductility while reducing penetration. These macroscopic improvements were notably superior to those achieved with single SBS latex modification. Fluorescence microscopy revealed that at low dosages, the MA-g-SBS/SBS composite dispersed uniformly as point-like structures within the asphalt. At higher dosages (above 5%), a distinct network structure emerged. The addition of the composite latex raised the complex shear modulus and rutting factor while reducing the phase angle, with pronounced fluctuations observed between 4% and 5% dosages. This suggests a substantial enhancement in the high-temperature performance of the emulsified asphalt, attributed to the formation of the network structure. FT-IR results confirmed that a chemical reaction occurred during the modification process. Additionally, the bending beam creep test demonstrated that the composite latex reduced asphalt brittleness and improved its low-temperature performance. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 4450 KiB  
Article
Performance Evaluation of Waterborne Epoxy Resin-Reinforced SBS, Waterborne Acrylate or SBR Emulsion for Road
by Hao Fu and Chaohui Wang
Coatings 2025, 15(7), 787; https://doi.org/10.3390/coatings15070787 - 3 Jul 2025
Viewed by 313
Abstract
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of [...] Read more.
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of these waterborne polymers were evaluated. Furthermore, the correlation between the performance indicators of the waterborne polymers was analyzed. Based on Fourier transform infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis, the mechanism of WER-modified SBS and WA was characterized. The results show that adding 10%–15% WER can significantly improve the mechanical properties of the waterborne polymer. The performances of modified SBS and WA are better than that of modified SBR. When the content of WER is 10%, the tensile strength, elongation at break and pull-off strength of WER-modified SBS and WA are 4.80–6.38 MPa, 476.3%–579.6% and 1.62–1.70 MPa, respectively. The mechanical strength and breaking energy of the waterborne polymers show a significant linear correlation with their application properties such as adhesion, bonding and impact resistance. FTIR and TG analyses indicate that WER-modified SBS or WA prepared via emulsion blending undergo primarily physical modifications, enhancing thermal stability while promoting crosslinking and curing. Full article
(This article belongs to the Special Issue Green Asphalt Materials—Surface Engineering and Applications)
Show Figures

Figure 1

18 pages, 3861 KiB  
Article
Investigating the Rheological Impact of USP Warm Mix Modifier on Asphalt Binder
by Yali Liu, Jingfei Ping, Hao Guo, Yikai Kang and Yali Ye
Coatings 2025, 15(7), 784; https://doi.org/10.3390/coatings15070784 - 3 Jul 2025
Viewed by 429
Abstract
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway [...] Read more.
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway engineering. This article systematically investigates the impact of different dosages of USP warm mix modifier on asphalt binders through rheological and microstructural analysis. Base asphalt and SBS-modified asphalt were blended with USP at varying ratios. Conventional tests (penetration, softening point, ductility) were combined with dynamic shear rheometry (DSR, AASHTO T315) and bending beam rheometry (BBR, AASHTO T313) to characterize temperature/frequency-dependent viscoelasticity. High-temperature performance was quantified via multiple stress creep recovery (MSCR, ASTM D7405), while fluorescence microscopy and FTIR spectroscopy elucidated modification mechanisms. Key findings reveal that (1) optimal USP thresholds exist at 4.0% for base asphalt and 4.5% for SBS modified asphalt, beyond which the rutting resistance factor (G*/sin δ) decreases by 20–31% due to plasticization effects; (2) USP significantly improves low-temperature flexibility, reducing creep stiffness at −12 °C by 38% (USP-modified) and 35% (USP/SBS composite) versus controls; (3) infrared spectroscopy displays that no new characteristic peaks appeared in the functional group region of 4000–1300 cm−1 for the two types of modified asphalt after the incorporation of USP, indicating that no chemical changes occurred in the asphalt; and (4) fluorescence imaging confirmed that the incorporation of USP led to disintegration of the spatial network structure of the control asphalt, explaining the reason for the deterioration of high-temperature performance. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

29 pages, 6769 KiB  
Article
Assessment of Asphalt Mixtures Enhanced with Styrene–Butadiene–Styrene and Polyvinyl Chloride Through Rheological, Physical, Microscopic, and Workability Analyses
by Hawraa F. Jabbar, Miami M. Hilal and Mohammed Y. Fattah
J. Compos. Sci. 2025, 9(7), 341; https://doi.org/10.3390/jcs9070341 - 1 Jul 2025
Viewed by 480
Abstract
This study investigates the performance improvement of asphalt binders through the incorporation of two polymers, polyvinyl chloride (PVC) and styrene–butadiene–styrene (SBS), with asphalt grade (60–70), to address the growing demand for durable and climate-resilient pavement materials, particularly in areas exposed to high temperatures [...] Read more.
This study investigates the performance improvement of asphalt binders through the incorporation of two polymers, polyvinyl chloride (PVC) and styrene–butadiene–styrene (SBS), with asphalt grade (60–70), to address the growing demand for durable and climate-resilient pavement materials, particularly in areas exposed to high temperatures like Iraq. The main objective is to improve the mechanical characteristics, thermal stability, and workability of typical asphalt mixtures to extend pavement lifespan and lessen maintenance costs. A thorough set of rheological, physical, morphological, and workability tests was performed on asphalt binders modified with varying content of PVC (3%, 5%, 7%, and 9%) and SBS (3%, 4%, and 5%). The significance of this research lies in optimizing binder formulations to enhance resistance to deformation and failure modes such as rutting and thermal cracking, which are common in extreme climates. The results indicate that PVC enhances performance grade (PG), softening point, and viscosity, although higher contents (7% and 9%) exceeded penetration grade specifications. SBS-modified binders demonstrated marked improvements in softening point, viscosity, and rutting resistance, with PG values increasing from PG64-x (unmodified) to PG82-x at 5% SBS. Fluorescence microscopy confirmed optimal polymer dispersion at 5% concentration for both SBS and PVC, ensuring compatibility with the base asphalt. Workability testing revealed that SBS-modified mixtures exhibited higher torque requirements, indicating reduced workability compared to both PVC-modified and unmodified binders. These findings offer valuable insights for the design of high-performance asphalt mixtures suitable for hot-climate applications and contribute to the development of more durable and cost-effective road infrastructure. Full article
Show Figures

Figure 1

23 pages, 2860 KiB  
Article
Effect of Incorporating L-Shaped Folded Metal Aggregates on the Performance of Asphalt Mixtures
by Qingguo Yang, Kelin Chen, Longfei Guan, Ya Li, Yunhao Li, Yu Zhou and Wujing Yin
Materials 2025, 18(13), 3039; https://doi.org/10.3390/ma18133039 - 26 Jun 2025
Viewed by 361
Abstract
With the increase in heavy-load traffic and the growing frequency of extreme weather events, traditional rock aggregates, due to poor morphological stability, are unable to meet the performance requirements of high-grade asphalt pavements in complex environments. Most existing research on metal reinforcement focuses [...] Read more.
With the increase in heavy-load traffic and the growing frequency of extreme weather events, traditional rock aggregates, due to poor morphological stability, are unable to meet the performance requirements of high-grade asphalt pavements in complex environments. Most existing research on metal reinforcement focuses on fiber forms. This study innovatively introduces L-shaped multi-faceted metal aggregates (LFMAs). Through surface energy analysis and tests such as the Marshall test, rutting test, water immersion Marshall test, and freeze–thaw splitting test, the effects of the dosage and particle size of LFMAs on the performance of asphalt mixtures are explored. The results show that LFMAs can form an effective bond with SBS modified asphalt, improving the high-temperature stability and low-temperature crack resistance of asphalt mixtures. Under both water immersion and freeze–thaw conditions, the resistance of asphalt mixtures to water damage decreases with the increase in the dosage of metal aggregates. This research expands the application of three-dimensional metal aggregates, breaks through the limitations of fiber-based materials, and provides a new direction for the development of high-performance asphalt mixtures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 1654 KiB  
Article
Experimental Study on RAP with High Recycling Content Based on High-Modulus Asphalt Mixture
by Xin Wang, Bangwei Wu, Zhengguang Wu and Bo Li
Materials 2025, 18(12), 2835; https://doi.org/10.3390/ma18122835 - 16 Jun 2025
Viewed by 323
Abstract
To improve the recycling content of Reclaimed Asphalt Pavement (RAP), this paper utilizes the characteristic of aged and hardened asphalt in RAP materials by adopting the High-modulus Asphalt Mixture design method for high-RAP-content recycling. First, the basic technical performance, fatigue properties, rheological characteristics, [...] Read more.
To improve the recycling content of Reclaimed Asphalt Pavement (RAP), this paper utilizes the characteristic of aged and hardened asphalt in RAP materials by adopting the High-modulus Asphalt Mixture design method for high-RAP-content recycling. First, the basic technical performance, fatigue properties, rheological characteristics, and chemical functional groups of reclaimed asphalt, 30# hard asphalt, and Styrene-Butadiene-Styrene (SBS)-modified asphalt were analyzed. The results revealed significant similarities in various metrics between reclaimed and hard asphalt, demonstrating the feasibility of replacing hard asphalt with reclaimed asphalt in a High-modulus Asphalt Mixture design. Next, High-modulus Asphalt Mixtures, EME13, with different RAP contents (0%, 20%, 40%, 60%) were designed and compared with SBS-modified Sup13 mixtures. The results indicated that (1) as the RAP content increased, the high-temperature performance of EME13 improved by 20~60%, while its low-temperature and intermediate-temperature crack resistance slightly declined by 10~20%. The dynamic modulus in the low-frequency region increased by 3~6 times, whereas the high-frequency dynamic modulus decreased by 20~30%. RAP enabled EME13 to meet the modulus design requirements more readily for High-modulus Asphalt Mixtures. (2) Although the SBS-modified Sup13 exhibited superior pavement performance compared to EME13, its cost was significantly higher. EME13 with high RAP content demonstrated notable economic advantages despite slightly lower pavement performance than Sup13. This research provides a new technical approach for the high-content recycling of RAP materials. Full article
(This article belongs to the Special Issue Advances in Material Characterization and Pavement Modeling)
Show Figures

Figure 1

21 pages, 5570 KiB  
Article
Influence of Mineral Powder Content and Gradation on the Aging and High-Temperature Rheological Properties of Styrene-Butadiene-Styrene (SBS) Modified Asphalt
by Chengwei Xing, Zhibin Chang, Bohan Zhu, Tian Jin, Qing Ma and Jie Wang
Materials 2025, 18(12), 2785; https://doi.org/10.3390/ma18122785 - 13 Jun 2025
Viewed by 370
Abstract
This paper aims to explore the influences of the content and gradation of mineral powder on the rheological properties of styrene-butadiene-styrene (SBS) modified asphalt mastic at different aging stages and temperatures. In the experiment, SBS modified asphalt mastic samples with different powder-to-binder ratios [...] Read more.
This paper aims to explore the influences of the content and gradation of mineral powder on the rheological properties of styrene-butadiene-styrene (SBS) modified asphalt mastic at different aging stages and temperatures. In the experiment, SBS modified asphalt mastic samples with different powder-to-binder ratios (0.6, 0.8, and 1.0) and different mineral powder gradations (500 mesh passing rates of 76.89% and 100%) were prepared. Following aging periods of 5, 25, and 45 h in the pressure aging vessel (PAV), the asphalt underwent comprehensive rheological characterization using a dynamic shear rheometer (DSR). The research shows that mineral powder can boost mastic’s deformation resistance and elastic effect. When aged by PAV for 45 h, the powder-to-binder ratio increased from 0.6 to 1.0, and its complex modulus increased by nearly 2.5 times at 58 °C. For SBS modified asphalt mastic of PAV 0 h, the powder-to-binder ratio increased from 0.6 to 1.0 and its phase angle was reduced from 59.6 to 53.2, which indicated that the elasticity of mastic was improved. However, this accelerated the degradation rate of SBS, making the aging process more complex. Fine-grained mineral powder is more effective in enhancing mastic’s deformation resistance than coarse-grained mineral powder. The fine-graded mastic had better rutting resistance after 45 h of aging than after 25 h of aging because the mineral powder compensated for the SBS loss-induced elasticity reduction. Smaller mineral powder particles lead to better a mastic anti-aging effect. After 45 h of aging, fine-grained mineral powder offered a better elastic effect. But the ways in which mineral powder and SBS boost mastic elasticity differ greatly. The results of this study provide a reference for optimizing the design of asphalt mixtures. Full article
Show Figures

Figure 1

20 pages, 6125 KiB  
Article
Preparation and Modification Mechanism of Oil-Rich High-Viscosity, High-Elasticity (OR-HV-HE) Asphalt Modifier
by Xin Jin, Wenbin Xu, Huaizhi Zhang, Ye Yang, Zhixing Pan, Weiyu He, Zhichen Wang, Yanhai Yang, Jiupeng Zhang and Qingyue Zhou
Coatings 2025, 15(6), 702; https://doi.org/10.3390/coatings15060702 - 11 Jun 2025
Viewed by 398
Abstract
An asphalt modifier dry-process direct-cast oil-rich high-viscosity high-elasticity (OR-HV-HE) was developed to address the climatic characteristics of seasonal freezing zones. The chemical composition of the OR-HV-HE modifier was optimized through orthogonal testing. Advanced characterization techniques, including thermogravimetric analysis (TG), differential scanning calorimetry (DSC), [...] Read more.
An asphalt modifier dry-process direct-cast oil-rich high-viscosity high-elasticity (OR-HV-HE) was developed to address the climatic characteristics of seasonal freezing zones. The chemical composition of the OR-HV-HE modifier was optimized through orthogonal testing. Advanced characterization techniques, including thermogravimetric analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR), were employed to systematically analyze the comprehensive thermal properties, microstructure, and chemical characteristics of the OR-HV-HE asphalt. Test results revealed a linear inverse relationship between the melt index and the OR-HV-HE asphalt grafting rate. The addition of the OR-HV-HE modifier led to the generation of new chemical bonds, and microscopic mechanism analysis illustrated the formation of a cross-linking network structure between the OR-HV-HE and asphalt, in which the cross-linking network structure could enhance the high and low-temperature performance of asphalt. Road performance verification results demonstrated that when compared with the traditional SBS-modified asphalt mixture, the OR-HV-HE modified asphalt mixture exhibited significantly superior road performance indices: the high-temperature dynamic stability was increased by 468% and the low-temperature damage strain was increased by 47.5%, and the residual stability reached 99%. Full article
Show Figures

Figure 1

21 pages, 3164 KiB  
Article
Microscopic Mechanism of Asphalt Mixture Reinforced by Polyurethane and Silane Coupling Agent: A Molecular Dynamics Simulation-Based Study
by Zhi Lin, Weiping Sima, Xi’an Gao, Yu Liu and Jin Li
Polymers 2025, 17(12), 1602; https://doi.org/10.3390/polym17121602 - 9 Jun 2025
Cited by 1 | Viewed by 367
Abstract
Most modified asphalts require high-temperature shearing and prolonged mixing to achieve a uniform structure, often resulting in substantial exhaust gas pollution. This study explores the utilization of polyurethane (PU) as a warm mix asphalt modifier, leveraging its favorable compatibility with asphalt at lower [...] Read more.
Most modified asphalts require high-temperature shearing and prolonged mixing to achieve a uniform structure, often resulting in substantial exhaust gas pollution. This study explores the utilization of polyurethane (PU) as a warm mix asphalt modifier, leveraging its favorable compatibility with asphalt at lower temperatures to mitigate emissions. To address the inherent limitations of PU-modified asphalt mixtures, namely, poor low-temperature performance and susceptibility to water damage, silane coupling agents (SCAs) are introduced to reinforce the asphalt–aggregate interfacial strength. At the microscopic level, the optimal PU content (20.8%) was determined through analysis of micro-viscosity and radial distribution functions (RDFs). SCA effects on interfacial properties were assessed using adhesion work, adhesion depth, and interfacial thermal stability. At the macroscopic level, performance metrics—including strength, high-temperature resistance, low-temperature resistance, and water stability—were evaluated against a benchmark hot mix SBS-modified asphalt mixture. The results indicate that PU-modified asphalts exhibit superior high-temperature performance and strength but slightly lower low-temperature performance and insufficient water stability. The addition of SCAs improved both low-temperature and water stability attributes, enabling the mixtures to meet specification requirements. The simulation results suggest that KH-550, which chemically reacts with isocyanate groups (-OCN) in PU, exhibits a better interfacial reinforcement effect than KH-570. Therefore, KH-550 is recommended as the preferred SCA for PU-modified asphalt mixtures in practical applications. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

18 pages, 5037 KiB  
Article
Micromodification Mechanism and High-Temperature Rheological Properties of Activated Rubber/Styrene–Butadiene–Styrene Compound-Modified Asphalt
by Kai Zhang, Xuwen Zhong, Xukun Huang, Weihua Wan, Hai Zhou and Bin Liu
Materials 2025, 18(11), 2643; https://doi.org/10.3390/ma18112643 - 4 Jun 2025
Viewed by 546
Abstract
Currently, research on the modification mechanisms of activated rubber/SBS (styrene–butadiene–styrene) composites and the microscopic processes involved remains limited. To investigate the impact of the rubber activation treatment combined with SBS modifier on asphalt modification, this study employs composite-modified asphalt formulations using either a [...] Read more.
Currently, research on the modification mechanisms of activated rubber/SBS (styrene–butadiene–styrene) composites and the microscopic processes involved remains limited. To investigate the impact of the rubber activation treatment combined with SBS modifier on asphalt modification, this study employs composite-modified asphalt formulations using either a conventional mix or activated rubber in conjunction with SBS. Infrared spectroscopy (IR) and scanning electron microscopy (SEM) were utilized to analyze the chemical components and microscopic morphology of the composite-modified asphalt following activation treatment. Microscopic analysis revealed that the asphalt stirred for 20 min has a characteristic peak with a wave number of 966 cm−1, while the characteristic peak with a wave number of 700 cm−1 is not obvious. That is, the asphalt sample contains the polybutadiene component and a reduced amount of the polystyrene component. Therefore, it can be inferred that the asphalt sample only contains activated rubber, along with less SBS modifier content. Traditional rubber undergoes significant expansion reactions during the mixing stage, but there are difficulties in degradation, which leave large particles and reduce the proportions of the lightweight asphalt components. However, active rubber and SBS mainly expand and degrade more completely during the shear stage, forming many micro-volume particles in asphalt. Additionally, frequency scanning and multiple creep recovery tests were conducted to evaluate the high-temperature rheological properties of the asphalt. The results indicate that activated rubber, doped at 20%, and SBS, doped at 2%, significantly enhance the high-temperature rheological properties of the composite-modified asphalt compared to base asphalt, exhibiting a 417.16% increase in the complex modulus at 64 °C and 1 Hz. Furthermore, these modifiers interact synergistically to improve modification efficiency. Full article
Show Figures

Figure 1

Back to TopTop