Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = S-CO2 power cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2365 KiB  
Article
Integrated Environmental–Economic Assessment of CO2 Storage in Chinese Saline Formations
by Wentao Zhao, Zhe Jiang, Tieya Jing, Jian Zhang, Zhan Yang, Xiang Li, Juan Zhou, Jingchao Zhao and Shuhui Zhang
Water 2025, 17(15), 2320; https://doi.org/10.3390/w17152320 - 4 Aug 2025
Abstract
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project [...] Read more.
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project in the Ordos Basin, eight full-chain carbon capture, utilization, and storage (CCUS) scenarios were analyzed. The results indicate that environmental and cost performance are primarily influenced by technology choices across carbon capture, transport, and storage stages. The scenario employing potassium carbonate-based capture, pipeline transport, and brine reinjection after a reverse osmosis treatment (S5) achieved the most balanced outcome. Breakeven analyses under three carbon price projection models revealed that carbon price trajectories critically affect project viability, with a steadily rising carbon price enabling earlier profitability. By decoupling CCUS from power systems and focusing on unit CO2 removal, this study provides a transparent and transferable framework to support cross-sectoral deployment. The findings offer valuable insights for policymakers aiming to design effective CCUS support mechanisms under future carbon neutrality targets. Full article
(This article belongs to the Special Issue Mine Water Treatment, Utilization and Storage Technology)
Show Figures

Figure 1

23 pages, 3283 KiB  
Article
Light-Driven Optimization of Exopolysaccharide and Indole-3-Acetic Acid Production in Thermotolerant Cyanobacteria
by Antonio Zuorro, Roberto Lavecchia, Karen A. Moncada-Jacome, Janet B. García-Martínez and Andrés F. Barajas-Solano
Sci 2025, 7(3), 108; https://doi.org/10.3390/sci7030108 - 3 Aug 2025
Viewed by 166
Abstract
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic [...] Read more.
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic acid (IAA). Six strains from hot-spring environments were screened under varying blue:red (B:R) LED ratios and full-spectrum illumination. Hapalosiphon sp. UFPS_002 outperformed all others, reaching ~290 mg L−1 EPS and 28 µg mL−1 IAA in the initial screen. Response-surface methodology was then used to optimize light intensity and photoperiod. EPS peaked at 281.4 mg L−1 under a B:R ratio of 1:5 LED, 85 µmol m−2 s−1, and a 14.5 h light cycle, whereas IAA was maximized at 34.4 µg mL−1 under cool-white LEDs at a similar irradiance. The quadratic models exhibited excellent predictive power (R2 > 0.98) and a non-significant lack of fit, confirming the light regime as the dominant driver of metabolite yield. These results demonstrate that precise photonic tuning can selectively steer carbon flux toward either EPS or IAA, providing an energy-efficient strategy to upscale thermotolerant cyanobacteria for climate-resilient biofertilizers, bioplastics precursors, and other high-value bioproducts. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

25 pages, 1344 KiB  
Article
Cloud-Based Data-Driven Framework for Optimizing Operational Efficiency and Sustainability in Tube Manufacturing
by Michael Maiko Matonya and István Budai
Appl. Syst. Innov. 2025, 8(4), 100; https://doi.org/10.3390/asi8040100 - 22 Jul 2025
Viewed by 340
Abstract
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often [...] Read more.
Modern manufacturing strives for peak efficiency while facing pressing demands for environmental sustainability. Balancing these often-conflicting objectives represents a fundamental trade-off in modern manufacturing, as traditional methods typically address them in isolation, leading to suboptimal outcomes. Process mining offers operational insights but often lacks dynamic environmental indicators, while standard Life Cycle Assessment (LCA) provides environmental evaluation but uses static data unsuitable for real-time optimization. Frameworks integrating real-time data for dynamic multi-objective optimization are scarce. This study proposes a comprehensive, data-driven, cloud-based framework that overcomes these limitations. It uniquely combines three key components: (1) real-time Process Mining for actual workflows and operational KPIs; (2) dynamic LCA using live sensor data for instance-level environmental impacts (energy, emissions, waste) and (3) Multi-Objective Optimization (NSGA-II) to identify Pareto-optimal solutions balancing efficiency and sustainability. TOPSIS assists decision-making by ranking these solutions. Validated using extensive real-world data from a tube manufacturing facility processing over 390,000 events, the framework demonstrated significant, quantifiable improvements. The optimization yielded a Pareto front of solutions that surpassed baseline performance (87% efficiency; 2007.5 kg CO2/day). The optimal balanced solution identified by TOPSIS simultaneously increased operational efficiency by 5.1% and reduced carbon emissions by 12.4%. Further analysis quantified the efficiency-sustainability trade-offs and confirmed the framework’s adaptability to varying strategic priorities through sensitivity analysis. This research offers a validated framework for industrial applications that enables manufacturers to improve both operational efficiency and environmental sustainability in a unified manner, moving beyond the limitations of disconnected tools. The validated integrated framework provides a powerful, data-driven tool, recommended as a valuable approach for industrial applications seeking continuous improvement in both economic and environmental performance dimensions. Full article
Show Figures

Figure 1

36 pages, 3682 KiB  
Article
Enhancing s-CO2 Brayton Power Cycle Efficiency in Cold Ambient Conditions Through Working Fluid Blends
by Paul Tafur-Escanta, Luis Coco-Enríquez, Robert Valencia-Chapi and Javier Muñoz-Antón
Entropy 2025, 27(7), 744; https://doi.org/10.3390/e27070744 - 11 Jul 2025
Viewed by 248
Abstract
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, [...] Read more.
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, and Alaska—due to the proximity to the fluid’s critical point. This study investigates the behavior of the recompression Brayton cycle (RBC) under subzero ambient temperatures through the incorporation of low-critical-temperature additives to create CO2-based binary mixtures. The working fluids examined include methane (CH4), tetrafluoromethane (CF4), nitrogen trifluoride (NF3), and krypton (Kr). Simulation results show that CH4- and CF4-rich mixtures can achieve thermal efficiency improvements of up to 10 percentage points over pure CO2. NF3-containing blends yield solid performance in moderately cold environments, while Kr-based mixtures provide modest but consistent efficiency gains. At low compressor inlet temperatures, the high-temperature recuperator (HTR) becomes the dominant performance-limiting component. Optimal distribution of recuperator conductance (UA) favors increased HTR sizing when mixtures are employed, ensuring effective heat recovery across larger temperature differentials. The study concludes with a comparative exergy analysis between pure CO2 and mixture-based cycles in RBC architecture. The findings highlight the potential of custom-tailored working fluids to enhance thermodynamic performance and operational stability of s-CO2 power systems under cold-climate conditions. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

17 pages, 2409 KiB  
Article
Synthesis of Physically Activated Carbons from Vitellaria paradoxa Shells for Supercapacitor Electrode Applications
by Joshua Atta Alabi, Neda Nazari, Daniel Nframah Ampong, Frank Ofori Agyemang, Mark Adom-Asamoah, Richard Opoku, Rene Zahrhuber, Christoph Unterweger and Kwadwo Mensah-Darkwa
Inorganics 2025, 13(7), 224; https://doi.org/10.3390/inorganics13070224 - 2 Jul 2025
Viewed by 488
Abstract
This study investigates the processing of shea nut shells (SNSs), an abundant agricultural waste, into porous activated carbon for supercapacitor electrodes through a two-stage thermal treatment involving pyrolysis and physical activation with CO2 and steam. The aim was to develop sustainable, high-performance [...] Read more.
This study investigates the processing of shea nut shells (SNSs), an abundant agricultural waste, into porous activated carbon for supercapacitor electrodes through a two-stage thermal treatment involving pyrolysis and physical activation with CO2 and steam. The aim was to develop sustainable, high-performance electrode materials while addressing waste management. Carbonization followed by activation yielded 16.5% (CO2) and 11.3% (steam) activation yields, with total yields of 4.3% and 2.9%, respectively. CO2 activation produced carbon (AC_CO2) with a specific surface area (SBET) of 1528 m2 g−1 and a total pore volume of 0.72 cm3 g−1, a graphitization degree (ID/IG = 1.0), and low charge transfer resistance (9.05 Ω), delivering a specific capacitance of 47.5 F g−1 at 0.5 A g−1, an energy density of 9.5 Wh kg−1 at 299 W kg−1, and a fast discharge time of 2.10 s, ideal for power-intensive applications. Steam activation yielded carbon (AC_H2O) with a higher specific surface area (1842 m2 g−1) and pore volume (1.57 cm3 g−1), achieving a superior specific capacitance of 102.2 F g−1 at 0.5 A g−1 and a power density of 204 W kg−1 at 9.2 Wh kg−1, suited for energy storage. AC_CO2 also exhibited exceptional cyclic stability (90% retention after 10,000 cycles). These findings demonstrate SNS-derived activated carbon as a versatile, eco-friendly material, with CO2 activation optimizing power delivery and steam activation enhancing energy capacity, offering tailored solutions for supercapacitor applications and sustainable waste utilization. Full article
Show Figures

Figure 1

34 pages, 10843 KiB  
Article
Study on Multi-Heat-Source Thermal Management of Hypersonic Vehicle Based on sCO2 Brayton Cycle
by Xin Qi, Zhihong Zhou, Huoxing Liu and Zhongfu Tang
Aerospace 2025, 12(7), 575; https://doi.org/10.3390/aerospace12070575 - 25 Jun 2025
Viewed by 422
Abstract
To address the thermal protection challenges of multiple high-temperature components and the electrical power deficiency in hypersonic vehicles, this study proposes twelve multi-heat-source thermoelectric conversion schemes based on the sCO2 Brayton cycle. A three-dimensional evaluation system for thermal management is established, incorporating [...] Read more.
To address the thermal protection challenges of multiple high-temperature components and the electrical power deficiency in hypersonic vehicles, this study proposes twelve multi-heat-source thermoelectric conversion schemes based on the sCO2 Brayton cycle. A three-dimensional evaluation system for thermal management is established, incorporating thermal efficiency, coolant mass flow rate, and system mass as key metrics. A comprehensive parameter sensitivity analysis was conducted on the twelve dual-heat-source cycle configurations. For systematic performance comparison, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was employed for multi-objective optimization, with Pareto fronts analyzed to determine optimal configurations. The results demonstrate that appropriately increasing the minimum cycle temperature can significantly reduce coolant flow requirements. Multi-objective optimization reveals the following: (1) The pre-compressed aero-comb configuration achieves optimal performance in the efficiency-mass flow rate optimization scenario; (2) Both pre-compressed aero-comb and re-compressed comb-aero configurations show superiority in the efficiency-mass optimization scenario; (3) The pre-compressed aero-comb configuration exhibits lower system mass in low coolant flow regions for the mass flow rate-mass optimization scenario. Overall, the performance of the precompression aero-comb configuration is relatively superior. This work provides an important reference for the design of thermal management systems for hypersonic vehicles. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

17 pages, 3203 KiB  
Article
Performance Assessment of CCGT Integrated with PTSA-Based CO2 Capture: Effect of Sorbent Type and Operating Conditions
by Karol Sztekler, Agata Mlonka-Mędrala, Piotr Boruta, Tomasz Bujok, Ewelina Radomska and Łukasz Mika
Energies 2025, 18(13), 3289; https://doi.org/10.3390/en18133289 - 23 Jun 2025
Viewed by 254
Abstract
Recognizing the growing importance of natural gas as a transition fuel in Poland’s energy mix and the necessity of reducing CO2 emissions, this article aims to assess the use of carbon capture and storage (CCS) technology to effectively reduce CO2 emissions [...] Read more.
Recognizing the growing importance of natural gas as a transition fuel in Poland’s energy mix and the necessity of reducing CO2 emissions, this article aims to assess the use of carbon capture and storage (CCS) technology to effectively reduce CO2 emissions from combined cycle gas turbine (CCGT). The research employs the pressure–temperature swing adsorption (PTSA) to capture CO2 from flue gases. Computer simulations, using IPSEpro (SimTech), are used to calculate the heat and mass balances for CCGT and PTSA units and assess their performance. In the first part of the research, the effect of sorbent type (Na-A and 5A) and flue gas share directed to the PTSA unit on the performance of the CCGT was investigated. Secondly, the parametric analysis regarding the adsorption and desorption pressures in the PTSA was carried out. The results showed that CO2 emissions from CCGT can be reduced by 1.1 Mt (megatons) per year, but the use of PTSA was associated with a reduction in net electrical power and efficiency of the CCGT by up to 14.7% for Na-A and 11.1% for 5A sorbent. It was also found that the heat and electricity demand of the PTSA depends on the adsorption and desorption pressures. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

29 pages, 5868 KiB  
Article
Assessing the Potential of a Hybrid Renewable Energy System: MSW Gasification and a PV Park in Lobito, Angola
by Salomão Joaquim, Nuno Amaro and Nuno Lapa
Energies 2025, 18(12), 3125; https://doi.org/10.3390/en18123125 - 13 Jun 2025
Viewed by 1255
Abstract
This study investigates a hybrid renewable energy system combining the municipal solid waste (MSW) gasification and solar photovoltaic (PV) for electricity generation in Lobito, Angola. A fixed-bed downdraft gasifier was selected for MSW gasification, where the thermal decomposition of waste under controlled air [...] Read more.
This study investigates a hybrid renewable energy system combining the municipal solid waste (MSW) gasification and solar photovoltaic (PV) for electricity generation in Lobito, Angola. A fixed-bed downdraft gasifier was selected for MSW gasification, where the thermal decomposition of waste under controlled air flow produces syngas rich in CO and H2. The syngas is treated to remove contaminants before powering a combined cycle. The PV system was designed for optimal energy generation, considering local solar radiation and shading effects. Simulation tools, including Aspen Plus v11.0, PVsyst v8, and HOMER Pro software 3.16.2, were used for modeling and optimization. The hybrid system generates 62 GWh/year of electricity, with the gasifier contributing 42 GWh/year, and the PV system contributing 20 GWh/year. This total energy output, sufficient to power 1186 households, demonstrates an integration mechanism that mitigates the intermittency of solar energy through continuous MSW gasification. However, the system lacks surplus electricity for green hydrogen production, given the region’s energy deficit. Economically, the system achieves a Levelized Cost of Energy of 0.1792 USD/kWh and a payback period of 16 years. This extended payback period is mainly due to the hydrogen production system, which has a low production rate and is not economically viable. When excluding H2 production, the payback period is reduced to 11 years, making the hybrid system more attractive. Environmental benefits include a reduction in CO2 emissions of 42,000 t/year from MSW gasification and 395 t/year from PV production, while also addressing waste management challenges. This study highlights the mechanisms behind hybrid system operation, emphasizing its role in reducing energy poverty, improving public health, and promoting sustainable development in Angola. Full article
Show Figures

Figure 1

31 pages, 6448 KiB  
Review
Review of Research on Supercritical Carbon Dioxide Axial Flow Compressors
by Yong Tian, Dexi Chen, Yuming Zhu, Peng Jiang, Bo Wang, Xiang Xu and Xiaodi Tang
Energies 2025, 18(12), 3081; https://doi.org/10.3390/en18123081 - 11 Jun 2025
Viewed by 538
Abstract
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow [...] Read more.
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow sCO2 compressors are increasingly being investigated as power systems advance toward high power scaling. This paper reviews global research progress in this field. As for performance characteristics, currently, sCO2 axial-flow compressors are mostly designed with large mass flow rates (>100 kg/s), near-critical inlet conditions, multistage configurations with relatively low stage pressure ratios (1.1–1.2), and high isentropic efficiencies (87–93%). As for internal flow characteristics, although similarity laws remain applicable to sCO2 turbomachinery, the flow dynamics are strongly influenced by abrupt variations in thermophysical properties (e.g., viscosities, sound speeds, and isentropic exponents). High Reynolds numbers reduce frictional losses and enhance flow stability against separation but increase sensitivity to wall roughness. The locally reduced sound speed may induce shock waves and choke, while drastic variation in the isentropic exponent makes the multistage matching difficult and disperses normalized performance curves. Additionally, the quantitative impact of a near-critical phase change remains insufficiently understood. As for the experimental investigation, so far, it has been publicly shown that only the University of Notre Dame has conducted an axial-flow compressor experimental test, for the first stage of a 10 MW sCO2 multistage axial-flow compressor. Although the measured efficiency is higher than that of all known sCO2 centrifugal compressors, the inlet conditions evidently deviate from the critical point, limiting the applicability of the results to sCO2 power cycles. As for design and optimization, conventional design methodologies for axial-flow compressors require adaptations to incorporate real-gas property correction models, re-evaluations of maximum diffusion (e.g., the DF parameter) for sCO2 applications, and the intensification of structural constraints due to the high pressure and density of sCO2. In conclusion, further research should focus on two aspects. The first is to carry out more fundamental cascade experiments and numerical simulations to reveal the complex mechanisms for the near-critical, transonic, and two-phase flow within the sCO2 axial-flow compressor. The second is to develop loss models and design a space suitable for sCO2 multistage axial-flow compressors, thus improving the design tools for high-efficiency and wide-margin sCO2 axial-flow compressors. Full article
Show Figures

Figure 1

21 pages, 6358 KiB  
Article
Experimental Study and Performance Analysis of a Recuperative Supercritical CO2 Brayton Cycle
by Shucheng Zhang, Juntao Ke, Min Liu, Pingjian Ming and Guopeng Yu
Energies 2025, 18(11), 2986; https://doi.org/10.3390/en18112986 - 5 Jun 2025
Viewed by 401
Abstract
To investigate the operational characteristics of the supercritical carbon dioxide (S-CO2) Brayton cycle and enhance its applicability in practical operating conditions for micro-scale reactors, an experimental platform for a recuperative S-CO2 Brayton cycle is constructed and investigated. Several controllable operational [...] Read more.
To investigate the operational characteristics of the supercritical carbon dioxide (S-CO2) Brayton cycle and enhance its applicability in practical operating conditions for micro-scale reactors, an experimental platform for a recuperative S-CO2 Brayton cycle is constructed and investigated. Several controllable operational parameters, including compressor pump frequency, expansion valve opening, and electric heating power, each intrinsically linked to the thermal characteristics of its corresponding equipment, as well as the cooling water flow rate, are systematically adjusted and analyzed. Experimental results demonstrate that the cooling water flow rate has a significantly greater impact on the temperature and pressure of the cycle system compared to other operational parameters. Based on these findings, steady-state experiments are conducted within a pressure range of 8 MPa to 15 MPa and a temperature range of 70 °C to 150 °C. It is observed that the heat exchange capacity of the recuperator decreases as the cooling water flow rate is reduced, suggesting that sufficient cooling efficiency is required to maximize the recuperative function. Under the condition of a maximum system temperature of 150 °C, the isentropic efficiency of the expansion valve decreases with an increase in the inlet pressure of the valve. However, the overall thermal efficiency of the cycle system requires further calculation and assessment following the optimization of the experimental platform. The result of validation of experimental results is less than 20%. The findings presented in this study offer essential data that encompass the potential operational conditions of the CO2 Brayton cycle section applicable to small-scale reactors, thereby providing a valuable reference for the design and operation of practical cycle systems. Full article
(This article belongs to the Special Issue Supercritical CO2 Power Cycles)
Show Figures

Figure 1

24 pages, 3521 KiB  
Article
The Dynamic Response Characteristics and Working Fluid Property Differences Analysis of CO2–Kr Mixture Power Cycle System
by Minghui Fang, Lihua Cao, Xueyan Xu and Qingqiang Meng
Processes 2025, 13(6), 1735; https://doi.org/10.3390/pr13061735 - 1 Jun 2025
Viewed by 428
Abstract
With the advancement of the energy transition, the thermodynamic degradation under high-load conditions and economic bottlenecks of the sCO2 Brayton cycle have become more prominent. CO2 mixture working fluids can improve system efficiency and economics through property optimization. However, the dynamic [...] Read more.
With the advancement of the energy transition, the thermodynamic degradation under high-load conditions and economic bottlenecks of the sCO2 Brayton cycle have become more prominent. CO2 mixture working fluids can improve system efficiency and economics through property optimization. However, the dynamic response characteristics of the system under disturbance factors are still unclear. Based on this, this paper establishes a dynamic model of the recompressed Brayton cycle for CO2 and CO2–Kr mixture. The dynamic behaviors of the two working fluids under mass flow, heat source power, and rotational speed disturbances are systematically compared, revealing the impact of the addition of Kr on the system’s dynamic response characteristics. From the perspective of the coupling mechanism in a mixture of working fluids, this paper further explores the reasons behind the differences in dynamic performance. The results show that mass disturbances have the most significant impact on the dynamic characteristics of the system. The response time of the turbine outlet temperature in the pure CO2 system is 15.43 s, with a temperature response amplitude of 12.32 K. When the system recovers to a steady state, the system’s efficiency and specific work are 30.37% and 42.52 kW/kg, respectively. In comparison, the CO2–Kr system demonstrates better dynamic performance, with the turbine outlet temperature response time reduced by 3.5 s and the temperature fluctuation amplitude decreased by 6.25 K. Additionally, the efficiency and specific work of the CO2–Kr system increased by 5.77% and 7.29 kW/kg, respectively. The introduction of Kr changes the physical property parameters of the working fluid, enhancing flow stability, and reducing pressure and temperature fluctuations, thereby improving the dynamic performance and disturbance resistance of the CO2–Kr system. Full article
Show Figures

Figure 1

15 pages, 2210 KiB  
Article
Life Cycle Assessment of an Oscillating Water Column-Type Wave Energy Converter
by Heshanka Singhapurage, Pabasari A. Koliyabandara and Gamunu Samarakoon
Energies 2025, 18(10), 2600; https://doi.org/10.3390/en18102600 - 17 May 2025
Viewed by 637
Abstract
Among different kinds of renewable energy sources, ocean wave energy offers a promising source of low-carbon electricity. However, despite this potential, ocean wave energy systems can have notable environmental impacts, which remain underexplored. Environmental life cycle assessment (LCA) is a method that can [...] Read more.
Among different kinds of renewable energy sources, ocean wave energy offers a promising source of low-carbon electricity. However, despite this potential, ocean wave energy systems can have notable environmental impacts, which remain underexplored. Environmental life cycle assessment (LCA) is a method that can be used to evaluate the environmental impact of these systems. But few LCAs have been conducted for wave energy converters (WECs), and no prior studies specifically address onshore oscillating water column (OWC) devices, leaving a clear gap in this field. This research provides a cradle-to-gate LCA for an OWC device, using the 500 kW LIMPET OWC plant, located on the Isle of Islay in Scotland, as a case study. The assessment investigated the environmental impacts of the plant across 19 impact categories. OpenLCA 2.0 software was used for the analysis, with background data sourced from the Ecoinvent database version 3.8. The ReCiPe 2016 Midpoint (H) and Cumulative Energy Demand (CED) methods were used for the impact assessment. The results revealed a Global Warming Potential (GWP) of 56 kg CO2 eq/kWh and a carbon payback period of 0.14 years. The energy payback period is significantly higher at 196 years, largely due to the plant’s inefficient energy capture and recurring operational failures reported. These findings highlight that although ocean wave energy is a renewable energy source, WEC’s efficiency and reliability are key factors for sustainable electricity generation. Furthermore, the findings conclude the need for selecting eco-friendly construction materials in OWC construction, namely chamber construction, and the advancement of energy-harnessing mechanisms, such as in Power Take-off (PTO) systems, to improve energy efficiency and reliability. Moreover, the importance of material recycling at the end-of-life stage, which was not accounted for in this cradle-to-gate analysis yet, is underscored for offsetting a portion of the associated environmental impacts. This research contributes novel insights into sustainable construction practices for OWC devices, offering valuable guidance for future wave energy converter designs. Full article
(This article belongs to the Section B2: Clean Energy)
Show Figures

Figure 1

16 pages, 3582 KiB  
Article
Impact of SARS-CoV-2 on Aerobic and Anaerobic Capacity in Professional Ice Hockey Players
by Robert Roczniok, Artur Terbalyan, Przemysław Pietraszewski, Grzegorz Mikrut, Hanna Zielonka, Petr Stastny, Andrzej Swinarew, Daria Manilewska, Kajetan Ornowski, Tomasz Jabłoński and Patrycja Lipińska
J. Clin. Med. 2025, 14(10), 3478; https://doi.org/10.3390/jcm14103478 - 16 May 2025
Viewed by 577
Abstract
Background/Objectives: COVID-19 poses significant physiological challenges for athletes, particularly those engaged in high-intensity intermittent sports such as ice hockey. This study aimed to evaluate the impact of SARS-CoV-2 infection—especially symptomatic cases—on aerobic and anaerobic performance in professional ice hockey players. Methods: Fifty athletes [...] Read more.
Background/Objectives: COVID-19 poses significant physiological challenges for athletes, particularly those engaged in high-intensity intermittent sports such as ice hockey. This study aimed to evaluate the impact of SARS-CoV-2 infection—especially symptomatic cases—on aerobic and anaerobic performance in professional ice hockey players. Methods: Fifty athletes from the Polish Hockey League were assigned to three groups: control (CG, n = 13), asymptomatic COVID-19 (NSG, n = 28), and symptomatic COVID-19 with post-infection SpO2 < 90% (WSG, n = 9). Each underwent assessments at three time points—pre-preparatory period 2020/2021, post-preparatory period 2020/2021, and pre-preparatory period 2021/2022. Aerobic capacity was measured via a progressive cycle ergometer test (VO2max, VO2 at lactate threshold [VO2Lt], minute ventilation [V’E], breathing frequency [BF], and lactate clearance rate [ΔLa]), and anaerobic capacity via a 30 s Wingate test (relative mean power). Results: Compared with CG and NSG, symptomatic athletes exhibited significant post-infection declines in VO2max (48.2 ± 2.9 vs. 56.2 ± 6.2 and 54.6 ± 3.9 mL/kg/min; p = 0.006, d = 1.56 vs. CG; p < 0.024, d = 1.79 vs. NSG) and VO2Lt (p < 0.05). Relative mean power also decreased in WSG (p < 0.05). In contrast, CG and NSG improved or maintained these metrics over the same period. Symptomatic players showed elevated BF post infection (p = 0.022, d = 1.72) and reduced V’E (p = 0.035; d = 0.83), while ΔLa was markedly lower (p = 0.0004; d = 2.86). Conclusions: SARS-CoV-2 infection, particularly symptomatic cases, can significantly impair both aerobic and anaerobic capacity in elite hockey players. Targeted recovery protocols are essential for restoring performance in affected athletes. Full article
(This article belongs to the Section Sports Medicine)
Show Figures

Figure 1

17 pages, 3103 KiB  
Article
Design and Simulation of an Integrated Process for the Co-Production of Power, Hydrogen, and DME by Using an Electrolyzer’s System
by Asmae Abousalmia and Seckin Karagoz
Energies 2025, 18(10), 2446; https://doi.org/10.3390/en18102446 - 10 May 2025
Viewed by 531
Abstract
The increasing global demand for clean energy and sustainable industrial processes necessitates innovative approaches to energy production and chemical synthesis. This study proposed and simulated an innovative integrated system for the co-production of power, hydrogen, and dimethyl ether (DME), combining the high-efficiency Allam–Fetvedt [...] Read more.
The increasing global demand for clean energy and sustainable industrial processes necessitates innovative approaches to energy production and chemical synthesis. This study proposed and simulated an innovative integrated system for the co-production of power, hydrogen, and dimethyl ether (DME), combining the high-efficiency Allam–Fetvedt cycle with co-electrolysis and indirect DME synthesis. The Allam–Fetvedt cycle generated electricity while capturing CO2, which, along with water, was used in solid oxide electrolyzers (SOEs) to produce syngas via co-electrolysis. The resulting syngas was converted to methanol and subsequently to DME. Aspen HYSYS was used to model and simulate the process, and heat/mass integration strategies were implemented to reduce energy demand and optimize resource utilization. The proposed integrated process enabled an annual production of 980,021 metric tons of DME, 189,435 metric tons of hydrogen, and 7698.27 metric tons of methanol. The energy efficiency of the Allam–Fetvedt cycle reached 55%, and heat integration reduced the system’s net energy demand by 14.22%. Despite the high energy needs of the electrolyzer system (81.28% of net energy), the overall energy requirement remained competitive with conventional methods. Carbon emissions per kilogram of DME were reduced from 1.16 to 0.77 kg CO2 through heat integration and can be further minimized to 0.0308 kg CO2/kg DME (near zero) with renewable electrification. Results demonstrated that 96% of CO2 was recycled within the Allam–Fetvedt cycle, and the rest (the 4% of CO2) was captured and converted to syngas, achieving net-zero carbon emissions. This work presents a scalable and sustainable pathway for integrated clean energy and chemical production, advancing toward industrial net-zero targets. Full article
(This article belongs to the Special Issue Renewable Fuels: A Key Step Towards Global Sustainability)
Show Figures

Figure 1

19 pages, 7803 KiB  
Article
Phase-Dependent Electrochemical Performance of CoxSy (x = 1,9; y = 2,8) for Symmetric Supercapacitor Application
by Ankush Sharma, Young-Bin Cho, Tung Bach Tran, Sung Jin Kim, Dong In Park, Taehoon Kim, Vishwa Bhatt, Manjeet Kumar and Ju-Hyung Yun
Materials 2025, 18(9), 2101; https://doi.org/10.3390/ma18092101 - 3 May 2025
Viewed by 514
Abstract
Modulating the oxidation states of transition metal species is a practical approach to enhance redox activity and increase the number of active sites in electrode materials. Herein, we describe a simple one-step hydrothermal approach to prepare CoxSy with two different [...] Read more.
Modulating the oxidation states of transition metal species is a practical approach to enhance redox activity and increase the number of active sites in electrode materials. Herein, we describe a simple one-step hydrothermal approach to prepare CoxSy with two different phases, cobalt pyrite (CoS2) and cobalt pentlandite (Co9S8), to explain the influence of material microstructure and properties on electrochemical performance. The as-prepared CoS2 and Co9S8 were investigated as symmetric supercapacitor (SC) devices for potential energy storage applications. Co9S8 exhibited the highest specific gravimetric capacitance of 14.12 Fg−1 at 0.2 mAcm−2 with capacitance retention of 91.3% after 10,000 cycles, indicating robust cycling stability. In addition, the Co9S8 SC device showed the highest energy (E) and power (P) density of 9.14 Whkg−1 and 0.23 kWkg−1. These results highlight a simple approach of tailoring different phase syntheses of CoxSy structure toward high-performance electrode material for energy storage and conversion. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

Back to TopTop