Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Rusitec

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 857 KB  
Review
Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review
by Amr S. Morsy, Yosra A. Soltan, Waleed Al-Marzooqi and Hani M. El-Zaiat
Sustainability 2025, 17(14), 6458; https://doi.org/10.3390/su17146458 - 15 Jul 2025
Viewed by 787
Abstract
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review [...] Read more.
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review provides a comprehensive synthesis of current knowledge surrounding the sources, biological mechanisms, and mitigation strategies related to CH4 emissions from ruminant livestock. We first explore the process of methanogenesis within the rumen, detailing the role of methanogenic archaea and the environmental factors influencing CH4 production. A thorough assessment of both direct and indirect methods used to quantify CH4 emissions is presented, including in vitro techniques (e.g., syringe method, batch culture, RUSITEC), in vivo techniques (e.g., respiration chambers, Greenfeed, laser CH4 detectors), and statistical modeling approaches. The advantages and limitations of each method are critically analyzed in terms of accuracy, cost, feasibility, and applicability to different farming systems. We then examine a wide range of mitigation strategies, organized into four core pillars: (1) animal and feed management (e.g., genetic selection, pasture quality improvement), (2) diet formulation (e.g., feed additives such as oils, tannins, saponins, and seaweed), (3) rumen manipulation (e.g., probiotics, ionophores, defaunation, vaccination), and (4) manure management practices and policy-level interventions. These strategies are evaluated not only for their environmental impact but also for their economic and practical viability in diverse livestock systems. By integrating technological innovations with sustainable agricultural practices, this review highlights pathways to reduce CH4 emissions while maintaining animal productivity. It aims to support decision-makers, researchers, and livestock producers in the global effort to transition toward climate-smart, low-emission livestock farming. Full article
Show Figures

Figure 1

16 pages, 301 KB  
Article
The Effect of Saliva with Different Nitrogen Compositions on Ruminal Fermentation in a Rumen Simulator Technique (Rusitec®) System Fed a Lactating Dairy Cow Diet
by Ícaro Rainyer Rodrigues de Castro, Luiza de Nazaré Carneiro da Silva, Isabela Fonseca Carrari, Giulia Berzoini Costa Leite, Eduardo Marostegan de Paula, Amanda Moelemberg Cezar and Marcos Inácio Marcondes
Fermentation 2025, 11(6), 340; https://doi.org/10.3390/fermentation11060340 - 11 Jun 2025
Viewed by 929
Abstract
In vitro methods have advanced research on rumen microbiology and fermentation. However, artificial saliva formulation may need adjustments, particularly in urea content, for modern diets, warranting further research. This study investigated the effects of different nitrogen (N) levels in artificial saliva on ruminal [...] Read more.
In vitro methods have advanced research on rumen microbiology and fermentation. However, artificial saliva formulation may need adjustments, particularly in urea content, for modern diets, warranting further research. This study investigated the effects of different nitrogen (N) levels in artificial saliva on ruminal fermentation and digestion in diets for dairy cows using a Rusitec® system. Eighteen fermenters tested three saliva treatments with different N levels: a standard saliva as the control and two treatments with N reduced by 15% and 30%. Data were analyzed as a completely randomized design using the MIXED procedure of SAS (v. 9.4), with linear and quadratic contrasts tested for treatment effects (significance set at p ≤ 0.05). Results showed that altering N content had no significant effect on pH, ammonia concentrations, or NH3-N outflow, nutrient digestibility (dry matter, crude protein, fiber, and starch), gas and methane production, or volatile fatty acid concentrations. The efficiency of microbial protein synthesis and N flow exhibited quadratic responses, with the lowest values observed at the highest level of N reduction in the saliva (−30%). These findings suggest that although ruminal function and digestion remain stable with reduced N, microbial protein synthesis efficiency may decline beyond a threshold. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Graphical abstract

24 pages, 339 KB  
Review
Application of Artificial Gastrointestinal Tract Models in Veterinary Medicine
by Sergei Konstantinovich Shebeko, Heorhii Yurievich Drobot, Andrey Georgievich Koshchaev, Svetoslav Dimitrov Todorov and Alexey Mikhailovich Ermakov
Animals 2025, 15(9), 1222; https://doi.org/10.3390/ani15091222 - 26 Apr 2025
Viewed by 1237
Abstract
Artificial gastrointestinal tract models have become essential tools in veterinary medicine, providing alternatives to in vivo studies, which are labor-intensive, costly, and under certain circumstances even ethically challenging. These in vitro models facilitate the study of digestion, enable disease and host–pathogen interaction modeling, [...] Read more.
Artificial gastrointestinal tract models have become essential tools in veterinary medicine, providing alternatives to in vivo studies, which are labor-intensive, costly, and under certain circumstances even ethically challenging. These in vitro models facilitate the study of digestion, enable disease and host–pathogen interaction modeling, and allow for the investigation of nutrient absorption, microbiota, and pharmacokinetics. Considering the One Health concept, the application of gastrointestinal tract systems in investigations for animals can clearly reflect human health, and thus, it is pointing to the relevance of the adaptation of already existing models and the development of new models to meet the needs of veterinary and animal farming practices. This review explores and compares the various types of gastrointestinal tract models, including static and dynamic systems, and their applications across different animal species. Specific technical and methodological considerations are discussed for core animal-developed and -tested artificial systems and their integration with common ‘omics’ techniques. Dynamic models, such as RUSITEC and PolyFermS, more accurately simulate in vivo processes, including peristalsis, enzymatic activity, and microbial fermentation. The studies employing tools for ‘omics’ approaches have been conducted with more understanding analysis and comprehensive discussion and results. Full article
(This article belongs to the Section Veterinary Clinical Studies)
13 pages, 580 KB  
Article
A Mixture of Prebiotics, Essential Oil Blends, and Onion Peel Did Not Affect Greenhouse Gas Emissions or Nutrient Degradability, but Altered Volatile Fatty Acids Production in Dairy Cows Using Rumen Simulation Technique (RUSITEC)
by Joel O. Alabi, Michael Wuaku, Chika C. Anotaenwere, Deborah O. Okedoyin, Oludotun O. Adelusi, Kelechi A. Ike, DeAndrea Gray, Ahmed E. Kholif, Kiran Subedi and Uchenna Y. Anele
Fermentation 2024, 10(6), 324; https://doi.org/10.3390/fermentation10060324 - 20 Jun 2024
Cited by 6 | Viewed by 1938
Abstract
This study evaluated the synergistic effects of prebiotics containing galacto-oligosaccharides (GOS) and/or mannan oligosaccharides (MOS), essential oil blend (EOB), and onion peel (OPE) on fermentation characteristics using the rumen simulation technique (RUSITEC) system. Three rumen-cannulated, non-lactating Holstein Friesian cows were the inoculum donors. [...] Read more.
This study evaluated the synergistic effects of prebiotics containing galacto-oligosaccharides (GOS) and/or mannan oligosaccharides (MOS), essential oil blend (EOB), and onion peel (OPE) on fermentation characteristics using the rumen simulation technique (RUSITEC) system. Three rumen-cannulated, non-lactating Holstein Friesian cows were the inoculum donors. The substrate used for the study was a total mixed ration (TMR), which consisted of corn silage, alfalfa hay, and concentrate at 6:2:2, respectively. Sixteen fermentation vessels were randomly allotted to four treatments with four replicates each over a 9-day period in a completely randomized design. The treatments assessed include: control [TMR only], GEO [TMR + GOS + EOB + OPE], MEO [TMR + MOS + EOB + OPE], and OLEO [TMR + OLG + EOB + OPE]. OLG comprises GOS and MOS in equal proportion. EOB was included at 3 µL/g, while OPE, GOS, MOS, and OLG were added at 30 mg/g TMR. Results showed that pH, gas volume, effluent volume, and ammonia-N were not affected (p > 0.05) by the different additives. Similarly, greenhouse gas (GHG) emissions and nutrient digestibility were not affected by the treatments. Compared to the control, total volatile fatty acids (VFA) were decreased (p < 0.05) by 14.8, 10.8, and 8.5% with GEO, MEO, and OLEO inclusion, respectively, while the molar proportion of acetate was increased (p = 0.011) by 3.3, 1.1, and 3.8% with GEO, MEO, and OLEO inclusion, respectively. MEO increased isobutyrate (p = 0.001) and branched chain VFA (p = 0.013) contents; however, GEO and OLEO inclusion reduced them. Overall, the interaction of EOB, OPE, GOS, and/or MOS did not affect nutrient digestibility or GHG emissions but reduced VFA production. Further research is recommended to assess the dose effect of the additives on GHG emissions and VFA production; and to determine the long-term effects of these interventions on the rumen microbiome and animal performance. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

17 pages, 3565 KB  
Article
In Vitro Evaluation of Chito-Oligosaccharides on Disappearance Rate of Nutrients, Rumen Fermentation Parameters, and Micro-Flora of Beef Cattle
by Jianfu He, Jing Li, Qian Gao, Weijun Shen, Wenchang Liu, Min Xia, Haixiang Xiao and Dingfu Xiao
Animals 2024, 14(11), 1657; https://doi.org/10.3390/ani14111657 - 31 May 2024
Cited by 2 | Viewed by 1455
Abstract
The study aimed to investigate the effect of dietary chitosan oligosaccharides (COS) meal levels on the nutrient disappearance rate, rumen fermentation, and microflora of beef cattle in vitro. A total of 24 fermentation tanks were randomly divided into four treatments containing 0% COS [...] Read more.
The study aimed to investigate the effect of dietary chitosan oligosaccharides (COS) meal levels on the nutrient disappearance rate, rumen fermentation, and microflora of beef cattle in vitro. A total of 24 fermentation tanks were randomly divided into four treatments containing 0% COS (CON), 0.02% COS, 0.04% COS, and 0.08% COS for an 8-day experiment period, with each treatment comprising six replicates. The disappear rates of DM, CP, EE, and total gas production were quadratically increased with increasing COS levels. The disappear rates of DM, CP, EE, and ADF were greatest, whereas the total gas production was lowest in the 0.08% COS group. The pH, NH3-N, MCP, the content of propionate, isobutyrate, butyrate, valerate, and the A/P were quadratically increased with increasing COS levels, while the A/P were linearly decreased. The pH, MCP, and the content of propionate, and butyrate were highest, whereas the NH3-N and the content of acetate, isobutyrate, valerate, and the A/P were lowest in the 0.08% COS group. Microbiomics analysis showed that the rumen microbial diversity was not altered between the CON and the 0.08% COS group. However, the relative abundance of Methanosphaera, Ruminococcus, Endomicrobium, and Eubacterium groups was increased, and the relative abundance of pathogenic bacteria Dorea and Escherichia-Shigella showed a decrease in the 0.08% COS group. Overall, the 0.08% COS was the most effective among the three addition levels, resulting in an increase in the disappearance rate of in vitro fermented nutrients and improvements in rumen fermentation indexes and microbial communities. This, in turn, led to the maintenance of rumen health. Full article
Show Figures

Figure 1

16 pages, 866 KB  
Article
Effects of Garlic Oil and Cinnamaldehyde on Sheep Rumen Fermentation and Microbial Populations in Rusitec Fermenters in Two Different Sampling Periods
by Jairo García-Rodríguez, Cristina Saro, Iván Mateos, María Dolores Carro and María José Ranilla
Animals 2024, 14(7), 1067; https://doi.org/10.3390/ani14071067 - 30 Mar 2024
Viewed by 2143
Abstract
Garlic oil (GO) and cinnamaldehyde (CIN) have shown potential to modify rumen fermentation. The aim of this study was to assess the effects of GO and CIN on rumen fermentation, microbial protein synthesis (MPS), and microbial populations in Rusitec fermenters fed a mixed [...] Read more.
Garlic oil (GO) and cinnamaldehyde (CIN) have shown potential to modify rumen fermentation. The aim of this study was to assess the effects of GO and CIN on rumen fermentation, microbial protein synthesis (MPS), and microbial populations in Rusitec fermenters fed a mixed diet (50:50 forage/concentrate), as well as whether these effects were maintained over time. Six fermenters were used in two 15-day incubation runs. Within each run, two fermenters received no additive, 180 mg/L of GO, or 180 mg/L of CIN. Rumen fermentation parameters were assessed in two periods (P1 and P2), and microbial populations were studied after each of these periods. Garlic oil reduced the acetate/propionate ratio and methane production (p < 0.001) in P1 and P2 and decreased protozoal DNA concentration and the relative abundance of fungi and archaea after P1 (p < 0.05). Cinnamaldehyde increased bacterial diversity (p < 0.01) and modified the structure of bacterial communities after P1, decreased bacterial DNA concentration after P2 (p < 0.05), and increased MPS (p < 0.001). The results of this study indicate that 180 mg/L of GO and CIN promoted a more efficient rumen fermentation and increased the protein supply to the animal, respectively, although an apparent adaptive response of microbial populations to GO was observed. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

13 pages, 278 KB  
Article
Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC)
by Joel O. Alabi, Peter A. Dele, Deborah O. Okedoyin, Michael Wuaku, Chika C. Anotaenwere, Oludotun O. Adelusi, DeAndrea Gray, Kelechi A. Ike, Olatunde A. Oderinwale, Kiran Subedi and Uchenna Y. Anele
Fermentation 2024, 10(2), 114; https://doi.org/10.3390/fermentation10020114 - 19 Feb 2024
Cited by 6 | Viewed by 2891
Abstract
This study investigated the combined impact of essential oil blends (EOBs) and fumaric acid (FA) on ruminal fermentation in dairy cows using the rumen simulation technique (RUSITEC) system. Three rumen-cannulated, non-lactating Holstein Friesian cows served as inoculum donors. The substrate, a total mixed [...] Read more.
This study investigated the combined impact of essential oil blends (EOBs) and fumaric acid (FA) on ruminal fermentation in dairy cows using the rumen simulation technique (RUSITEC) system. Three rumen-cannulated, non-lactating Holstein Friesian cows served as inoculum donors. The substrate, a total mixed ration (TMR), comprised corn silage, alfalfa hay, and a concentrate mix in a 3:1:1 ratio. The four treatments evaluated were Control (TMR without additives), EFA1 (TMR + EOB1 + FA), EFA2 (TMR + EOB2 + FA), and EFA3 (TMR + EOB3 + FA). Sixteen fermentation chambers were randomly assigned to the treatments, each with four replicates, following a completely randomized design during a 9-day experimental period. EOBs and FA were added at 10 µL/g feed and 3% of TMR, respectively. After a 4-day adaptation, samples were collected for 5 days. Results revealed that EFA1 significantly reduced (p = 0.0351) CH4 emissions by 60.2% without negatively impacting dry matter disappearance, fiber fraction digestibility, pH, or gas volume. All EFAs increased (p < 0.001) the propionate molar proportion and decreased (p < 0.001) the acetate-to-propionate ratio. EFA2 decreased (p < 0.05) the acetate proportion by 3.3% compared to the control. In conclusion, EFA1 is recommended as an effective nutritional intervention to mitigate CH4 emissions and optimize ruminal fermentation in dairy cows. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
13 pages, 2972 KB  
Article
Evaluation of Rumen Fermentation and Microbial Adaptation to Three Red Seaweeds Using the Rumen Simulation Technique
by Stephanie A. Terry, Ana M. Krüger, Paulo M. T. Lima, Robert J. Gruninger, D. Wade Abbott and Karen A. Beauchemin
Animals 2023, 13(10), 1643; https://doi.org/10.3390/ani13101643 - 15 May 2023
Cited by 11 | Viewed by 2626
Abstract
Several red seaweeds have been shown to inhibit enteric CH4 production; however, the adaptation of fermentation parameters to their presence is not well understood. The objective of this study was to examine the effect of three red seaweeds (Asparargopsis taxiformis, Mazzaella [...] Read more.
Several red seaweeds have been shown to inhibit enteric CH4 production; however, the adaptation of fermentation parameters to their presence is not well understood. The objective of this study was to examine the effect of three red seaweeds (Asparargopsis taxiformis, Mazzaella japonica, and Palmaria mollis) on in vitro fermentation, CH4 production, and adaptation using the rumen simulation technique (RUSITEC). The experiment was conducted as a completely randomized design with four treatments, duplicated in two identical RUSITEC apparatus equipped with eight fermenter vessels each. The four treatments included the control and the three red seaweeds added to the control diet at 2% diet DM. The experimental period was divided into four phases including a baseline phase (d 0–7; no seaweed included), an adaptation phase (d 8–11; seaweed included in treatment vessels), an intermediate phase (d 12–16), and a stable phase (d 17–21). The degradability of organic matter (p = 0.04) and neutral detergent fibre (p = 0.05) was decreased by A. taxiformis during the adaptation phase, but returned to control levels in the stable phase. A. taxiformis supplementation resulted in a decrease (p < 0.001) in the molar proportions of acetate, propionate, and total volatile fatty acid (VFA) production, with an increase in the molar proportions of butyrate, caproate, and valerate; the other seaweeds had no effect (p > 0.05) on the molar proportions or production of individual VFA. A. taxiformis was the only seaweed to suppress CH4 production (p < 0.001), with the suppressive effect increasing (p < 0.001) across phases. Similarly, A. taxiformis increased (p < 0.001) the production of hydrogen (H2, %, mL/d) across the adaptation, intermediate, and stable phases, with the intermediate and stable phases having greater H2 production than the adaptation phase. In conclusion, M. japonica and P. mollis did not impact rumen fermentation or inhibit CH4 production within the RUSITEC. In contrast, we conclude that A. taxiformis is an effective CH4 inhibitor and its introduction to the ruminal environment requires a period of adaptation; however, the large magnitude of CH4 suppression by A. taxiformis inhibits VFA synthesis, which may restrict the production performance in vivo. Full article
(This article belongs to the Special Issue Algae in Animal Nutrition)
Show Figures

Figure 1

19 pages, 1120 KB  
Article
Differential Diet and pH Effects on Ruminal Microbiota, Fermentation Pattern and Fatty Acid Hydrogenation in RUSITEC Continuous Cultures
by Julio Ernesto Vargas, Lorena López-Ferreras, Sonia Andrés, Iván Mateos, Egon Henrique Horst and Secundino López
Fermentation 2023, 9(4), 320; https://doi.org/10.3390/fermentation9040320 - 23 Mar 2023
Cited by 13 | Viewed by 4146
Abstract
The aim of this study was to distinguish effects due to diet composition from those triggered by ruminal pH on fermentation patterns and microbial profiles in a continuous culture system (RUSITEC). The study followed a 2 × 2 factorial design, with two diets [...] Read more.
The aim of this study was to distinguish effects due to diet composition from those triggered by ruminal pH on fermentation patterns and microbial profiles in a continuous culture system (RUSITEC). The study followed a 2 × 2 factorial design, with two diets varying in the proportions of forage and concentrate and two pH levels in the culture medium. RUSITEC fermenters were used to simulate rumen fermentation and feed digestibility, fermentation end-products, microbial protein synthesis, microbial community, and long-chain fatty acid profiles in the digesta were determined. Multivariate analyses were applied to summarize the overall results. High concentrate (34% cereal grain, 32% hay) diets were more digestible (p < 0.05) than high forage (10% cereal grain, 78% hay) diets, resulting in a greater (p < 0.05) formation of most fermentation end-products and microbial protein in the rumen. However, there were no significant (p > 0.05) differences between diets in methane production. Ciliate protozoa, anaerobic fungi, some fibrolytic bacteria, hydrogenation of oleic acid, and relative proportion of conjugated linoleic acid were increased (p < 0.05) with high forage diets. A decline in rumen pH from 6.8 to 6.4 decreased (p < 0.05) feed digestibility, protein degradability, and the daily outputs of some fermentation end-products (gas, VFA, acetate, ammonia) but had no effect (p > 0.05) on the synthesis of microbial protein, and on the output of methane, propionate, butyrate or lactate. Minor changes in microbial community profile or the fatty acid relative proportions were observed within this pH range. The overall multivariate analysis revealed a clear discrimination between high-concentrate and high-forage diets, with subtler and less-defined pH effects on ruminal fermentation and microbial communities. Full article
(This article belongs to the Special Issue In Vitro Fermentation, 2nd Edition)
Show Figures

Figure 1

15 pages, 1320 KB  
Article
Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and Its Modulation by Aspergillus oryzae Culture in RUSITEC System
by Tongqing Guo, Tao Guo, Long Guo, Fei Li, Fadi Li and Zhiyuan Ma
Fermentation 2022, 8(7), 329; https://doi.org/10.3390/fermentation8070329 - 14 Jul 2022
Cited by 11 | Viewed by 2666
Abstract
This study aimed at characterizing changes in rumen bacteria abundance and fermentation profiles by artificial saliva (AS) pH, and at evaluating the potential modulatory role of Aspergillus oryzae culture (AOC) in a rumen simulation technique (RUSITEC) system. The treatment included high AS pH [...] Read more.
This study aimed at characterizing changes in rumen bacteria abundance and fermentation profiles by artificial saliva (AS) pH, and at evaluating the potential modulatory role of Aspergillus oryzae culture (AOC) in a rumen simulation technique (RUSITEC) system. The treatment included high AS pH (pH 6.8) or low AS pH (pH 5.5) according to the McDougall’s method, and low AS pH was sustained by changing the composition of the AS (NaHCO3 from 9.8 to 1.96 g/L, Na2HPO4 from 9.3 to 1.86 g/L). In low AS pH condition, the diets contained either 0% AOC, 1.25% AOC, or 2.5% AOC. Therefore, there are four treatments: (1) high AS pH, 0% AOC (HASP); (2) low AS pH, 0% AOC (AOC0); (3) low AS pH, 1.25% AOC (AOC1); (4) low AS pH, 2.5% AOC (AOC2), respectively. The experimental diets were supplemented with 16 g basic diets with the forage to concentrate ratio of 40:60. The experiments were conducted two independent 13 days, with 9 days adaption periods and 4 days sample collection. The results showed that low AS pH decreased the degradabilites of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) (p < 0.05), which occurred due to a decreased abundance of fibrolytic Ruminococcus albus (p < 0.001). The total concentration of volatile fatty acid (VFA) and proportion of propionate were decreased in the low AS pH (p = 0.026) and tended to increase the molar proportion of butyrate (p = 0.086) and the ratio of acetate to propionate (p = 0.088). The abundances of phylum Firmicutes (p = 0.065) and Proteobacteria (p = 0.063) tended to be greater in low AS pH group than high AS pH group. Low AS pH increased the abundance of phylum Actinobacteria (p = 0.002) compared to the high AS pH and decreased the abundances of phylum Spirochaetes (p = 0.032). Compared with the high AS pH, low AS pH increased the abundances of Prevotella (p = 0.003), Pseudoscardovia (p = 0.001), Mitsuokella (p = 0.005), and Dialister (p = 0.047), and decreased the abundances of Olivibacter (p = 0.026), Ruminobacter (p = 0.025), Treponema (p = 0.037), and Sphaerochaeta (p = 0.027) at genus level. Under a severe SARA in RUSITEC, supplementation of 2.5% AOC increased OM degradability, the copy numbers of Selenomonas ruminantium and Fibrobacter succinogenes. These findings indicate that the reduction AS pH at 5.5 caused a strong shift in bacterial composition in rumen. In addition, the addition of AOC in diets increased the growth rate of certain rumen bacteria that digest fiber or utilize lactate under SARA condition in RUSITEC system. Full article
(This article belongs to the Special Issue In Vitro Fermentation)
Show Figures

Figure 1

18 pages, 944 KB  
Article
Dose–Response Effects of 3-Nitrooxypropanol Combined with Low- and High-Concentrate Feed Proportions in the Dairy Cow Ration on Fermentation Parameters in a Rumen Simulation Technique
by Matthias Schilde, Dirk von Soosten, Liane Hüther, Susanne Kersten, Ulrich Meyer, Annette Zeyner and Sven Dänicke
Animals 2021, 11(6), 1784; https://doi.org/10.3390/ani11061784 - 15 Jun 2021
Cited by 10 | Viewed by 5936
Abstract
Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose–response relationships between four doses of the CH4 [...] Read more.
Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose–response relationships between four doses of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) and potential synergistic effects with low (LC) or high (HC) concentrate feed proportions (CFP) on CH4 reduction as both mitigation approaches differ in their mode of action (direct 3-NOP vs. indirect CFP effects). Diet substrates and 3-NOP were incubated in a rumen simulation technique to measure the concentration and production of volatile fatty acids (VFA), fermentation gases as well as substrate disappearance. Negative side effects on fermentation regarding total VFA and gas production as well as nutrient degradability were observed for neither CFP nor 3-NOP. CH4 production decreased from 10% up to 97% in a dose-dependent manner with increasing 3-NOP inclusion rate (dose: p < 0.001) but irrespective of CFP (CFP × dose: p = 0.094). Hydrogen gas accumulated correspondingly with increased 3-NOP dose (dose: p < 0.001). In vitro pH (p = 0.019) and redox potential (p = 0.066) varied by CFP, whereas the latter fluctuated with 3-NOP dose (p = 0.01). Acetate and iso-butyrate (mol %) decreased with 3-NOP dose, whereas iso-valerate increased (dose: p < 0.001). Propionate and valerate varied inconsistently due to 3-NOP supplementation. The feed additive 3-NOP was proven to be a dose-dependent yet effective CH4 inhibitor under conditions in vitro. The observed lack of additivity of increased CFP on the CH4 inhibition potential of 3-NOP needs to be verified in future research testing further diet types both in vitro and in vivo. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

28 pages, 891 KB  
Review
Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities
by D. Wade Abbott, Inga Marie Aasen, Karen A. Beauchemin, Fredrik Grondahl, Robert Gruninger, Maria Hayes, Sharon Huws, David A. Kenny, Sophie J. Krizsan, Stuart F. Kirwan, Vibeke Lind, Ulrich Meyer, Mohammad Ramin, Katerina Theodoridou, Dirk von Soosten, Pamela J. Walsh, Sinéad Waters and Xiaohui Xing
Animals 2020, 10(12), 2432; https://doi.org/10.3390/ani10122432 - 18 Dec 2020
Cited by 128 | Viewed by 23160
Abstract
Seaweeds contain a myriad of nutrients and bioactives including proteins, carbohydrates and to a lesser extent lipids as well as small molecules including peptides, saponins, alkaloids and pigments. The bioactive bromoform found in the red seaweed Asparagopsis taxiformis has been identified as an [...] Read more.
Seaweeds contain a myriad of nutrients and bioactives including proteins, carbohydrates and to a lesser extent lipids as well as small molecules including peptides, saponins, alkaloids and pigments. The bioactive bromoform found in the red seaweed Asparagopsis taxiformis has been identified as an agent that can reduce enteric CH4 production from livestock significantly. However, sustainable supply of this seaweed is a problem and there are some concerns over its sustainable production and potential negative environmental impacts on the ozone layer and the health impacts of bromoform. This review collates information on seaweeds and seaweed bioactives and the documented impact on CH4 emissions in vitro and in vivo as well as associated environmental, economic and health impacts. Full article
Show Figures

Figure 1

12 pages, 578 KB  
Article
Replacing Forage by Crude Olive Cake in a Dairy Sheep Diet: Effects on Ruminal Fermentation and Microbial Populations in Rusitec Fermenters
by Jairo García-Rodríguez, Iván Mateos, Cristina Saro, Jesús S. González, María Dolores Carro and María José Ranilla
Animals 2020, 10(12), 2235; https://doi.org/10.3390/ani10122235 - 28 Nov 2020
Cited by 11 | Viewed by 3389
Abstract
Olive oil extraction generates large amounts of a highly pollutant by-product called olive cake (OC), and its use in ruminant feeding could be an alternative. This study was designed to evaluate the effects of partially replacing forage by crude OC (COC) in a [...] Read more.
Olive oil extraction generates large amounts of a highly pollutant by-product called olive cake (OC), and its use in ruminant feeding could be an alternative. This study was designed to evaluate the effects of partially replacing forage by crude OC (COC) in a mixed dairy diet on rumen fermentation and microbial populations in Rusitec fermenters. The COC replaced 33% of the forage (66% maize silage and 33% barley straw) and was included at 16.6% of the total diet. Four fermenters were used in a cross-over design with two 13-day incubation periods. Experimental diets had a 50:50 forage-to-concentrate ratio and were formulated to contain the same protein (16.0%) and neutral detergent fiber (32.5%) levels. Compared with control fermenters, those fed the COC diet showed greater (p ≤ 0.02) pH (6.07 vs. 6.22), diet disappearance (0.709 vs. 0.748), and butyrate proportions (18.0 vs. 19.4), but there were no differences in volatile fatty acids and ammonia production. Microbial growth, bacterial diversity, protozoal abundance, and relative abundance of fungi and archaea were unaffected by diet, although the solid phase of COC-fed fermenters showed greater (p = 0.01) bacterial abundance than control ones. Results indicate that COC could replace 33% of the forage in a mixed dairy diet. Full article
Show Figures

Figure 1

13 pages, 443 KB  
Article
Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters
by Jairo García-Rodríguez, Cristina Saro, Iván Mateos, Jesús S. González, María Dolores Carro and María José Ranilla
Animals 2020, 10(8), 1316; https://doi.org/10.3390/ani10081316 - 30 Jul 2020
Cited by 11 | Viewed by 4027
Abstract
Citrus pulp is a highly abundant by-product of the citrus industry. The aim of this study was to assess the effects of replacing extruded maize (EM; 20% of total diet) by dried citrus pulp (DCP; 20%) in a mixed diet on rumen fermentation [...] Read more.
Citrus pulp is a highly abundant by-product of the citrus industry. The aim of this study was to assess the effects of replacing extruded maize (EM; 20% of total diet) by dried citrus pulp (DCP; 20%) in a mixed diet on rumen fermentation and microbial populations in Rusitec fermenters. The two diets contained 50% alfalfa hay and 50% concentrate, and the same protein level. Four Rusitec fermenters were used in a cross-over design with two 13-d incubation runs. After 7-d of diet adaptation, diet disappearance, fermentation parameters, microbial growth, and microbial populations were assessed. Fermenters receiving the DCP showed greater pH values and fiber disappearance (p < 0.001) and lower methane production (p = 0.03) than those fed EM. Replacing EM by DCP caused an increase in the proportions of propionate and butyrate (p < 0.001) and a decrease in acetate (p = 0.04). Microbial growth, bacterial diversity, and the quantity of bacteria and protozoa DNA were not affected by the diet, but the relative abundances of fungi and archaea were greater (p < 0.03) in solid and liquid phases of DCP fermenters, respectively. Results indicate that DCP can substitute EM, promoting a more efficient ruminal fermentation. Full article
Show Figures

Figure 1

1 pages, 133 KB  
Abstract
Identifying Plants that Reduce Methane Production Using an In Vitro System—Helping the Challenge to Become C Neutral
by Philip E. Vercoe, Amriana Hifizah, Joy Vadhanabhuti, Graeme B. Martin and Zoey Durmic
Proceedings 2019, 36(1), 175; https://doi.org/10.3390/proceedings2019036175 - 7 Apr 2020
Viewed by 1312
Abstract
The Australian red meat industry has set a goal to be carbon neutral by 2030. Reaching this goal will be a challenge and will involve targeting ways to increase carbon in the landscape, improve efficiency of production and reduce methane emissions from ruminants. [...] Read more.
The Australian red meat industry has set a goal to be carbon neutral by 2030. Reaching this goal will be a challenge and will involve targeting ways to increase carbon in the landscape, improve efficiency of production and reduce methane emissions from ruminants. There are a number of different options the industry can pursue to try and achieve its goal, including changing grazing management practices and land-use to changing the animal, what it eats and the microbial ecology in their rumen. No single one of these options will enable the red meat industry to become carbon neutral by 2030, it will take a combination of all of them to help meet the challenge. We have been using an in vitro batch fermentation system and a Rusitec system as a quick, relatively inexpensive, way to screen; plants that already exist in our grazing systems, novel plants, plant extracts and organic waste products from the horticultural industry, for their potential to improve the efficiency of fermentation and reduce methane production in the rumen. We have also used these systems to provide an initial clue about the mechanism of action at the level of the ruminal microorganisms. We have identified variation in these traits amongst the plants, plant extracts and horticultural waste products we have tested that could help develop systems that reduce the environmental footprint of ruminants in tropical production systems in Australia and in other parts of the world. Full article
(This article belongs to the Proceedings of The Third International Tropical Agriculture Conference (TROPAG 2019))
Back to TopTop