Differential Diet and pH Effects on Ruminal Microbiota, Fermentation Pattern and Fatty Acid Hydrogenation in RUSITEC Continuous Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. RUSITEC in Vitro Continuous Cultures
2.3. Collection and Analysis of Samples
2.4. Chemical Analyses
2.5. Microbial Community Profile by PCR Analyses
2.6. Statistical Analyses
3. Results
3.1. Ruminal Fermentation
3.2. Long-Chain Fatty Acid Profile in Rumen Digesta
3.3. Rumen Microbial Community Profile in Rumen Digesta
3.4. Multivariate Analyses of Diet and pH Effects
4. Discussion
4.1. Substrate Digestion, Fermentation Pattern, and Microbial Protein Synthesis in the Rumen
4.2. Microbial Community Profile
4.3. Long-Chain Fatty Acid Profile and Hydrogenation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Elmhadi, M.E.; Ali, D.K.; Khogali, M.K.; Wang, H. Subacute Ruminal Acidosis in Dairy Herds: Microbiological and Nutritional Causes, Consequences, and Prevention Strategies. Anim. Nutr. 2022, 10, 148–155. [Google Scholar] [CrossRef]
- Vargas, J.E.; Andrés, S.; López-Ferreras, L.; Snelling, T.J.; Yáñez-Ruíz, D.R.; García-Estrada, C.; López, S. Dietary Supplemental Plant Oils Reduce Methanogenesis from Anaerobic Microbial Fermentation in the Rumen. Sci. Rep. 2020, 10, 1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, H.F.; Faciola, A.P. Ruminal Acidosis, Bacterial Changes, and Lipopolysaccharides. J. Anim. Sci. 2020, 98, skaa248. [Google Scholar] [CrossRef] [PubMed]
- Annison, E.F.; Bryden, W.L. Perspectives on Ruminant Nutrition and Metabolism I. Metabolism in the Rumen. Nutr. Res. Rev. 1998, 11, 173–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, J.E.; Huws, S.A.; Kim, E.J.; Lee, M.R.F.; Kingston-Smith, A.H.; Scollan, N.D. Advances in Microbial Ecosystem Concepts and their Consequences for Ruminant Agriculture. Animal 2008, 2, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Pitta, D.W.; Indugu, N.; Baker, L.; Vecchiarelli, B.; Attwood, G. Understanding Diet–Microbe Interactions to Enhance Productivity of Dairy Cows. J. Dairy Sci. 2018, 101, 7661–7679. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, J.; Ellis, J.L.; Kebreab, E.; Strathe, A.B.; López, S.; France, J.; Bannink, A. Ruminal pH Regulation and Nutritional Consequences of Low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- González, L.A.; Manteca, X.; Calsamiglia, S.; Schwartzkopf-Genswein, K.S.; Ferret, A. Ruminal Acidosis in Feedlot Cattle: Interplay between Feed Ingredients, Rumen Function and Feeding Behavior (a Review). Anim. Feed Sci. Technol. 2012, 172, 66–79. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Ribeiro, G.O.; Cameron, A.; McAllister, T.A. Application of Meta-Omics to Understand the Dynamic Nature of the Rumen Microbiome and how it Responds to Diet in Ruminants. Animal 2019, 13, 1843–1854. [Google Scholar] [CrossRef] [Green Version]
- Bauman, D.E.; Griinari, J.M. Regulation and Nutritional Manipulation of Milk Fat: Low-Fat Milk Syndrome. Livest. Prod. Sci. 2001, 70, 15–29. [Google Scholar] [CrossRef]
- Kargar, S.; Taasoli, G.; Akhlaghi, A.; Zamiri, M.J. In vitro Rumen Fermentation Pattern: Insights from Concentrate Level and Plant Oil Supplement. Arch. Anim. Breed 2023, 66, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Cardozo, P.W.; Ferret, A.; Bach, A. Changes in Rumen Microbial Fermentation are Due to a Combined Effect of Type of Diet and pH. J. Anim. Sci. 2008, 86, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Ramos, S.; Carro, M.D. Comparison of Fermentation of Diets of Variable Composition and Microbial Populations in the Rumen of Sheep and Rusitec Fermenters. I. Digestibility, Fermentation Parameters, and Microbial Growth. J. Dairy Sci. 2010, 93, 3684–3698. [Google Scholar] [CrossRef]
- Czerkawski, J.W.; Breckenridge, G. Design and Development of a Long-Term Rumen Simulation Technique (Rusitec). Br. J. Nutr. 1977, 38, 371–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougall, E.I. Studies on Ruminant Saliva. 1. The Composition and Output of Sheep’s Saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [Green Version]
- García-González, R.; González, J.S.; López, S. Decrease of Ruminal Methane Production in Rusitec Fermenters through the Addition of Plant Material from Rhubarb (Rheum spp.) and Alder Buckthorn (Frangula alnus). J. Dairy. Sci. 2010, 93, 3755–3763. [Google Scholar] [CrossRef] [Green Version]
- Vargas, J.E.; Andrés, S.; Snelling, T.J.; López-Ferreras, L.; Yáñez-Ruíz, D.R.; García-Estrada, C.; López, S. Effect of Sunflower and Marine Oils on Ruminal Microbiota, in vitro Fermentation and Digesta Fatty Acid Profile. Front. Microbiol. 2017, 8, 1124. [Google Scholar] [CrossRef] [Green Version]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Morán, L.; Giráldez, F.J.; Panseri, S.; Aldai, N.; Jordán, M.J.; Chiesa, L.M.; Andrés, S. Effect of Dietary Carnosic Acid on the Fatty Acid Profile and Flavour Stability of Meat from Fattening Lambs. Food Chem. 2013, 138, 2407–2414. [Google Scholar] [CrossRef]
- Vargas, J.E.; Andrés, S.; López-Ferreras, L.; López, S. Effects of Supplemental Plant Oils on Rumen Bacterial Community Profile and Digesta Fatty Acid Composition in a Continuous Culture System (RUSITEC). Anaerobe 2020, 61, 102143. [Google Scholar] [CrossRef] [PubMed]
- Andrés, S.; Bodas, R.; Tejido, M.L.; Giráldez, F.J.; Valdés, C.; López, S. Effects of the Inclusion of Flaxseed and Quercetin in the Diet of Fattening Lambs on Ruminal Microbiota, in vitro Fermentation and Biohydrogenation of Fatty Acids. J. Agric. Sci. 2016, 154, 542–552. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT® 9.3 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 8 February 2023).
- DePeters, E.J.; Fadel, J.G.; Arosemena, A. Digestion Kinetics of Neutral Detergent Fiber and Chemical Composition within Some Selected By-Product Feedstuffs. Anim. Feed Sci. Technol. 1997, 67, 127–140. [Google Scholar] [CrossRef]
- Fukushima, R.S.; Kerley, M.S.; Ramos, M.H.; Porter, J.H.; Kallenbach, R.L. Comparison of Acetyl Bromide Lignin with Acid Detergent Lignin and Klason Lignin and Correlation with in vitro Forage Degradability. Anim. Feed Sci. Technol. 2015, 201, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, C.; Huasai, S.; Chen, A. Effects of Dietary Forage to Concentrate Ratio on Nutrient Digestibility, Ruminal Fermentation and Rumen Bacterial Composition in Angus Cows. Sci. Rep. 2021, 11, 17023. [Google Scholar] [CrossRef]
- Russell, J.B. The Importance of pH in the Regulation of Ruminal Acetate to Propionate Ratio and Methane Production in vitro. J. Dairy Sci. 1998, 81, 3222–3230. [Google Scholar] [CrossRef]
- Bekendorf, T.; Abel, H. In vivo and in vitro (Rusitec)-Investigations on Lactate Metabolism in the Rumen of Sheep. J. Anim. Physiol. Anim. 1996, 75, 133–141. [Google Scholar] [CrossRef]
- Broudiscou, L.P.; Offner, A.; Sauvant, D. Effects of Inoculum Source, pH, Redox Potential and Headspace Di-Hydrogen on Rumen in vitro Fermentation Yields. Animal 2014, 8, 931–937. [Google Scholar] [CrossRef]
- Fuentes, M.C.; Calsamiglia, S.; Cardozo, P.W.; Vlaeminck, B. Effect of pH and Level of Concentrate in the Diet on the Production of Biohydrogenation Intermediates in a Dual-Flow Continuous Culture. J. Dairy Sci. 2009, 92, 4456–4466. [Google Scholar] [CrossRef] [Green Version]
- Belenguer, A.; Toral, P.G.; Frutos, P.; Hervás, G. Changes in the Rumen Bacterial Community in Response to Sunflower Oil and Fish Oil Supplements in the Diet of Dairy Sheep. J. Dairy Sci. 2010, 93, 3275–3286. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L.; Griinari, J.M. Milk Fatty Acid Composition in Response to Reciprocal Combinations of Sunflower and Fish Oils in the Diet. Anim. Feed Sci. Technol. 2006, 131, 358–369. [Google Scholar] [CrossRef]
- Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of Polyunsaturated Fatty Acids and Their Toxicity to the Microflora of the Rumen. Antonie Van Leeuwenhoek 2007, 91, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.J.; McKain, N.; McEwan, N.R.; Miyagawa, E.; Chaudhary, L.C.; King, T.P.; Walker, N.D.; Apajalahti, J.H.A.; Newbold, C.J. Eubacterium pyruvativorans sp. nov., a Novel Non-Saccharolytic Anaerobe from the Rumen that Ferments Pyruvate and Amino Acids, Forms Caproate and Utilizes Acetate and Propionate. Int. J. Syst. Evol. Microbiol. 2003, 53, 965–970. [Google Scholar] [CrossRef]
- Jeon, B.S.; Choi, O.; Um, Y.; Sang, B.-I. Production of Medium-Chain Carboxylic Acids by Megasphaera sp. MH with Supplemental Electron Acceptors. Biotechnol. Biofuels 2016, 9, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackie, R.I.; Gilchrist, F.M.C.; Heath, S. An in vivo Study of Ruminal Micro-Organisms Influencing Lactate Turnover and its Contribution to Volatile Fatty Acid Production. J. Agric. Sci. 1984, 103, 37–51. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Titgemeyer, E.C. Ruminal Acidosis in Beef Cattle: The Current Microbiological and Nutritional Outlook. J. Dairy Sci. 2007, 90, E17–E38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, M.; Feng, W.J.; Li, P.; Zhang, Y.; He, R.X.; Yu, L.H.; He, J.B.; Jing, W.Y.; Li, Y.M.; Wang, Z.; et al. Effects of the Acid-Tolerant Engineered Bacterial Strain Megasphaera elsdenii H6F32 on Ruminal pH and the Lactic Acid Concentration of Simulated Rumen Acidosis in vitro. Res. Vet. Sci. 2014, 96, 28–29. [Google Scholar] [CrossRef]
- Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Kim, S.H.; Kang, S.H.; Kim, E.T.; Cho, Y.i.; Lee, S.S.; Lee, S.S. Diet Transition from High-Forage to High-Concentrate Alters Rumen Bacterial Community Composition, Epithelial Transcriptomes and Ruminal Fermentation Parameters in Dairy Cows. Animals 2021, 11, 838. [Google Scholar] [CrossRef]
- Kozloski, G.V.; Lima, L.D.; Cadorin, R.L.; Bonnecarrère Sanchez, L.M.; Senger, C.C.D.; Fiorentini, G.; Härter, C.J. Microbial Colonization and Degradation of Forage Samples Incubated in vitro at Different Initial pH. Anim. Feed Sci. Technol. 2008, 141, 356–367. [Google Scholar] [CrossRef]
- Hu, Z.-H.; Wang, G.; Yu, H.-Q. Anaerobic Degradation of Cellulose by Rumen Microorganisms at Various pH Values. Biochem. Eng. J. 2004, 21, 59–62. [Google Scholar] [CrossRef]
- Guo, T.; Guo, T.; Cao, Y.; Guo, L.; Li, F.; Li, F.; Yang, G. Changes in the Fermentation and Bacterial Community by Artificial Saliva pH in RUSITEC System. Front. Nutr. 2021, 8, 760316. [Google Scholar] [CrossRef] [PubMed]
- Roman-Garcia, Y.; Mitchell, K.E.; Denton, B.L.; Lee, C.; Socha, M.T.; Wenner, B.A.; Firkins, J.L. Conditions Stimulating Neutral Detergent Fiber Degradation by Dosing Branched-Chain Volatile Fatty Acids. II: Relation with Solid Passage Rate and pH on Neutral Detergent Fiber Degradation and Microbial Function in Continuous Culture. J. Dairy Sci. 2021, 104, 9853–9867. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Ghimire, S.; Wenner, B.A.; Kohn, R.A.; Firkins, J.L.; Gill, B.; Hanigan, M.D. Effects of Acetate, Propionate, and pH on Volatile Fatty Acid Thermodynamics in Continuous Cultures of Ruminal Contents. J. Dairy Sci. 2022, 105, 8879–8897. [Google Scholar] [CrossRef] [PubMed]
- Cerrato-Sánchez, M.; Calsamiglia, S.; Ferret, A. Effect of the Magnitude of the Decrease of Rumen pH on Rumen Fermentation in a Dual-Flow Continuous Culture System. J. Anim. Sci. 2008, 86, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Farenzena, R.; Kozloski, G.v.; Mezzomo, M.P.; Fluck, A.C. Forage Degradability, Rumen Bacterial Adherence and Fibrolytic Enzyme Activity in vitro: Effect of pH or Glucose Concentration. J. Agric. Sci. 2014, 152, 325–332. [Google Scholar] [CrossRef]
- Cantalapiedra-Hijar, G.; Yanez-Ruiz, D.R.; Newbold, C.J.; Molina-Alcaide, E. The Effect of the Feed-to-Buffer Ratio on Bacterial Diversity and Ruminal Fermentation in Single-Flow Continuous-Culture Fermenters. J. Dairy Sci. 2011, 94, 1374–1384. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, S.; Ferret, A.; Devant, M. Effects of pH and pH Fluctuations on Microbial Fermentation and Nutrient Flow from a Dual-Flow Continuous Culture System. J. Dairy Sci. 2002, 85, 574–579. [Google Scholar] [CrossRef] [PubMed]
- van Nevel, C.; Demeyer, D. Influence of pH on Lipolysis and Biohydrogenation of Soybean Oil by Rumen Contents in vitro. Reprod. Nutr. Dev. 1996, 36, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Kessel, J.A.; Russell, J.B. The Effect of pH on Ruminal Methanogenesis. FEMS Microbiol. Ecol. 1996, 20, 205–210. [Google Scholar] [CrossRef]
- Hünerberg, M.; McGinn, S.M.; Beauchemin, K.A.; Entz, T.; Okine, E.K.; Harstad, O.M.; McAllister, T.A. Impact of Ruminal pH on Enteric Methane Emissions. J. Anim. Sci. 2015, 93, 1760–1766. [Google Scholar] [CrossRef]
- Jiao, P.; Wei, C.; Sun, Y.; Xie, X.; Zhang, Y.; Wang, S.; Hu, G.; AlZahal, O.; Yang, W. Screening of Live Yeast and Yeast Derivatives for Their Impact of Strain and Dose on in vitro Ruminal Fermentation and Microbial Profiles with Varying Media pH Levels in High-forage Beef Cattle Diet. J. Sci. Food Agric. 2019, 99, 6751–6760. [Google Scholar] [CrossRef]
- Bhatta, R.; Tajima, K.; Kurihara, M. Influence of Temperature and pH on Fermentation Pattern and Methane Production in the Rumen Simulating Fermenter (RUSITEC). Asian-Australas. J. Anim. Sci. 2006, 19, 376–380. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H.; Abecia, L.; Angarita, E.; Aravena, P.; Arenas, G.N.; et al. Rumen Microbial Community Composition Varies with Diet and Host, but a Core Microbiome Is Found across a Wide Geographical Range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateos, I.; Ranilla, M.J.; Saro, C.; Carro, M.D. Shifts in Microbial Populations in Rusitec Fermenters as Affected by the Type of Diet and Impact of the Method for Estimating Microbial Growth (15N v. Microbial DNA). Animal 2017, 11, 1939–1948. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shi, H.; Wang, Y.; Li, S.; Cao, Z.; Ji, S.; He, Y.; Zhang, H. Effect of Dietary Forage to Concentrate Ratios on Dynamic Profile Changes and Interactions of Ruminal Microbiota and Metabolites in Holstein Heifers. Front. Microbiol. 2017, 8, 2206. [Google Scholar] [CrossRef] [Green Version]
- Pickett, A.T.; Cooke, R.F.; Mackey, S.J.; Brandão, A.P.; Colombo, E.A.; Oliveira Filho, R.v.; de Melo, G.D.; Pohler, K.G.; Poole, R.K. Shifts in Bacterial Communities in the Rumen, Vagina, and Uterus of Beef Heifers Receiving Different Levels of Concentrate. J. Anim. Sci. 2022, 100, skac338. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of High Forage/Concentrate Diet on Volatile Fatty Acid Production and the Microorganisms Involved in VFA Production in Cow Rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.; Li, B.; Wang, X.; Chen, Y.; Yang, Y. Effect of Dietary Concentrate to Forage Ratios on Ruminal Bacterial and Anaerobic Fungal Populations of Cashmere Goats. Anaerobe 2019, 59, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y.; Zhang, Y.; Wang, L. The Effects of Different Concentrate-to-Forage Ratio Diets on Rumen Bacterial Microbiota and the Structures of Holstein Cows during the Feeding Cycle. Animals 2020, 10, 957. [Google Scholar] [CrossRef] [PubMed]
- Roman-Garcia, Y.; Mitchell, K.E.; Lee, C.; Socha, M.T.; Park, T.; Wenner, B.A.; Firkins, J.L. Conditions Stimulating Neutral Detergent Fiber Degradation by Dosing Branched-Chain Volatile Fatty Acids. III: Relation with Solid Passage Rate and pH on Prokaryotic Fatty Acid Profile and Community in Continuous Culture. J. Dairy Sci. 2021, 104, 9868–9885. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Guo, T.; Guo, L.; Li, F.; Li, F.; Ma, Z. Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and its Modulation by Aspergillus oryzae Culture in RUSITEC System. Fermentation 2022, 8, 329. [Google Scholar] [CrossRef]
- Wanapat, M.; Gunun, P.; Anantsook, N.; Kang, S. Changes of Rumen pH, Fermentation and Microbial Population as Influenced by Different Ratios of Roughage (Rice Straw) to Concentrate in Dairy Steers. J. Agric. Sci. 2014, 152, 675–685. [Google Scholar] [CrossRef]
- Mrázek, J.; Tepšič, K.; Avguštin, G.; Kopečný, J. Diet-Dependent Shifts in Ruminal Butyrate-Producing Bacteria. Folia Microbiol. 2006, 51, 294–298. [Google Scholar] [CrossRef]
- Zened, A.; Enjalbert, F.; Nicot, M.C.; Troegeler-Meynadier, A. Starch plus Sunflower Oil Addition to the Diet of Dry Dairy Cows Results in a Trans-11 to Trans-10 Shift of Biohydrogenation. J. Dairy Sci. 2013, 96, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, T.C.; Wallace, R.J.; Moate, P.J.; Mosley, E.E. Recent Advances in Biohydrogenation of Unsaturated Fatty Acids within the Rumen Microbial Ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Goel, G.; Arvidsson, K.; Vlaeminck, B.; Bruggeman, G.; Deschepper, K.; Fievez, V. Effects of Capric Acid on Rumen Methanogenesis and Biohydrogenation of Linoleic and Alpha-Linolenic Acid. Animal 2009, 3, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Gudla, P.; Ishlak, A.; AbuGhazaleh, A.A. The Effect of Forage Level and Oil Supplement on Butyrivibrio fibrisolvens and Anaerovibrio lipolytica in Continuous Culture Fermenters. Asian-Australas. J. Anim. Sci. 2011, 25, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Ferlay, A. Dietary Lipids and Forages Interactions on Cow and Goat Milk Fatty Acid Composition and Sensory Properties. Reprod. Nutr. Dev. 2004, 44, 467–492. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Song, M.K. Effect of Sources and Levels of Carbohydrates on Fermentation Characteristics and Hydrogenation of Linoleic Acid by Rumen Bacteria in vitro. Asian-Australas. J. Anim. Sci. 2001, 14, 48–53. [Google Scholar] [CrossRef]
- Loor, J.J.; Ueda, K.; Ferlay, A.; Chilliard, Y.; Doreau, M. Biohydrogenation, Duodenal Flow, and Intestinal Digestibility of Trans Fatty Acids and Conjugated Linoleic Acids in Response to Dietary Forage: Concentrate Ratio and Linseed Oil in Dairy Cows. J. Dairy Sci. 2004, 87, 2472–2485. [Google Scholar] [CrossRef] [Green Version]
- Mir, P.S.; Ivan, M.; He, M.L.; Pink, B.; Okine, E.; Goonewardene, L.; McAllister, T.A.; Weselake, R.; Mir, Z. Dietary Manipulation to Increase Conjugated Linoleic Acids and Other Desirable Fatty Acids in Beef: A Review. Can. J. Anim. Sci. 2003, 83, 673–685. [Google Scholar] [CrossRef]
- Kliem, K.E.; Shingfield, K.J. Manipulation of Milk Fatty Acid Composition in Lactating Cows: Opportunities and Challenges. Eur. J. Lipid Sci. Technol. 2016, 118, 1661–1683. [Google Scholar] [CrossRef]
- Ribeiro, C.V.D.M.; Karnati, S.K.R.; Eastridge, M.L. Biohydrogenation of Fatty Acids and Digestibility of Fresh Alfalfa or Alfalfa Hay plus Sucrose in Continuous Culture. J. Dairy Sci. 2005, 88, 4007–4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, M.R.; Chaudhary, L.C.; Bestwick, C.S.; Richardson, A.J.; McKain, N.; Larson, T.R.; Graham, I.A.; Wallace, R.J. Toxicity of Unsaturated Fatty Acids to the Biohydrogenating Ruminal Bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 2010, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Shingfield, K.J.; Reynolds, C.K.; Lupoli, B.; Toivonen, V.; Yurawecz, M.P.; Delmonte, P.; Griinari, J.M.; Grandison, A.S.; Beever, D.E. Effect of Forage Type and Proportion of Concentrate in the Diet on Milk Fatty Acid Composition in Cows given Sunflower Oil and Fish Oil. Anim. Sci. 2005, 80, 225–238. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, X.; Li, F.; Li, F.; Guo, L. Ruminal Cellulolytic Bacteria Abundance Leads to the Variation in Fatty Acids in the Rumen Digesta and Meat of Fattening Lambs. J. Anim. Sci. 2020, 98, skaa228. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Song, M.K. pH Affects the in vitro Formation of Cis-9, Trans-11 CLA and Trans-11 Octadecenoic Acid by Ruminal Bacteria When Incubated with Oilseeds. Asian-Australas. J. Anim. Sci. 2003, 16, 1743–1748. [Google Scholar] [CrossRef]
- Ribeiro, C.V.D.M.; Eastridge, M.L.; Firkins, J.L.; St-Pierre, N.R.; Palmquist, D.L. Kinetics of Fatty Acid Biohydrogenation in vitro. J. Dairy Sci. 2007, 90, 1405–1416. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, M.C.; Calsamiglia, S.; Fievez, V.; Blanch, M.; Mercadal, D. Effect of pH on Ruminal Fermentation and Biohydrogenation of Diets Rich in Omega-3 or Omega-6 Fatty Acids in Continuous Culture of Ruminal Fluid. Anim. Feed Sci. Technol. 2011, 169, 35–45. [Google Scholar] [CrossRef]
- Troegeler-Meynadier, A.; Nicot, M.C.; Bayourthe, C.; Moncoulon, R.; Enjalbert, F. Effects of pH and Concentrations of Linoleic and Linolenic Acids on Extent and Intermediates of Ruminal Biohydrogenation in vitro. J. Dairy Sci. 2003, 86, 4054–4063. [Google Scholar] [CrossRef] [Green Version]
- Troegeler-Meynadier, A.; Bret-Bennis, L.; Enjalbert, F. Rates and Efficiencies of Reactions of Ruminal Biohydrogenation of Linoleic Acid According to pH and Polyunsaturated Fatty Acids Concentrations. Reprod. Nutr. Dev. 2006, 46, 713–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Diet F | Diet C | |
---|---|---|
Ingredients, g/kg dry matter (DM) | ||
Maize | 62 | 212 |
Barley | 38 | 128 |
Soybean meal | 50 | 170 |
Grass hay | 728 | 146 |
Lucerne hay | 50 | 170 |
Sugar beet pulp | 22 | 84 |
Beet molasses | 15 | 50 |
Vitamin/mineral premix | 5 | 10 |
Sunflower oil 2 | 30 | 30 |
Chemical composition, g/kg DM | ||
Organic matter | 919 | 912 |
Crude protein | 127 | 186 |
Neutral detergent fiber | 502 | 284 |
Acid detergent fiber | 273 | 154 |
Cellulose | 257 | 144 |
Lignin | 15.8 | 9.3 |
Non-structural carbohydrates | 245 | 386 |
Crude fat (ether extract) | 45 | 56 |
Fatty acid (FA) composition of the diets, as % of total FA | ||
C14:0 | 0.5 | 0.3 |
C16:0 | 15.1 | 13.9 |
C16:1 | 2.1 | 1.7 |
C18:0 | 7.6 | 6.2 |
C18:1 c9 | 29.0 | 29.9 |
C18:2 c9c12 | 34.2 | 40.4 |
C18:3 c9c12c15 | 4.9 | 3.3 |
Higher pH | Lower pH | |
---|---|---|
Ingredients, g/L | ||
NaHCO3 | 9.8 | 6.5 |
Na2HPO4·12H2O | 9.3 | 5.0 |
NaCl | 0.47 | 3.4 |
KCl | 0.57 | 0.45 |
CaCl2·2H2O | 0.053 | 0.070 |
MgCl2·6H2O | 0.13 | 0.10 |
Diet F 1 | Diet C 1 | p-Values | ||||||
---|---|---|---|---|---|---|---|---|
High pH 1 | Low pH 1 | High pH 1 | Low pH 1 | RSD 3 | Diet | pH | Diet × pH | |
Volume of effluent, mL/d | 442 | 505 | 466 | 463 | 52.0 | 0.721 | 0.269 | 0.226 |
pH | 6.83 a | 6.52 b | 6.81 a | 6.37 c | 0.069 | 0.031 | <0.001 | 0.098 |
Digestibility 2, % | ||||||||
Dry matter | 52.3 b | 50.7 b | 69.0 a | 64.8 a | 2.56 | <0.001 | 0.043 | 0.341 |
Organic matter | 50.1 b | 48.2 b | 68.4 a | 63.8 a | 2.72 | <0.001 | 0.038 | 0.346 |
Neutral detergent fiber | 26.6 b | 24.7 b | 31.1 a | 28.8 a | 3.49 | 0.030 | 0.246 | 0.928 |
Detergent acid fiber | 21.2 b | 19.5 b | 25.1 a | 24.0 a | 3.54 | 0.038 | 0.438 | 0.858 |
Cellulose | 23.5 ab | 21.5 b | 29.7 a | 28.3 ab | 3.25 | 0.002 | 0.308 | 0.875 |
Crude protein | 67.6 ab | 63.0 b | 71.5 a | 64.6 b | 2.99 | 0.091 | 0.003 | 0.440 |
Crude fat | 68.9 ab | 64.0 b | 73.2 a | 62.7 b | 4.15 | 0.481 | 0.004 | 0.206 |
Fermentation gas production | ||||||||
Total gas, L/day | 2.01 b | 1.77 b | 2.61 a | 2.21 ab | 0.235 | 0.002 | 0.025 | 0.533 |
CH4, mL/100 mL gas | 7.66 | 7.26 | 6.42 | 6.87 | 1.867 | 0.426 | 0.979 | 0.671 |
CH4, mmol/day | 6.80 | 5.18 | 7.84 | 6.81 | 2.096 | 0.251 | 0.254 | 0.791 |
CH4, mmol/g FOM 4 | 0.961 | 0.756 | 0.834 | 0.773 | 0.216 | 0.635 | 0.267 | 0.538 |
VFA 5, mmol/day | ||||||||
Acetate | 18.0 ab | 16.3 b | 19.2 a | 16.4 b | 1.30 | 0.377 | 0.005 | 0.416 |
Propionate | 8.76 | 8.30 | 8.06 | 7.66 | 0.835 | 0.135 | 0.328 | 0.935 |
Butyrate | 6.25 b | 6.01 b | 8.17 a | 8.19 a | 0.381 | <0.001 | 0.580 | 0.506 |
Valerate | 3.44 b | 3.24 b | 4.39 a | 4.50 a | 0.281 | <0.001 | 0.761 | 0.297 |
Caproate | 1.63 b | 1.67 b | 3.86 a | 3.36 a | 0.468 | <0.001 | 0.347 | 0.265 |
Iso-acids | 0.88 bc | 0.72 c | 1.37 a | 1.09 b | 0.112 | <0.001 | 0.002 | 0.282 |
Total VFA 5 | 39.4 ab | 36.9 b | 45.6 a | 41.2 ab | 3.12 | 0.007 | 0.050 | 0.576 |
C2:C3 6 | 2.04 bc | 2.00 c | 2.46 a | 2.24 b | 0.097 | <0.001 | 0.024 | 0.086 |
L-lactate, mg/d | 6.4 c | 7.8 bc | 13.0 a | 12.7 ab | 1.96 | 0.001 | 0.622 | 0.489 |
Nitrogen metabolism | ||||||||
Ammonia, mg/d | 84.8 c | 76.4 c | 143.3 a | 124.0 b | 8.19 | <0.001 | 0.006 | 0.205 |
Microbial protein | ||||||||
g/d | 0.448 b | 0.480 ab | 0.603 a | 0.539 ab | 0.0706 | 0.016 | 0.676 | 0.221 |
g/100 FOM 4 | 6.40 | 7.17 | 6.57 | 6.24 | 0.962 | 0.467 | 0.675 | 0.299 |
Diet F 1 | Diet C 1 | p-Values | ||||||
---|---|---|---|---|---|---|---|---|
High pH 1 | Low pH 1 | High pH 1 | Low pH 1 | RSD 2 | Diet | pH | Diet × pH | |
Digesta fatty acids (as % of total FA) | ||||||||
C14:0 | 1.90 | 2.63 | 1.89 | 1.39 | 0.652 | 0.140 | 0.778 | 0.148 |
C14:1 c9 | 1.89 | 2.90 | 2.23 | 2.19 | 0.766 | 0.643 | 0.232 | 0.201 |
C15:0 iso | 0.99 | 1.51 | 0.97 | 0.99 | 0.445 | 0.257 | 0.243 | 0.290 |
C15:0 | 2.04 a | 2.18 a | 1.18 b | 1.29 b | 0.285 | <0.001 | 0.461 | 0.926 |
C16:0 | 19.7 | 20.3 | 23.2 | 21.1 | 1.79 | 0.058 | 0.452 | 0.215 |
C16:1 c9 | 5.75 | 6.43 | 5.10 | 4.74 | 1.110 | 0.059 | 0.780 | 0.370 |
C17:0 | 1.79 ab | 2.07 a | 1.47 b | 1.28 b | 0.218 | 0.001 | 0.730 | 0.750 |
C17:1 c10 | 1.01 | 1.56 | 1.00 | 0.96 | 0.585 | 0.318 | 0.411 | 0.340 |
C20:0 | 1.03 | 0.95 | 1.02 | 0.92 | 0.108 | 0.736 | 0.126 | 0.833 |
iso + C odd | 6.36 a | 6.94 a | 4.75 b | 4.98 b | 1.054 | 0.009 | 0.479 | 0.758 |
Total C18 FA | 60.8 ab | 59.0 b | 61.6 ab | 65.3 a | 2.26 | 0.022 | 0.513 | 0.064 |
C18 profile (as % of total C18) | ||||||||
C18:0 iso | 1.35 | 1.37 | 0.79 | 0.57 | 0.305 | 0.004 | 0.547 | 0.507 |
C18:0 | 18.9 | 19.4 | 18.4 | 15.7 | 3.57 | 0.096 | 0.221 | 0.837 |
C18:1 t11 | 5.34 | 4.19 | 4.49 | 2.72 | 1.704 | 0.223 | 0.131 | 0.730 |
C18:1 c9 | 28.2 b | 31.1 b | 36.0 a | 38.6 a | 5.67 | 0.039 | 0.402 | 0.956 |
C18:1 c12 | 7.55 a | 6.92 a | 4.82 b | 5.18 b | 1.69 | 0.042 | 0.892 | 0.612 |
C18:2 t9t12 | 2.01 | 2.20 | 1.73 | 1.43 | 0.529 | 0.074 | 0.827 | 0.374 |
C18:2 c9c12 | 27.6 | 27.4 | 29.0 | 31.3 | 5.80 | 0.433 | 0.755 | 0.713 |
C18:2 c9t11 | 0.628 a | 0.652 a | 0.432 b | 0.307 b | 0.1479 | 0.013 | 0.563 | 0.397 |
C18:3 c9c12c15 | 8.59 a | 7.24 a | 4.26 b | 4.21 b | 1.016 | <0.001 | 0.249 | 0.276 |
Biohydrogenation rate (%) | ||||||||
C18:3 c9c12c15 | 2.1 | 13.8 | 27.1 | 28.7 | 17.00 | 0.077 | 0.516 | 0.621 |
C18:2 c9c12 | 45.9 | 46.3 | 49.2 | 43.3 | 11.22 | 0.987 | 0.680 | 0.641 |
C18:1 c9 | 9.6 a | 0.1 a | −18.6 b | −14.9 b | 13.70 | 0.026 | 0.719 | 0.432 |
Total unsaturated C18 | 26.7 | 24.8 | 24.1 | 21.9 | 5.66 | 0.424 | 0.562 | 0.961 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, J.E.; López-Ferreras, L.; Andrés, S.; Mateos, I.; Horst, E.H.; López, S. Differential Diet and pH Effects on Ruminal Microbiota, Fermentation Pattern and Fatty Acid Hydrogenation in RUSITEC Continuous Cultures. Fermentation 2023, 9, 320. https://doi.org/10.3390/fermentation9040320
Vargas JE, López-Ferreras L, Andrés S, Mateos I, Horst EH, López S. Differential Diet and pH Effects on Ruminal Microbiota, Fermentation Pattern and Fatty Acid Hydrogenation in RUSITEC Continuous Cultures. Fermentation. 2023; 9(4):320. https://doi.org/10.3390/fermentation9040320
Chicago/Turabian StyleVargas, Julio Ernesto, Lorena López-Ferreras, Sonia Andrés, Iván Mateos, Egon Henrique Horst, and Secundino López. 2023. "Differential Diet and pH Effects on Ruminal Microbiota, Fermentation Pattern and Fatty Acid Hydrogenation in RUSITEC Continuous Cultures" Fermentation 9, no. 4: 320. https://doi.org/10.3390/fermentation9040320
APA StyleVargas, J. E., López-Ferreras, L., Andrés, S., Mateos, I., Horst, E. H., & López, S. (2023). Differential Diet and pH Effects on Ruminal Microbiota, Fermentation Pattern and Fatty Acid Hydrogenation in RUSITEC Continuous Cultures. Fermentation, 9(4), 320. https://doi.org/10.3390/fermentation9040320