Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and Its Modulation by Aspergillus oryzae Culture in RUSITEC System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Procedures
2.2. Experimental Diets and Sampling
2.3. Sample Collection
2.4. Analytical Procedures
2.5. Statistical Analysis
3. Results
3.1. Nutrient Degradability and Fermentation Profiles
3.2. Rumen Bacteria
3.3. Alpha Diversity and Rumen Bacteria at the Phylum
3.4. Beta Diversity
3.5. Rumen Bacteria at the Genus
3.6. LefSe Analysis
3.7. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCann, J.C.; Eluan, S.; Cardoso, F.C.; Ederakhshani, H.; Khafipour, E.; Loor, J.J. Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Front. Microbiol. 2016, 7, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gozho, G.N.; Plaizier, J.C.; Krause, D.O.; Kennedy, A.D.; Wittenberg, K.M. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J. Dairy Sci. 2005, 88, 1399–1403. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.Y.; Zhang, R.Y.; Wang, D.S.; Zhu, W.Y. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe. 2013, 24, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Plaizier, J.C.; Li, S.; Tun, H.M.; Khafipour, E. Nutritional models of experimentally-induced subacute ruminal acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Front. Microbiol. 2017, 7, 2128. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, Z.; Dong, C.; Li, F.; Wang, W.; Yuan, Z.; Mo, F.; Weng, X. Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk. Front. Microbiol. 2017, 8, 2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calsamiglia, S.; Cardozo, P.W.; Ferret, A.; Bach, A. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J. Anim. Sci. 2008, 86, 702–711. [Google Scholar] [CrossRef]
- Khafipour, E.; Li, S.; Plaizier, J.C.; Krause, D.O. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl. Environ. Microbiol. 2009, 75, 7115–7124. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Cao, Y.; Liu, N.; Yang, X.; Yao, J.; Yan, D. Subacute ruminal acidosis challenge changed in situ degradability of feedstuffs in dairy goats. J. Dairy Sci. 2014, 97, 5101–5109. [Google Scholar] [CrossRef] [Green Version]
- Shaani, Y.; Zehavi, T.; Eyal, S.; Miron, J.; Mizrahi, I. Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. ISME J. 2018, 12, 2446–2457. [Google Scholar] [CrossRef]
- Kellems, R.; Lagerstedt, A.; Wallentine, M. Effect of feeding Aspergillus oryzae fermentation extract or Aspergillus oryzae plus Yeast culture plus mineral and vitamin supplement on performance of Holstein cows during a complete lactation. J. Dairy Sci. 1990, 73, 2922–2928. [Google Scholar] [CrossRef]
- Martin, S.A.; Nisbet, D.J. Effect of direct-fed microbials on rumen microbial fermentation. J. Dairy Sci. 1992, 75, 1736–1744. [Google Scholar] [CrossRef]
- Higginbotham, G.E.; Santos, J.E.; Juchem, S.O.; DePeters, E.J. Effect of feeding Aspergillus oryzae extract on milk production and rumen parameters. Livest. Prod. Sci. 2004, 86, 55–59. [Google Scholar] [CrossRef]
- Kong, F.; Lu, N.; Liu, Y.; Zhang, S.; Jiang, H.; Wang, H.; Wang, W.; Li, S. Aspergillus oryzae and Aspergillus niger co-cultivation extract affects in vitro degradation, fermentation characteristics, and bacterial composition in a diet-specific manner. Animals 2021, 11, 1248. [Google Scholar] [CrossRef]
- Mansfield, H.; Stern, M.; Otterby, D. Effects of beet pulp and animal by-products on milk yield and in vitro fermentation by rumen microorganisms. J. Dairy Sci. 1994, 77, 205–216. [Google Scholar] [CrossRef]
- Oellermann, S.; Arambel, M.; Kent, B.; Walters, J. Effect of graded amounts of Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility in cattle. J. Dairy Sci. 1990, 73, 2413–2416. [Google Scholar] [CrossRef]
- Beharka, A.; Nagaraja, T. Effect of Aspergillus oryzae extract alone or in combination with antimicrobial compounds on ruminal bacteria. J. Dairy Sci. 1998, 81, 1591–1598. [Google Scholar] [CrossRef]
- Klevenhusen, F.; Deckardt, K.; Sizmaz, Ö.; Wimmer, S.; Reyes, A.M.; Khiaosa-Ard, R.; Chizzola, R.; Zebeli, Q. Effects of black seed oil and Ferula elaeochytris supplementation on ruminal fermentation as tested in vitro with the rumen simulation technique (Rusitec). Anim. Prod. Sci. 2015, 55, 736–744. [Google Scholar] [CrossRef]
- Deckardt, K.; Metzler-Zebeli, B.U.; Zebeli, Q. Processing barley grain with lactic acid and tannic acid ameliorates rumen microbial fermentation and degradation of dietary fibre in vitro. J. Sci. Food Agric. 2015, 96, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Kajikawa, H.; Jin, H.; Terada, F.; Suga, T. Operation and characteristics of newly improved and marketable artificial rumen (Rusitec). Mem. Natl. Inst. Livest. Grassl. Sci. 2003, 2, 1–49. [Google Scholar]
- Zhao, X.H.; Liu, C.J.; Liu, Y.; Li, C.Y.; Yao, J.H. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). J. Anim. Physiol. Anim. Nutr. 2012, 97, 1161–1169. [Google Scholar] [CrossRef]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC International: Washington, DC, USA, 1997. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Liang, Y.; Li, G.; Li, X.; Lu, J.Y.; Li, F.D.; Tang, D.F.; Li, F.; Deng, Y.; Zhang, H.; Wang, Z.L.; et al. Growth performance, rumen fermentation, bacteria composition, and gene expressions involved in intracellular pH regulation of rumen epithelium in finishing Hu lambs differing in residual feed intake phenotype. J. Anim. Sci. 2017, 95, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, X.; Cao, Y.; Li, S.; Yao, J.; Li, Z.; Sun, F. Effects of dietary effective fiber to rumen degradable starch ratios on the risk of sub-acute ruminal acidosis and rumen content fatty acids composition in dairy goat. Anim. Feed Sci. Technol. 2014, 189, 54–62. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Bruns, M.A.; Tiedje, J.M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 1996, 62, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Tajima, K.; Aminov, R.I.; Nagamine, T.; Matsui, H.; Nakamura, M.; Benno, Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 2001, 67, 2766–2774. [Google Scholar] [CrossRef] [Green Version]
- Denman, S.E.; McSweeney, C. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Gonzalez Peña, A.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, J.; Wu, Y.; Liu, J. Effects of chemical treatments of rice straw on rumen fermentation characteristics, fibrolytic enzyme activities and populations of liquid- and solid-associated ruminal microbes in vitro. Anim. Feed Sci. Technol. 2008, 141, 1–14. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Ferret, A.; Devant, M. Effects of pH and pH fluctuations on microbial fermentation and nutrient flow from a dual-flow continuous culture system. J. Dairy Sci. 2002, 85, 574–579. [Google Scholar] [CrossRef]
- Cerrato-Sánchez, M.; Calsamiglia, S.; Ferret, A. Effects of patterns of suboptimal pH on rumen fermentation in a dual-flow continuous culture system. J. Dairy Sci. 2007, 90, 4368–4377. [Google Scholar] [CrossRef]
- Nisbet, D.J.; Martin, S.A. Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas-ruminantium. Appl. Environ. Microbiol. 1990, 56, 3515–3518. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.H.; Kincaid, C.R.; Varga, G.A.; Thayne, W.V.; Junkins, L.L. Effects of solids and liquid flows on fermentation in continuous cultures. IV. pH and dilution rate. J. Anim. Sci. 1984, 58, 692–699. [Google Scholar] [CrossRef]
- Saddler, J.N. Factors limiting the efficiency of cellulase enzymes. Microbiol. Sci. 1986, 3, 84–87. [Google Scholar]
- Guo, T.; Guo, T.; Cao, Y.; Guo, L.; Li, F.; Li, F.; Yang, G. Changes in the fermentation and bacterial community by artificial saliva pH in RUSITEC system. Front. Nutr. 2021, 8, 760316. [Google Scholar] [CrossRef] [PubMed]
- Esdale, W.; Satter, L. Manipulation of ruminal fermentation IV. effect of altering ruminal pH on volatile fatty acid production. J. Dairy Sci. 1972, 55, 964–970. [Google Scholar] [CrossRef]
- Shriver, B.J.; Hoover, W.H.; Sargent, J.P.; Crawford, R.J.; Thayne, W.V. Fermentation of a high concentrate diet as affected by ruminal pH and digesta flow. J. Dairy Sci. 1986, 69, 413–419. [Google Scholar] [CrossRef]
- Newbold, C.J.; Frumholtz, P.P.; Wallace, R.J. Influence of Aspergillus oryzae fermentation extract on rumen fermentation and blood constituents in sheep given diets of grass hay and barley. J. Agric. Sci. 1992, 119, 423–427. [Google Scholar] [CrossRef]
- Brede, M.; Orton, T.; Pinior, B.; Roch, F.F.; Dzieciol, M.; Zwirzitz, B.; Wagner, M.; Breves, G.; Wetzels, S.U. PacBio and Illumina MiSeq amplicon sequencing confirm full recovery of the bacterial community after subacute ruminal acidosis challenge in the RUSITEC system. Front. Microbiol. 2020, 11, 1813. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mu, C.; Xu, Y.; Shen, J.; Zhu, W. Changes in the solid-, liquid-, and epithelium-associated bacterial communities in the rumen of Hu lambs in response to dietary urea supplementation. Front. Microbiol. 2020, 11, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, W.; Zhu, W.; Mao, S. Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. World J. Microbiol. Biotechnol. 2013, 30, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.C.; Purvis, H.T.; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; DeSilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef] [Green Version]
- Petri, R.M.; Schwaiger, T.; Penner, G.B.; Beauchemin, K.A.; Forster, R.J.; McKinnon, J.J.; McAllister, T.A. Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS ONE 2013, 8, e83424. [Google Scholar] [CrossRef] [Green Version]
- Šuľák, M.; Sikorová, L.; Jankuvová, J.; Javorskỳ, P.; Pristaš, P. Variability of Actinobacteria, a minor component of rumen microflora. Folia Microbiol. 2012, 57, 351–353. [Google Scholar] [CrossRef]
- Bekele, A.Z.; Koike, S.; Kobayashi, Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol. Lett. 2010, 305, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Pidcock, S.E.; Skvortsov, T.; Santos, F.G.; Courtney, S.J.; Sui-Ting, K.; Creevey, C.J.; Huws, S.A. Phylogenetic systematics of Butyrivibrio and Pseudobutyrivibrio genomes illustrate vast taxonomic diversity, open genomes and an abundance of carbohydrate-active enzyme family isoforms. Microb. Genom. 2021, 7, 000638. [Google Scholar] [CrossRef]
- Palevich, N.; Kelly, W.J.; Leahy, S.C.; Denman, S.; Altermann, E.; Rakonjac, J.; Attwood, G.T. Comparative genomics of rumen Butyrivibrio spp. uncovers a continuum of polysaccharide-degrading capabilities. Appl. Environ. Microbiol. 2019, 86, e01993-19. [Google Scholar] [CrossRef] [Green Version]
- Bhute, S.; Pande, P.; Shetty, S.; Shelar, R.; Mane, S.; Kumbhare, S.V.; Gawali, A.; Makhani, H.; Navandar, M.; Dhotre, D.; et al. Molecular characterization and Meta-Analysis of gut microbial communities illustrate enrichment of Prevotella and Megasphaera in Indian subjects. Front. Microbiol. 2016, 7, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- So, S.; Cherdthong, A.; Wanapat, M.; Uriyapongson, S. Fermented sugarcane bagasse with Lactobacillus combined with cellulase and molasses promotes in vitro gas kinetics, degradability, and ruminal fermentation patterns compared to rice straw. Anim. Biotechnol. 2020, 33, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, Q.; Li, T.; Shao, L.; Su, M.; Zhou, H.; Qu, J. Rumen microbiome and metabolome of Tibetan Sheep (Ovis aries) reflect animal age and nutritional requirement. Front. Vet. Sci. 2020, 7, 609. [Google Scholar] [CrossRef] [PubMed]
High AS pH | Low AS pH | |
---|---|---|
NaHCO3 | 9.8 g/L | 1.96 g/L |
Na2HPO4 | 9.3 g/L | 1.86 g/L |
KCl | 0.57 g/L | 0.57 g/L |
NaCl | 0.47 g/L | 0.47 g/L |
MgSO4·7H2O | 0.12 g/L | 0.12 g/L |
CaCl2·2H2O | 0.045 g/L | 0.045 g/L |
Ingredients | Contents |
---|---|
Corn straw | 10 |
Alfalfa hay | 30 |
Corn | 35 |
Corn gluten feed | 5 |
Soybean meal | 10 |
Cottonseed meal | 5 |
Wheat bran | 5 |
Total | 100 |
Nutritional level, % DM | |
DM | 91.00 |
OM | 84.60 |
CP | 17.36 |
NDF | 28.73 |
ADF | 15.18 |
Starch | 25.35 |
DE1, MJ/kg | 11.52 |
Primer Name | Primer Sequences (5′–3′) | Reference |
---|---|---|
Fibrobacter succinogenes | F: 5′– GGTATGGGATGAGCTTGC-3′R: 5′-GCCTGCCCCTGAACTATC-3’ | [28] |
Butyrivibrio fibrisolvens | F: 5′-GCCTCAGCGTCAGTAATCG-3′R: 5′-GGAGCGTAGGCGGTTTTAC-3’ | [29] |
Ruminococcus flavefaciens | F: 5′-CGAACGGAGATAATTTGAGTTTACTTAGG-3’R: 5′-CGGTCTCTGTATGTTATGAGGTATTACC-3’ | [29] |
Prevotella brevis | F: 5′-GGTTCTGAGAGGAAGGTCCCC-3’R: 5′-TCCTGCACGCTACTTGGCTG-3’ | [30] |
Selenomonas ruminantium | F: 5′-CAATAAGCATTCCGCCTGGG-3’R: 5′-TTCACTCAATGTCAAGCCCTGG-3’ | [30] |
pH | 6.8 | 5.5 | 5.5 | 5.5 | SEM | p Value | ||
---|---|---|---|---|---|---|---|---|
AOC, % | 0 | 0 | 1.25% | 2.5% | pH 6.8 vs. 5.5 | Added AOC Level | ||
Liner | Quadratic | |||||||
DM degradability, % | 66.67 | 57.57 | 58.44 | 59.97 | 0.775 | <0.001 | 0.123 | 0.808 |
OM degradability, % | 66.01 | 56.24 b | 57.10 ab | 58.74 a | 0.804 | <0.001 | 0.040 | 0.629 |
NDF degradability, % | 31.98 | 21.10 | 23.96 | 23.17 | 1.320 | 0.005 | 0.652 | 0.511 |
ADF degradability, % | 25.49 | 15.22 | 18.46 | 14.78 | 1.191 | 0.002 | 0.310 | 0.132 |
CP degradability, % | 63.98 | 41.84 | 48.05 | 47.88 | 2.061 | 0.006 | 0.217 | 0.355 |
pH | 6.69 | 5.44 | 5.47 | 5.46 | 0.142 | <0.001 | 0.951 | 0.861 |
TVFA, mmol/L | 104.82 | 67.66 | 58.01 | 66.42 | 5.487 | 0.023 | 0.328 | 0.149 |
VFA molar ratios, mol/100 mol | ||||||||
Acetate, % | 47.76 | 47.84 | 49.74 | 47.67 | 3.269 | 0.504 | 0.884 | 0.630 |
Propionate, % | 18.03 | 13.22 | 14.51 | 14.45 | 0.636 | 0.026 | 0.342 | 0.659 |
Iso-buyrate, % | 0.65 | 0.34 | 0.27 | 0.21 | 0.080 | 0.312 | 0.589 | 0.932 |
Butyrate, % | 17.01 | 21.23 | 19.87 | 20.59 | 0.885 | 0.086 | 0.873 | 0.655 |
Iso-valerate, % | 3.56 | 3.02 | 3.19 | 3.96 | 0.251 | 0.510 | 0.472 | 0.668 |
Valerate, % | 5.61 | 4.97 | 4.63 | 4.89 | 0.185 | 0.241 | 0.806 | 0.534 |
Acetate/Propionate | 2.73 | 3.62 | 3.71 | 3.30 | 0.516 | 0.088 | 0.465 | 0.404 |
AS pH | 6.8 | 5.5 | 5.5 | 5.5 | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
AOC, % | 0 | 0 | 1.25% | 2.5% | pH 6.8 vs. 5.5 | Added AOC Level | ||
Liner | Quadratic | |||||||
Butyrivibrio fibrisolvens | 5.90 | 6.24 | 6.22 | 6.32 | 0.130 | 0.604 | 0.686 | 0.547 |
Selenomonas ruminantium | 9.53 | 10.27 | 10.15 | 10.36 | 0.044 | <0.001 | 0.058 | 0.031 |
Ruminococcus albus | 5.02 | 3.84 | 3.84 | 3.92 | 0.109 | <0.001 | 0.959 | 0.865 |
Fibrobacter succinogenes | 4.74 | 5.13 | 5.88 | 6.53 | 0.195 | 0.120 | 0.089 | 0.927 |
Prevotella brevis | 10.41 b | 10.80 a | 10.79 | 10.88 | 0.024 | <0.001 | 0.228 | 0.356 |
AS pH | 6.8 | 5.5 | 5.5 | 5.5 | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
AOC, % | 0 | 0 | 1.25% | 2.5% | pH 6.8 vs. 5.5 | Added AOC Level | ||
Liner | Quadratic | |||||||
Chao1 | 551.29 | 260.39 | 259.51 | 283.81 | 11.123 | <0.001 | 0.697 | 0.479 |
Ace | 553.82 | 277.40 | 262.83 | 308.66 | 10.132 | <0.001 | 0.312 | 0.304 |
Shannon | 3.70 | 3.39 | 3.32 | 3.50 | 0.029 | <0.001 | 0.174 | 0.237 |
Simpson | 0.09 | 0.07 | 0.08 | 0.06 | 0.004 | 0.389 | 0.102 | 0.190 |
Phylum | ||||||||
Bacteroidetes | 54.88 | 58.97 | 65.67 | 56.59 | 1.785 | 0.400 | 0.261 | 0.665 |
Firmicutes | 23.24 | 29.93 | 22.99 | 32.87 | 1.467 | 0.065 | 0.148 | 0.542 |
Proteobacteria | 14.55 | 0.96 | 1.41 | 1.12 | 1.185 | 0.063 | 0.497 | 0.689 |
Spirochaetes | 4.34 | 0.32 | 0.27 | 0.28 | 0.267 | 0.032 | 0.848 | 0.676 |
Actinobacteria | 1.51 | 9.51 | 9.20 | 8.68 | 0.045 | 0.002 | 0.946 | 0.749 |
Others | 1.47 | 0.31 | 0.48 | 0.45 | 0.770 | <0.001 | 0.354 | 0.252 |
AS pH | 6.8 | 5.5 | 5.5 | 5.5 | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
AOC, % | 0 | 0 | 1.25% | 2.5% | pH 6.8 vs. 5.5 | Added AOC Level | ||
Liner | Quadratic | |||||||
Prevotella | 24.13 | 57.74 | 64.72 | 55.29 | 2.207 | 0.003 | 0.249 | 0.662 |
Pseudobutyrivibrio | 1.13 | 8.26 | 8.41 | 7.52 | 0.684 | 0.001 | 0.911 | 0.744 |
Megasphaera | 2.13 | 6.70 | 3.98 | 9.96 | 0.774 | 0.126 | 0.094 | 0.207 |
Selenomonas | 5.56 | 5.03 | 5.04 | 6.80 | 0.758 | 0.734 | 0.687 | 0.461 |
Olivibacter | 22.11 | 0.01 | 0.004 | 0.002 | 1.651 | 0.026 | 0.496 | 0.328 |
Lactobacillus | 1.52 | 5.10 | 4.69 | 6.03 | 0.950 | 0.055 | 0.908 | 0.771 |
Mitsuokella | 0.61 | 2.26 | 2.10 | 2.51 | 0.229 | 0.005 | 0.953 | 0.736 |
Succinivibrio | 7.8 | 0.10 | 0.09 | 0.10 | 0.931 | 0.130 | 0.955 | 0.911 |
Ruminobacter | 6.37 | 0.01 | 0.01 | 0.002 | 0.626 | 0.025 | 0.697 | 0.432 |
Butyrivibrio | 1.17 | 1.49 | 1.15 | 1.33 | 0.190 | 0.592 | 0.775 | 0.746 |
Dialister | 0.58 | 1.12 | 0.94 | 1.30 | 0.118 | 0.047 | 0.625 | 0.640 |
Treponema | 2.66 | 0.54 | 0.08 | 0.45 | 0.182 | 0.037 | 0.970 | 0.815 |
Bifidobacterium | 0.27 | 0.82 | 0.62 | 0.82 | 0.150 | 0.140 | 0.887 | 0.989 |
Lachnospiracea_incertae_sedis | 0.61 | 0.62 | 0.53 | 0.60 | 0.077 | 0.976 | 0.841 | 0.922 |
Sphaerochaeta | 1.69 | 0.27 | 0.22 | 0.24 | 0.095 | 0.027 | 0.894 | 0.749 |
Others | 21.66 | 10.48 | 7.46 | 7.46 | 1.409 | 0.087 | 0.578 | 0.375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, T.; Guo, T.; Guo, L.; Li, F.; Li, F.; Ma, Z. Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and Its Modulation by Aspergillus oryzae Culture in RUSITEC System. Fermentation 2022, 8, 329. https://doi.org/10.3390/fermentation8070329
Guo T, Guo T, Guo L, Li F, Li F, Ma Z. Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and Its Modulation by Aspergillus oryzae Culture in RUSITEC System. Fermentation. 2022; 8(7):329. https://doi.org/10.3390/fermentation8070329
Chicago/Turabian StyleGuo, Tongqing, Tao Guo, Long Guo, Fei Li, Fadi Li, and Zhiyuan Ma. 2022. "Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and Its Modulation by Aspergillus oryzae Culture in RUSITEC System" Fermentation 8, no. 7: 329. https://doi.org/10.3390/fermentation8070329
APA StyleGuo, T., Guo, T., Guo, L., Li, F., Li, F., & Ma, Z. (2022). Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and Its Modulation by Aspergillus oryzae Culture in RUSITEC System. Fermentation, 8(7), 329. https://doi.org/10.3390/fermentation8070329